METU, Spring 2014, Math 504.
 Homework 6

(due May 21)

1. Determine the splitting field and its degree over \mathbf{Q} for $f(x)=x^{6}+3$.
2. If F is algebraically closed and E consists of all elements in F that are algebraic over K, then show that E is an algebraic closure of K.
3. Prove that an algebraic extension F of K is normal over K if and only if for every irreducible $f \in K[x], f$ factors in $F[x]$ as a product of irreducible factors al of which have the same degree.
4. Let $f(x)=x^{3}+b x^{2}+c x+d$ be a cubic irreducible polynomial over \mathbf{Q}. Let G be the Galois group of the polynomial f over \mathbf{Q}. Are the following true? Prove or disprove.

- If roots of f are real then $G \cong A_{3}$.
- If $G \cong A_{3}$, then roots of f must be real.

5. Let $f(x)=x^{4}-x^{3}+3 x^{2}+x+1$. Show that f is irreducible over \mathbf{Q}. Let F be its splitting field. Determine the Galois group of F / \mathbf{Q}. Show that $E=\mathbf{Q}(\sqrt{5}) \subset F$ and determine the corresponding subgroup E^{\prime} of $\mathrm{Aut}_{K} F$.
