by

Müge Saadetoğlu

We define an Euler characteristic $\chi(X,G)$, for a finite cell complex X with a finite group G acting cellularly on it. Then, each $K_i(X)$ (a complex vector space with basis the i-cells of X) is a representation of G, and we define the $\chi(X,G)$ to be the alternating sum of the representations $K_i(X)$, as an element of the representation ring R(G) of G. By adapting the ordinary proof that $\sum_i (-1)^i \dim_{\mathbb{C}} K_i(X;\mathbb{C}) = \sum_i (-1)^i \dim_{\mathbb{C}} H_i(X;\mathbb{C})$, we prove that there is another definition of $\chi(X,G)$ with the alternating sum of the representations $H_i(X)$, again as elements of the representation ring R(G).

We also give a formula for the character of $\chi(X,G)$, in terms of the ordinary Euler characteristic of X^g .

Finally, we prove a weaker version of Artin's induction theorem, stating that if G is a group with an irreducible representation of dimension greater than 1, then every character of G, is a rational linear combination of characters induced up from proper subgroups.