## METU, Spring 2014, Math 504. <br> Homework 2

(due March 12)

1. Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ be a linearly independent subset of a vector space $V$.

- Show that $\left\{x_{1}+x_{2}+x_{3}, x_{2}+x_{3}, x_{3}\right\}$ is a linearly independent subset of $V$.
- Is it necessarily true that the subset $X=\left\{x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{1}\right\}$ of $V$ is linearly independent? If not, then find a sufficient condition so that $X$ is linearly independent.

2. Prove that the space of real-valued functions on the closed interval $[0,1]$ is an infinite dimensional vector space over $\mathbf{R}$. Is its subset consisting of continuous functions a subspace?
3. Let $f: V \rightarrow V^{\prime}$ be a linear transformation of finite dimensional vector spaces where $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\prime}\right)$. Show that the following conditions are equivalent:

- $f$ is an isomorphism,
- $f$ is an epimorphism,
- $f$ is a monomorphism.

4. Let $\varphi$ be a linear transformation of the finite dimensional vector space $V$ to itself such that $\varphi^{2}=\varphi$.

- Prove that $\operatorname{Im}(\varphi) \cap \operatorname{Ker}(\varphi)=0$.
- Prove that $V=\operatorname{Im}(\varphi) \oplus \operatorname{Ker}(\varphi)$.

5. Let $V$ be a finite dimensional vector space with basis $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ over a field $F$. Let $V^{*}=\operatorname{Hom}_{F}(V, F)$ be the space of linear transformations from $V$ to $F$. Define $v_{i}^{*} \in V^{*}$ for each $i \in\{1,2, \ldots, n\}$ as follows:

$$
v_{i}^{*}\left(v_{j}\right)=\left\{\begin{array}{l}
1, \text { if } i=j, \\
0, \text { if } i \neq j .
\end{array}\right.
$$

Show that $\left\{v_{1}^{*}, v_{2}^{*}, \ldots, v_{n}^{*}\right\}$ is a basis for $V^{*}$.

