METU, Spring 2014, Math 504.
 Homework 5

(due April 30)

1. If $u \in F$ is algebraic over of odd degree over K, then show that $K(u)=K\left(u^{2}\right)$.
2. Consider the extension $\mathbf{Q}(u)$ of \mathbf{Q} generated by a real root u of $x^{3}+2 x-2$. Express each of the following elements in terms of the basis $\left\{1, u, u^{2}\right\}$:

$$
\frac{u^{5}}{2}, \frac{u-1}{u}, \frac{u}{u-1}, \frac{14}{u^{2}-2} .
$$

3. In the field $K(x)$, let $u=x^{3} /(x+1)$. Show that $K(x)$ is a simple extension of the field $K(u)$. What is $[K(x): K(u)]$?
4. Show that a regular pentagon can be sketched by ruler and compass constructions.
5. Find the number of subfields of $K=\mathbf{Q}\left(\sqrt[5]{2}, \zeta_{5}\right)$ where $\zeta_{5}=\exp (2 \pi i / 5)$ is a fifth root of unity. Illustrate the correspondence of the fundamental theorem of Galois theory by giving a nontrivial example.
