METU, Spring 2014, Math 504. Final (May 30)

1. (12 pts) Let $T: V \to V$ be a linear transformation on a finite dimensional vector space V over a field \mathbf{F} . Let $\mathbf{F}[T]$ be the ring of all linear operators on V that can be expressed as polynomials in T with coefficients from F. Assume that no nonzero proper subspace of V is mapped into itself by T. Show that $\mathbf{F}[T]$ is a field and $[\mathbf{F}[T]:F] = \dim_F V$.

Solution: The vector space V can be made into a $\mathbf{F}[x]$ -module via $x \cdot v = Tv$. Being finitely generated, V can be decomposed as $V = V_{\text{tors}} \oplus V_{\text{free}}$. Since V is finite dimensional, the free part V_{free} must be trivial. As a result we have

$$V \cong \mathbf{F}[x]/(p_1)^{n_1} \oplus \cdots \oplus \mathbf{F}[x]/(p_k)^{n_k}$$

for some irreducible polynomials $p_i \in \mathbf{F}[x]$ and natural numbers n_i . Suppose that no nonzero proper subspace of V is mapped into itself by T. It follows that $V \cong \mathbf{F}[x]/(p_1)$ where p_1 is of degree $n = \dim_{\mathbf{F}} V$. Consider the evaluation map $\varphi : \mathbf{F}[x] \to \mathbf{F}[T]$ defined by $\varphi(f(x)) = f(T)$. This map is a surjective ring homomorphism. Moreover its kernel is precisely the ideal generated by p_1 . Therefore $\mathbf{F}[T]$ is a field and $[\mathbf{F}[T] : \mathbf{F}] = \dim_{\mathbf{F}} V$

2. (12 pts) Let R be a principal ideal domain. Determine all finitely generated R-modules M such that $M \otimes_R M \cong M$.

Solution: Let M be a cyclic R-module generated by $m \in M$. Then it is easy to see that $M \otimes_R M \cong M$ by the isomorphism $r_1 m \otimes r_2 m \mapsto r_1 r_2 m$. We want to justify that any finitely generated R-module M such that $M \otimes_R M \cong M$ is cyclic. The structure of M is given by

$$M \cong R^n \oplus R/(a_1) \oplus \cdots \oplus R/(a_k)$$

for some natural number n and $a_i \in R$ such that $a_1 | \dots | a_k$. Recall that

$$(A \oplus B) \otimes_R C \cong (A \otimes_R C) \oplus (B \otimes_R C).$$

From this fact, we see that $n \leq 1$. Moreover we have $M \otimes_R R/(a_i) \cong M/(a_i)M$ for each $i \in \{1, \ldots, k\}$. Thus either $M \cong R$ or the free part of M is trivial. Now suppose that the free part of M is trivial. If $i \leq j$, then we have $R/(a_i) \otimes R/(a_j) \cong R/(a_i)$ since $gcd(a_i, a_j) = a_i$. It follows that M is cyclic and $M \cong R/(a_i)$.

- 3. Let F/K be a finite extension of fields. The intermediate fields E_1 and E_2 are said to be linearly disjoint if $[E_1E_2:K] = [E_1:K][E_2:K]$ where E_1E_2 is the composite field.
 - (4 pts) If $[E_1 : K]$ and $[E_2 : K]$ are relatively prime, then show that E_1 and E_2 are linearly disjoint over K.

Solution: The composite extension E_1E_2 is a finite extension of K of dimension less than or equal to $[E_1:K][E_2:K]$. To see this, let X_i be a basis for E_i where i = 1, 2. Then any element in E_1E_2 can be written as a K-linear combination of elements from $\{x_1x_2|x_1 \in X_1, x_2 \in X_2\}$.

On the other hand $[E_1E_2:K] = [E_1E_2:E_i][E_i:K]$ for each *i* by the tower law. Since $[E_1E_2:K]$ is divisible by both $[E_1:K]$ and $[E_2:K]$, which are relatively prime, we must have $[E_1E_2:K] \ge [E_1:K][E_2:K]$. This finishes the proof.

- (6 pts) Give an example with $[E_1 : K] = 2 = [E_2 : K]$ to show that there are linearly disjoint fields without having relatively prime degrees. Solution: Let $E_1 = \mathbf{Q}(i)$ and $E_2 = \mathbf{Q}(\sqrt{2})$. It is easy to see that $\zeta_8 = \exp(2\pi i/8)$ is an element of $\mathbf{Q}(i, \sqrt{2})$. Since $\mathbf{Q}(\zeta_8) \subset E_1 E_2$ and $[\mathbf{Q}(\zeta_8) : \mathbf{Q}] = \varphi(8) = 4$, we conclude that E_1 and E_2 are linearly disjoint.
- (6 pts) If F = F_q and K = F_p then find a sufficient and necessary condition so that the intermediate fields E₁ and E₂ are linearly disjoint.
 Solution: Let n_i = [E_i : F_p] for i = 1, 2. By the first part, we see that the condition gcd(n₁, n₂) = 1 is sufficient for being linearly disjoint. Now we will show that this condition is necessary in the case of finite fields. Assume otherwise and let gcd(n₁, n₂) = d > 1. The intermediate field E_i is the splitting field of x^{pⁿⁱ} − x. Let e be least common multiple of n₁ and n₂. The composite field E₁E₂ is contained in the splitting field of x^{p^e} − x which is of dimension e over F_p. However e = n₁n₂/d and it is strictly less than n₁n₂.
- 4. (10 pts) Let F/K be a Galois extension and set $G = \operatorname{Aut}_K F$. Let $f(x) \in K[x]$ be a monic polynomial that splits over F and let $S \subseteq F$ be the set of roots of f(x). Prove that f(x) is a power of an irreducible polynomial in K[x] if and only if G acts transitively on S.

Solution: (\Rightarrow) Suppose that $f(x) = p(x)^n$ for some irreducible polynomial p(x) in K[x]. Let u, v be two elements of S. There exist an isomorphism of fields $K(u) \cong K(v)$ which maps u onto v. Moreover this isomorphism can be extended to an automorphism of Fwhich contains the splitting field of p(x) over K. Thus there exists $\sigma \in G$ such that $\sigma(u) = v$.

(\Leftarrow) Suppose that G acts transitively on S. Let u, v be two elements of S. Then there exists $\sigma \in G$ such that $\sigma(u) = v$. As a result $\sigma|_{K(u)}$ is an isomorphism between K(u) and K(v) fixing K elementwise. Let $p(x) \in K[x]$ be the irreducible polynomial of $u \in F$. Observe that $p(v) = p(\sigma(u)) = \sigma(p(u)) = 0$. Thus each element in S must be a root of p(x). Therefore f(x) is a power of an irreducible polynomial in K[x].

5. (10 pts) Let F/K be a finite Galois extension and let $F = K(\alpha)$ for some $\alpha \in F$. Suppose that there is $\sigma \in \operatorname{Aut}_K F$ such that $\sigma(\alpha) = 1/(1-\alpha)$. Prove that [F:K] is a multiple of three and $[K(\alpha + \sigma(\alpha) + \sigma^2(\alpha)) : K] = [F:K]/3$.

Solution: Observe that $\sigma^3(\alpha) = \alpha$. Since α is an element generating the Galois extension F/K, the automorphism σ is of order 3. According to the fundamental theorem of Galois theory the fixed field of the subgroup $\langle \sigma \rangle$ is of index 3 in F. Note that the element $\beta = \alpha + \sigma(\alpha) + \sigma^2(\alpha)$ remains fixed under the automorphism σ .