METU, Spring 2014, Math 504. Homework 1

(due March 5)

- 1. If M is a finite abelian group then it is naturally a **Z**-module. Can this action be extended to make M into a **Q**-module?
- 2. If $T: V \to V$ is a linear transformation on a vector space V over a field **F**, then V can be made into an $\mathbf{F}[x]$ -module by setting xv = Tv for any $v \in V$. For each of the following transformations T, find all $\mathbf{F}[x]$ -submodules of V.
 - $V = \mathbf{R}^2$ and T(x, y) = (-y, x).
 - $V = \mathbf{R}^2$ and T(x, y) = (0, y).
 - $V = \mathbf{R}^3$ and T(x, y, z) = (z, x, y).
- 3. An element m of the R-module M is called a torsion element if rm = 0 for some non-zero $r \in R$. The set of torsion elements in M is denoted by Tor(M).
 - If R is an integral domain then prove that Tor(M) is a submodule of M. Give an example so that Tor(M) is not a submodule.
 - Show that if R has zero divisors than every non-zero R-module has torsion elements.
- 4. Give an example of a finitely generated R-module which is not finitely generated as an abelian group.
- 5. Suppose that

A	\rightarrow	B	\rightarrow	C	\rightarrow	D
$\downarrow \alpha$		$\downarrow \beta$		$\downarrow \gamma$		$\downarrow \delta$
A'	\rightarrow	B'	\rightarrow	C'	\rightarrow	D'

is a commutative diagram of modules and suppose that the rows are exact. Prove the following statements.

- If α is surjective, and β, δ are injective, then γ is injective.
- If δ is injective, and α, γ are surjective, then β is surjective.