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1 Introduction and Preliminaries

Differential equations with piecewise constant argument (EPCA) wengoseed for investigations in [1, 2]

by founders of the theory. In papers [3]- [22] and many others, #mitional method of investigation has
been effectively utilized for various interesting problems of theory apiegtions. The traditional method
means that the constant argument is assumed to be a multiplegretitest integer functigrand analysis is
based on reduction wiscrete equationdn fact, the simple type of constancy and the reduction are strongly
related to each other, since it is respectively easy to reduce to discrgtBoegsystems with this type of
argument.

A new class of differential equations (EPCAG) was introduced in [28],then developed in [24]- [37].
Extended information about these systems can be found in book [24}.cDméain EPCA as a subclass. In
paper [23], we not onlgeneralizedhe piecewise constant argument, but proposed to investigate the newly
introduced systems by reducing themimdegral equations This innovation became very effective, and
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there are two main reasons for that. Firstly, it is feasible, now, to investigaterss, which are essentially
non-linear. More precisely, non-linear with respect to values of solsitaindiscrete moments of time.
While in EPCA values of solutions at the discrete moments appear only line&jly fecondly, we can
analyze existence, uniqueness and stability of solutions with arbitrary initiments, not only the discrete
moments of time. Thus, we have deepen the analysis insight significantly. eFarh proposals were
developed in papers [25]- [37] and [38, 39] from theoretical pofnti@w, and for applications [31, 32, 40].
In the present paper we give more lights on the subject. We consider lineaygeneous as well as non-
homogeneous systems. Basic attributes of linear systems, dimension of¢he$palutions, fundamental
matrix of solutions, state transition matrix, general solution, periodic and alpssgidic solutions are
carefully discussed. Exponential dichotomy for EPCAG is introduced wingples. Existence of bounded
solutions, almost periodic and periodic solutions are under discussisrtlé@ar that many questions, which
relate to linear and quasilinear systems, will be solved later by using restitiis paper.

Let Z,N andR be the sets of all integers, natural and real numbers, respectivehot®by|| - || the
Euclidean norm iR", n € N. Fix two real-valued sequencés{,i € Z, such thatt < 6,,1,6 < { < 61
foralli € Z, |6| — o as|i| — oo.

We shall consider the following two equations, [24, 27],

Z(t) = Ao(t)z(t) +Au(t)zZ(y(1)), 1)
and
Z(t) = Ao(t)z(t) +Ac(t)z(y(t)) + f (1), (2)

whereze R"t e R, y(t) = ¢, ift €[6,61),i € Z.

We assume that the coefficiedg(t), A1 (t) are continuous oR, n x n, real valued matrices, the function
f(t) is continuous. In our paper we assume that the solutions of the equaticorairguous functionsBut
the deviating functiory(t) is discontinuous. Hence, in general, the right-hand sides of (1) anlda{®)
discontinuities at momen®,i € Z. Summarizing, we consider the solutions of the equations as functions,
which are continuous and continuously differentiable within interf@l$, . 1),i € Z.

We use the following definition, which is a version of a definition from [18]dified for our general
case.

Definition 1. [24,27,28] A continuous function(t) is a solution of (1)((2)) omR if:

(i) the derivativeZ (t) exists at each poirnite R with the possible exception of the poirfisi € Z, where
the one-sided derivatives exist;

(i) the equation is satisfied fa(t) on each interval6,6.1),i € Z, and it holds for the right derivative
of z(t) at the point$,,i € Z.

Let | be then x n identity matrix. Denote byX(t,s),X(s,s) = |,s € R, the fundamental matrix of
solutions of the system

X (t) = Ao(t)X(t), 3)
which is associated with systems (1) and (2). We introduce a matrix-furidki@n i € Z, [24, 27],

t
Mi(t) = X(t,4) + /Z X(t9A(S)ds

useful in what follows. From now on we make the assumption:
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* For every fixed € Z, defM;(t)] # 0, vt € [6, Bi11].
We shall call this property, theegularity condition

Theorem 1. [27] For every (tp,2p) € R x R" there exists a unique solutioritz = z(t,ty, ) of (1) in the
sense of Definition 1 such thgt@ = z if and only if the regularity condition is valid.

The last theorem arranges the correspondence between figiggs € R x R" and the solutions of
(1) in the sense of Definition 1, and there exists no solution of the equatioaf dbe correspondence.
Using this assertion we can say that the definition of the IVP for EPCAG is sitailéine problem for
ordinary differential equations. Particularly, the dimension of the sp&ed solutions isn. Hence, the
investigation of problems considered in our paper does not need to pertegh by results of theory of
functional differential equations [11], [41], despite the fact EPCA&Sexjuations with deviated arguments.

System (1) is a differential equation with a delay argument. That is why itsoreable to suppose that
the initial “interval” must consist of more than one point. The following argutsshow that in our case
we need only one initial moment. Indeed, assume (tato) is fixed, andg; <ty < 61 for a fixedi € Z.
We suppose thag # ¢;. The solution satisfies, on the interVé, 6;.1], the following functional differential
equation

Z(t) = Ao(t)z+Au(t)Z()). 4)

Formally we need the pair of initial pointso,zy) and(¢j,z(¢i)) to proceed with the solution, but since
20 = Mi(to)z(¢i), where matrixM;(tg) is nonsingular, we can say that the initial conditigity) = 7o is
sufficient to define the solution.

Theorem 1 implies that the set of the solutions of (1) imamimensional linear space. Hence, for a
fixedto € R there exists a fundamental matrix of solutions of @(},) = Z(t,to), Z(to,to) = I, such that

?jf = Ao(t)Z(t) + As(t)Z(y(t)).

Without loss of generality, assume that< ty < ¢ for a fixedi € Z, and define the matrix for increasing
t, [24,27],

i+1

2(t) =M ()| [ Mic*(B9Mi-1(80 | M o), (5)

if t €[6,6.1], for arbitraryl > i.
Similarly, if 6; <t < 6;;1<... <6 <tg< 641, then

i—1
2(0) = M (0)] [ M (B M 2(62) M) (6)
=]

One can easily see that
Z(t,9) =Z()Z }(9), t, SER, (7
and a solutiorz(t), z(to) = 2o, (to,20) € R x R", of (1) is equal to

Z(t) =Z(t,t0)20, t € R. (8)
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The last formulas, (5)-(8), have been obtained in [27], and areasf@ional importance for our theory of
linear systems. It is well known that linear systems with constant coefficGeatde source for all concepts
of linear systems theory, and they are not EPCAG, since EPCAG are/@otsenooth. So, we propose to
consider system (1) with periodic coefficients as a simplest linear systerpi@itewise constant argument.
Let us describe details in the next example.

Example 1. Assume that there are two numbeiss R, p € Z, such thab, p = 6+ w, {k+p = {k+ w,k €

Z. Then denote b the producrhf:le, where matrice§y are equal th;l(ek)Mk_l(Gk), ke Z. We call
the matrixQ, the monodromy matrix, and eigenvalues of the maixj = 1,2,...,n, multipliers. Let us
have some benefits from these definitions. From conditions stated abolevitsfthat, if all multipliers are
less than one in absolute value, then there exist numBers, a > 0, such that|Z(t,s)|| < Re ?(t-9 t >
More exactly, if g = %maxln|pi|, then for arbitrarye > 0O, there exists a numbdR(e) > 1, such that
1Z(t,s)|| < R(e)e~(B+e)(t=9) t > s Itis obvious, that withp;| # 1, for all i, we have so called a hyperbolic
homogeneous equation.

The last example shows that for (1), one can introduce the concepponential dichotomous system.

2 Exponential dichotomy

We say that system (1) satisfies exponential dichotomy, if there existgexiioa P and positive con-
stantsoy, 0o, K1, Ky, such that

[IZ(t)PZ7(s)|| < Kiexp(—oi(t—9)),t >s,
1IZ(t)(1 —=P)Z7(s)|| < Koexp(oz(t —9)),t <s.

It is not an easy task to provide examples of exponentially dichotomoushsysgnce there are no
linear EPCAG with constant coefficients, generally. Nevertheless, weavide in our paper advanced
examples.

So, let us pay attention to the periodic system that has been discussed #ssume that the mon-
odromy matrix,Q, admits no multipliers on the unit circle. More exactly, suppose khaiultipliers are
inside andn — k of them are outside of the unit disc. It is easy to see that there existglanensional
subspace of solutions tending to zero uniformly and exponentiallyasc. As well as there exits a
n — k—dimensional subspace of solutions tending to infinity uniformly and exporignéiat — c. On
the basis of these observations we can repeat discussions of [§2F p&- 12, to prove that our periodic
system is exponentially dichotomous.

Example 2. Consider sequences of scalésg;,i € Z, which satisfybj, = bj,6.p = 6 + w,i € Z, for
some positivaw € Z, p € Z. Define the following EPCAG,

X = bx(y(t)), (9)

wherey(t) = 6 if 8 <t < 6,1. One can find thaQ = |_| [1+b(6 — 6_1)]. Let us, give some analysis by

using the last expression. It is seen that the zero solutlon of the equatmriosmly exponentially stable
if, for example,—1 < 1+b(6 —6_1) <1,i=12....p. Thatis, |f9 7 < b <O, foralli.
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1
Similarly, if y(t) = 6.1, for 8 <t < 6,1, thenQ = |_|[1+ b(641— 6‘.)]*1, and the equation is uni-
i=p

formly exponentially stable, provided thbt> 0 orb < 9.—775.71’ for all i. Thus, we obtain that the sim-
ple Malthus model admits decaying solutions, even with positive coefficienteifptbcewise constant
argument with anticipation is inserted. This fact certainly requests a biologpeaeive. Let us final-
ize the study with exact estimations. Assume t/@t< 1, and denote-a = a%ln]Q|. Moreover, set
R = max {max{max |M;(t)|,max |M."1(t)|} }. Then, |x(t,to,%o)| < Re~®tY|xo|, for an arbitrary solution
X(t,to, o) Of the equation.

Example 3. Consider the following system

Z(t)= <8(1)> z+ (g(())) Z([t]). (10)

We canseethat =i,{; =61 =1+1,i € Z, for this system. One can find that

Q=G =M (6)M(6,1) = (”qq/ ’ i) -

Denote bypj, j = 1,2, eigenvalues of matriQ. They aremultipliersof system (10). We find that

_ 1 q_ |%F

= 1—q/2[l+ 4i l6+q].

From (5), it implies that the zero solution of (10) is exponentially stable, if@my if absolute values of
both multiplies less than one. We find that this is valid-it6 < g < 0. Moreover, if 0< g < 2, then the

system is exponentially dichotomous, such that gmf> 1 and|p,| < 1.

P12

3 The Non-homogeneous Linear System

Theorem 2. Assume that all conditions stated above hold. Then the solufior=zz(t,to, 2), (to, 20) €
R x R", of (2) is unique, defined dR, and equal to

2(t) = Z(t,to)zo+2(t,t0)/Zi X (to,9) F(5) ds+
o
k=j—1 Qir1 d t q
3 20,60 /Z X (81,9 (5) ds+ /ija,s)f(s) s (11)

where6 <tg < 6.1andf; <t < 6,1, >i,and

2(t) = Z(t,t0) 20+ Z(t,1o) /Zi X(to,9)f () ds+
k=] (%) i t
> 2800) [ X(891(9 05+ [ X(t9)f(s) s (12)

k=i i

whereg <tg < 6 1andf; <t < 0j4,j <.
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Proof. Consider only the increasing time case, since the opposite direction is verysimdaufficient
to verify that the expression (11) satisfies the system, since the unigusiésious. Another thing to check
is the continuity of solutions. So, let us differentiate the formula. We have that

k=j—1

di Zk+1
20) =200+ Zt) | Xta9T(S)dst Y 2(t6ca) /Z X(Bc.1,9)f(9) dst

fo k=i

t
/ X(t,5)1($) S’ = [Ao(t)Z(t,to) + ALDZ(Y(1).to) 20+ [Ao()Z(L, to) + As (1) Z(y(1). o) x

Z k=j—1 Ckst
[ X910 st S Rolt20,800) + AOZYO. 8] [ X(Bur91(5) dst
k=l k

;Ao(t)x(tas)f(s) ds+ f(t) = Ao(t)z(t) + Ac(t)Z(y(t)) + F(t).

It is clear thatz(t) is continuous in each intervéB;, 6..1),i € Z. Then we have that for a fixepe Z,

G
2(6,+) :z<e,-,to)zo+2(e,-,to)/t X (to,s) f(5) ds+
k=j-1 () 0j
5 26,600 [ XBur 9T dst | X(@91(9ds
and

G
Z(Qj—) = Z(@j,to)Zo+Z(9j,to)/ X(to,S)f(S) ds+
to
k=j-2 {ki1 6;
S 26,000 [ X(Ga9f(ds [ X(6.9)1()ds
k=i 4 {1
Subtract from the first formula the second to obtain that

4
2(0;+) —z(6—) = Z(Qj,ej)/ X(6k:1,5)f(s) dst+

-1

] ]
/ 'X(6,,9)1(9 ds—/ ' X(6,,9)f(s) ds=0.
g {1

The theorem is proved.]

The last theorem for quasilinear systems is proved in [24, 27].

Denote by{a, b],a,b € Z, the intervala, b], whenevera < b, and[b, a], otherwise. To see better similarity
of our results with those for ordinary differential equations, denot®{iys) the piecewise matrix, which is
defined in the following way,

Z(6j,t)X(to,8),  te [to,j],
cD(t,S) = Z<t7 6k+l)x(6k+lvs)7 te [Zlf\a Zk-i—l]a (13)
X(t,s), te [gj.t],
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wheretg € [6;, 611],t € [}, 6;1]. Then, we can see that formulas (11) and (12) are unified as

t
2(t) = Z(t,t0)20 + / o(t,s)f(s)ds (14)
to

To arrange a similarity with ordinary differential equations, we call the méifixs), theCauchy matrix
and (14), theCauchy representation formulaWe have to make the following important remark for the
definition of the Cauchy matrix, (13), and other piecewise matrices, whictbiprovided below, in the
paper. We define the matrix continuousadosedintervals, which overlap at their ends, but this provides no
difficulties for evaluation of solutions. Another type of integral représion of solutions can be found in
paper [39]. _

Next, assume that matricés, j = 0,1, are uniformly bounded oR, there exists a numbér > 0 such
that6 .1 — 6 < 6,i € Z, and there exists a numbér> 0 such thatg,; — 6 > 6,i € Z. One can easily
see that above stated conditions imply existence of positive nurivhensandM such tham < ||Z(t,s)|| <
M, [|X(t,s)|| <M if t,s€ [6,6,1],i € Z. Moreover, seM = sup, || f||. Assume that the system (1) is expo-
nentially dichotomous and write, in what followg, (t,s) = Z(t)PZ~1(s),Z, = Z(t)(I — P)Z7L(s).

Theorem 3. Assume that all conditions stated above hold, and the linear system (Iposextially di-
chotomous, then there is a unique boundedRaolution of (2),

- ¥z @)/kawk )(9) d
Z(t) = _(t, ,s)f(s) ds—
k:Zoo Zk—l

[ee)

dk t
Z+(t,6k)/ X (6,91 (s) ds+/ X(t,9)f(s) ds (15)

k=]+1 Ck1 4

Proof. Itis an easy job to check that the expression satisfies the system, if geri@maergent. So, let
us verify that they do. Consider just the first one, since for anothec#im$e done very similarly. We have
that,

. eae
Z (t s)f(s) dg| < 26MMR———.
[ _z_w ek/zkl (8,9)1(5) ds] < 26MNIR
Next, the function has to be continuousknt is obvious that it is continuous in any inter#, 6, 1),i € Z.
So, only points;,i € Z, are suspicious.
Fix j € Z, and evaluate

Zk o Zk
6]+ k_ZooZ 917 / (ek,s)f(s) ds— k:;+lz+(ej’9k) /Zkl)((ek’s)f(s) ds+
/GJX(t,s)f(s) ds
4

and
dk

-5 20 / X(8:9)1(5) ds— 3 2.(6,80 [ X(6.9)f(s)ds+

k=—oo = k=] Ck-1

6
/ X(t,s)f(s) ds

{1
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Subtract from the first formula the second one to see#ltht-) = z(6;—) = 0.

The theorem is proved.

One can easily see that the bounded solution, whose existence is pyaheddst theorem, is uniformly
asymptotically stable, if there exist constams: 1,a > 0, such that|Z(t,s)|| < Re -9 s<t.

To provide more compact formula for future investigations, let us introtheeéollowing notations.

_ Z (t7 6k+1)x(6k+17 3)7 SiS [Zkv Zk+l]7
P-(t,8) = {X(t)PX‘l(s), se (g1, (16)
and
21, 611) X (k15 S), S € [k Qi
P+(ts) = {X(t)(l ~P)X"Ys), se[{jt], (17)
wheret € [0;,6;1]. Then, we can see that formula (15) can be written as
t 0
2t) = / qa_(t,s)f(s)ds+/ . (1,9 (s)ds (18)
—00 t
Next, if we write
_ +( 9 )> SS t)
Galts) = {q’—( ,9),t<s,
(18) can be presented as
20~ [ Galt.9)f(9ds (19)
whereGg(t, s) is theGreen functiorfor abounded solution
Example 4. Consider the following system
01 00
Z(t) = <00> z+ <q0> Z(y(t))+ f(1). (20)

Where6 =i+ &, = 6,i € Z. Assume thatd| < &, whered is a positive parameter. Use the result of
Example 3, to obtain that, ¢ # —%’,4, then the system (20) is exponentially dichotomous. Indeed, itis seen
immediately through formula faw/; (t), that the eigenvalues continuously depend on the parandetend
results from [42]. Assume, now, that functidit) is a bounded one, then from the last theorem it implies
that there exists a unique bounded®solution of (20).

4 Periodic solutions

Assume that there are two numbesss R, p € Z, such thab, , = 6+ w, {kp = {k+ @,k € Z. Then
denote byQ the product|‘||‘2:1 Gk, where matrice§y are equal td\/lk‘l(ek)Mk,l(Gk), k € Z. The matrixQ,
is the monodromy matrix, and eigenvalues of the mapijxj = 1,2,...,n, are multipliers. It is clear that
system (1) admits a periodic solution, if there exists a unit multiplier. Generdlijpearesults known for
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linear homogeneous ordinary differential equations based on the unit heuttipan be identically repeated
for the present systems. Our main goal in this section is to study the noniaystams, and find formulas
for solutions. We assume that the systenwis periodic. That is, in addition to the above conditions,
f(t+ w) = f(t),t € R. In what follows, we assume without loss of generality tdat= 0, and consider
to = {o.

Consider the solution(t) = z(t,0, ). We have that

k=j-1 Zk+1
2 =20+ 3 Z(t,em)/ X(Bc11,5)F(5) ds+

4k
/tX(t,s)f(s)ds, (21)
4
and

k=p—-1

Zk+1
20) =200+ Y Z(w,ekﬂ)/@ X(6c,1,9)f (s) ds

In papers [35, 36] we proved the Poineariterion for EPCAG. According to this(t) is a periodic
solution if and only ifzy satisfies

k=p-1 ()
1-Z(@0n= 3 Z(w 61) /Z X (61,9 1(9) ds

k=0 k
By conditions of non-criticality, dét— Z(w, 0)] # 0, and the last equation admits a unique solution,

k=p-1 Cki1
7 =[l —Z(w,0)]? i Z(w, 6;<J,1)/Z X (61,9 (s) ds

k= Kk
Thus, we have obtained that

-1 Qr1
z(t) =Z(t,0)[| — Z(w, O)]’lpz Z(w, 6k+1)/ X(6t1,5) f(s) ds+
k=0

dk

j_l Zk+1 t
pRAT /Z T X(Ber9)(9) ds+ /Z X915 s (22)

Use formula (22) to obtain

k:j—l Zk+1
)= 3 ZO -Z(@)] 2 (61) /Z X (61,9 (s) ds+

k

X(t,s)f(s) ds (23)
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One can easily verify by substitution that (23) is a solution , and it is a conigfunction. One can
construct the followindgsreen functiorfor the periodic solution Gp(t, s),t,s € [0, w|.
Ifte[6;,0j+1),] =0,2,...,p—1, then

ZWO[ = Z(w)]'ZH(B1) X (Bcr1,9), S€ [k k1), k<,
Ge(t,s) = § ZO[l - Z(w)] Z(w)Z Y (6t1) X (Bs1,9), s € [Gk, G\ [t k>,
Z(O)[1 - Z(w)]*Z(w)Z (B 1)X (Br1,9) + X(t,9), S€ [, 1]

Now, apply the last formula in (23) to see that the periodic solution can be wete

Z(t) = /OwGp(t, s)f(s)ds

Finally, the Green function for a bounded soluti@y(t,s), in this periodic case satisfi€s(t + w,s+
w) = Gp(t,s),t,s€ Z, and consequently, the periodic solution can be written as (19).

5 Almost periodic solutions

From now on we make the assumption thatt,s)|| < Re~ (=9, for some number® > 1,a > 0. Let
Co(R) be the set of all bounded and uniformly continuousfofunctions. Forf € Co(R) andt € R the
translate off by 1 is the functionQ; f = f(t+ 1),t € R. A numbert € R is callede— translation number
of a functionf € Cy(R) if ||Q.f — f|| < € for everyt € R. A function f € Co(RR) is called almost periodic if
for everye > 0, there exists a respectively dense set eftranslations off, [45-47]. Denote by’ #(R)
the set of all almost periodic functions. Lé{ =(ivj— G, 9ij =6.j— 6 foralliandj. We call the family
of sequence$(i’}i7 j € Z, equipotentially almost periodic [44,48] if for an arbitrary posit&véhere exists
a relatively dense set @f— translation numbers, common for all sequen{:éé}i,j € Z. In what follows
we assume that sequenoﬁ’sj € Z, as well as sequenc@,j € Z, are equipotentially almost periodic.
This condition implies thaltg |, |{i| — o, as|i| — «. Moreover, it follows [44, 48], that there exist positive
numbersd and{ such thatg, ;1 — 6 < 0,1 — { < {,i € Z. Additionally, we assume that there are two
positive numbers(, 8, suchthatt ., — 6 > 6,{,1—( > {,i € Z.

The following assertion is a specific one. It connects almost periodicityoniyt of functions, but
functions and sequences. The technique of its proof was developeghéngpof D. Wexler [43]. See, for
example, [44, 48], where functions and sequences were discusged.the technique was effectively used
for discontinuous almost periodic functions and sequences in [34]. &B&® [48]. One can easily extend
the results for almost periodic functionals and sequences.

Lemma 4. [44,48] Assume that functiong(t),j = 1,2,...,k, are almost periodic in,tBij,Zij,j €7, are
equipotentially almost periodic aridfz 61,infz {! > 0. Then, for arbitraryn > 0,0 < v < n, there exist a
respectively dense set of real numb@rand integers Qsuch that forw € Q,q € Q, it is true that

Lllgtt+w) —gt)l<n,j=12. . kteR;
2. 18%—w| <v,i€Z;
3. 1%~ w| < v,icZ

Let us prove an auxiliary assertion.
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Lemma 5. Letw € R be a commom — almost period of matricesgft), A (t), then

_a

100
|1Z(t+ w, 54+ w) — Z(t + w,5+ w)|| < ¢ ne 29 s<t. (24)

Proof. SetW(t,s) = Z(t + w,s+ w) — Z(t,s). Then

oW _ (HW(L,s) +AL(t)W(Y(t),S) + [Ao(t + w) — Ao(1)]Z(t + w, s+ w)+

ot
[A1(t+ w) — Ao(t)|Z(y(t) + w,5+ w).
SinceW(s,s) = 0, from the last equation it follows that

W(t,s) = Z(t,s) /Zi X(s,u)[Ag(U+ w) — Ag(U)]Z(u+ w, s+ w)+

[A1(U+ w) — A1 (U)]Z(y(u) + w, 5+ w)] du+

k:j—l Zk+1
5 Z(t,GkH)/Z X (s 1, U) [Ao(U+ ©) — Ag(U)] Z(U-+ @, 5+ @)+

k=I k
[A(u+ @) — Ag(U)]Z(y(u) + @, s+ w)[du+
/Zt X(t,u)[Ao(u+ w) — Ag(U)]Z(u+ w, 5+ W) + [A1(U+ W) — A1 (U)]Z(y(u) + w, s+ w)] du.

Then, we have that

G _ — k=j-1 rds1 — t —
IW(t,s)|| g/ RMne 9t=s-0du+ > / RMr)e“(tse)dqu/ RMne t=s-9du<
s 4 ¢

k=1 k j

t _ _ _ Na06
/ RMne @t=s-0qu=RMne =59t —s) < RM:
S

ne 29,

The lemma is proved.]

Theorem 6. Suppose that all conditions stated above hold. H £7.2(R), then equation (2) admits a
unigue exponentially stable almost periodic solution.

Proof. Consider formula (15). Since the projectiBnr= |, this time the expression admits the form,

j 4k t

Z(t) = Z Z(t, Gk)/ X(6k,s)f(s) ds+/ X(t,s)f(s) ds (25)
k=—c0 Qi1 4

Let us check that the bounded solution is almost periodic. &@&adq that satisfy Lemma 4 with functions

Ao,Aq, f. Then, there exist numbers, vo, [vj| < 1, j = 1,2, such thati; q+1 = {ks1+ W+ Vo andlyq =

{k+ w+v1. Then,

i+a
A(t+w)—2(t)= Y Z(t~|—w,9k)/

k=—00 Zk—l

k t4w

X(6k,9)f(s) ds+/ X(t+ w,s)f(s) ds—

jtg
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i Z(t,Gk)/Zk X (6,9)(s) ds+/tX(t,s)f(s) ds—

k=—oo Ck-1 g
i Ckiq t
Z Z(t+ w, 9k+q)/ X (Oc1q:9) T (9) ds+/ X(t+ w,s+ w) f(s+ w) ds—
k+g-1 Z

k="e j
i dk t
k:ZwZ(t,ek) /Zk_lX(ek,S)f(S) ds+ /Z,- X(t,s)f(s) ds=
i

Zk+q Zk
S (2t+080q) [ X(Bea9f(9ds-2(t.6) [ X(BSIT(S) dst

k=—oo Ck-14q k-1

t+w t
/ X(t+w,s)f(s)ds—/ X(t,s)f(s)ds

Zj+q Zj
We have that

1Z(t+ @, Brq) — Z(t, B) || < [|Z(t + @, Bcrq) — Z(t + w, B+ W) ||+
Then

[Z(t+ @, Bcrq) — Z(t+ 0, 6+ W) || < [|Z(t + @, Bcrg) [[[[1 = Z(Bcsg, B+ ) || <
KRy (n)e e fea),
whereR; — 0 asn — 0. Moreover,

RMe”®

— 3 (t=6)
a ne

1Z(t+ w, 6+ w) = Z(t, 8[| <

)

according to Lemma 5.
Thus, it is true that

1Z(t + @, Be:q) — Z(t, B) || < Re(n)e 26,

whereRy(n) is a positive valued function such ti&t(n) — 0, asn — 0.
Let us make the following transformations,

Zk+q (4
/ X(6k+q,s)f(s)ds—/ X(66,9)f(s) ds—

Q-1 Qk-1

Qk-1+w dtw
/Z X(6k+q,s)f(s)ds+/ X(6k+q, ) f(s)dst

k-1+W+Vv1 detwtve

/;k [(X(Bktq; S+ ) f(s+ w) — X(B,s)f(s)ds

Apply to the last expression a discussion that is similar to the one made abmledeeathat
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Zk+q

(k
[ X (B 9)f(9)ds— / X (8 9)f (59 ds] < Re(n),

Zk+q71

whereR; — 0, asn — 0.
Then, we have that

Zk+q dk
IIZ(t+w,9k+q>/ X(6kt.a,9) () dS—Z(t,Gk)/ X(6k;s)f(s) dsl| <

Qk1

Zk+q Zk+q
1Z(t + @, Berq) — Z(t, 8| / X (Bcrq 9 F(9)ds] + | /Z X (Biqr9) F(5) ds—

Zk — ~ o a
/z X (6. 9) f(9)dsi||[Z(t, 6)I| < {MMRe(n)e 2% - Ry(n)e @) = Ry(n)e 2%,

Hence,

j Ckiq k
| 20+ 6q) /Z X(6:q 9(9) ds-2(.6) [ X(Bu9)f(9]dsi <

k=—o0 -
S Ra(ne 509 = Ry(n)

K=o 1- e’%Q'

]

D
N

Now, use the “diagonal almost periodicity” ¥f(t, s), [44], and almost periodicity of, to attain that

IIX(t+ w,s+ w) f(s+ w) — X(t,s) f(5)|| < [|[X(t+ w, s+ w) — X(t,9)|||| f(s+ w) ||+

If(s+w) — f(9)[IX(t,S)[| < Rs(n)M +nM = Re(n).

whereRg(n) — 0 asn — 0. Next, we have that

t+w {j+w

t
I X(t+w,s)f(s) ds/ X(t,s)f(s)dg| < H/ X(t+ w,s)f(s) dg|+

{itq g

Zj+w+v1

t . _
| [ X+ 0.5+ ) f(s+0) - X(1.91(5]ds| < Min +Re(n)6 = Re(n).
4
Apply the last estimations, to obtain that

6

[NIIS]

e
1—-e 29

1zt + ) — z(t) || < Ra(n) +Rz(n) =Re(n),
whereRg — 0 asn — 0. The last inequality proves the almost periodicityz(f). Stability of the solution

as well as its uniqueness , follows immediately those for the homogeneoussyste
The theorem is proved.
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Example 5. In [34] (see, also, [48]), we proved that the sequefice- i + &, whereg = %1|sin(i) —
cogiv/2)], satisfies conditions of the last theorem. That s, sque@iﬂcasa equipotentially almost periodic,
and there are positive numbedsand such that < 6,1 — 6 < 6,i € Z. Now, introduce a sequengé; }
such thatf; = 6, 1. It is obvious that{ = 6, = 6. Introduce the following EPCAG,

Z(t) = (8;) 24 (83) 2(y(®) + £ (0). (26)

Write 17 = 6,1 — 6, and find that

N S A
M (8)M;(6i1) = 1- 377 <qr42 1+gn,2>-

Then,

M H(B)Mi(B41) | < 1,

if —2—,/3—%<q<—2+,/3—%.

Since supn;2 =1+sup(ari—a) < %, we finally obtain that there exists a unique exponentially stable

almost periodic solution of (26) if2—,/5/3 < q < —2+ ,/5/3. Now, let us change the conditions for
(26). Assume thaf; # 6.1, but 6,1 — { < € < 8, wheree is a positive parameter. For example, one can
takel; = 61— €. From continuous dependence of solutions and norms of matrices on perait®llows,
that (26) admits a unique exponentially stable almost periodic solutie i \/% <qQ< -2+ \/5/73,
ande is sufficiently small.
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