METU, Spring 2014, Math 504. Homework 4

(due April 9)

1. Let A be cyclic module of order $r \in R$. Prove the following:

- If $s \in R$ is relatively prime to r, then sA = A and A[s] = 0.
- If s divides r, say sk = r, then $sA \cong R/(k)$ and A[s] = R/(s).
- 2. The annihilator of an *R*-module *A* is defined by $Ann(A) = \{r \in R : rA = 0\}.$
 - If A is a finitely generated torsion module then show that Ann(A) is a nonzero ideal in R.
 - Give an example of an integral domain R and a nonzero torsion R-module A so that Ann(A) = 0.
 - Let A be a finite abelian group with Ann(A) = (m) for some $m \in \mathbb{Z}$. Show that a cyclic subgroup of A of order properly dividing m need not be a direct summand of A.
- 3. If $T: V \to V$ is a linear transformation on a vector space V over the field **R**, then the vector space V can be made into an $\mathbf{R}[x]$ -module by setting $x \cdot v = T(v)$ for any $v \in V$. For each of the following transformations T, find a decomposition of V according to the Theorem 6.12 in our textbook. Provide both type of decompositions.
 - $V = \mathbf{R}^2$ and T(x, y) = (-y, x).
 - $V = \mathbf{R}^2$ and T(x, y) = (0, y).
 - $V = \mathbf{R}^3$ and T(x, y, z) = (z, x, y).
- 4. Let $R = \mathbf{Z}[i]$ be the ring of Gaussian integers. Let $\alpha = 30$ and $\beta = (2 + i)(1 + i)$ be elements of R generating the ideals \mathfrak{a} and \mathfrak{b} , respectively. Consider the R-module

$$A = R/\mathfrak{a} \oplus R/\mathfrak{b}.$$

Decompose the R-module A according to the Theorem 6.12 in our textbook. Provide both type of decompositions.