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1. (12 pts) Let T : V → V be a linear transformation on a finite dimensional vector space
V over a field F. Let F[T ] be the ring of all linear operators on V that can be expressed
as polynomials in T with coefficients from F . Assume that no nonzero proper subspace
of V is mapped into itself by T . Show that F[T ] is a field and [F[T ] : F ] = dimF V .

Solution: The vector space V can be made into a F[x]-module via x · v = Tv. Be-
ing finitely generated, V can be decomposed as V = Vtors ⊕ Vfree. Since V is finite
dimensional, the free part Vfree must be trivial. As a result we have

V ∼= F[x]/(p1)
n1 ⊕ · · · ⊕ F[x]/(pk)nk

for some irreducible polynomials pi ∈ F[x] and natural numbers ni. Suppose that no
nonzero proper subspace of V is mapped into itself by T . It follows that V ∼= F[x]/(p1)
where p1 is of degree n = dimF V . Consider the evaluation map ϕ : F[x]→ F[T ] defined
by ϕ(f(x)) = f(T ). This map is a surjective ring homomorphism. Moreover its kernel
is precisely the ideal generated by p1. Therefore F[T ] is a field and [F[T ] : F] = dimF V

2. (12 pts) Let R be a principal ideal domain. Determine all finitely generated R-modules
M such that M ⊗R M ∼= M .

Solution: Let M be a cyclic R-module generated by m ∈ M . Then it is easy to see
that M ⊗RM ∼= M by the isomorphism r1m⊗ r2m 7→ r1r2m. We want to justify that
any finitely generated R-module M such that M ⊗R M ∼= M is cyclic. The structure
of M is given by

M ∼= Rn ⊕R/(a1)⊕ · · · ⊕R/(ak)

for some natural number n and ai ∈ R such that a1| . . . |ak. Recall that

(A⊕B)⊗R C ∼= (A⊗R C)⊕ (B ⊗R C).

From this fact, we see that n ≤ 1. Moreover we have M ⊗R R/(ai) ∼= M/(ai)M for
each i ∈ {1, . . . , k}. Thus either M ∼= R or the free part of M is trivial. Now suppose
that the free part of M is trivial. If i ≤ j, then we have R/(ai) ⊗ R/(aj) ∼= R/(ai)
since gcd(ai, aj) = ai. It follows that M is cyclic and M ∼= R/(ai).

3. Let F/K be a finite extension of fields. The intermediate fields E1 and E2 are said to
be linearly disjoint if [E1E2 : K] = [E1 : K][E2 : K] where E1E2 is the composite field.

• (4 pts) If [E1 : K] and [E2 : K] are relatively prime, then show that E1 and E2

are linearly disjoint over K.

Solution: The composite extension E1E2 is a finite extension of K of dimension
less than or equal to [E1 : K][E2 : K]. To see this, let Xi be a basis for Ei where



i = 1, 2. Then any element in E1E2 can be written as a K-linear combination of
elements from {x1x2|x1 ∈ X1, x2 ∈ X2}.
On the other hand [E1E2 : K] = [E1E2 : Ei][Ei : K] for each i by the tower law.
Since [E1E2 : K] is divisible by both [E1 : K] and [E2 : K], which are relatively
prime, we must have [E1E2 : K] ≥ [E1 : K][E2 : K]. This finishes the proof.

• (6 pts) Give an example with [E1 : K] = 2 = [E2 : K] to show that there are
linearly disjoint fields without having relatively prime degrees.

Solution: Let E1 = Q(i) and E2 = Q(
√

2). It is easy to see that ζ8 = exp(2πi/8)
is an element of Q(i,

√
2). Since Q(ζ8) ⊂ E1E2 and [Q(ζ8) : Q] = ϕ(8) = 4, we

conclude that E1 and E2 are linearly disjoint.

• (6 pts) If F = Fq and K = Fp then find a sufficient and necessary condition so
that the intermediate fields E1 and E2 are linearly disjoint.

Solution: Let ni = [Ei : Fp] for i = 1, 2. By the first part, we see that the
condition gcd(n1, n2) = 1 is sufficient for being linearly disjoint. Now we will
show that this condition is necessary in the case of finite fields. Assume otherwise
and let gcd(n1, n2) = d > 1. The intermediate field Ei is the splitting field of
xp

ni − x. Let e be least common multiple of n1 and n2. The composite field
E1E2 is contained in the splitting field of xp

e −x which is of dimension e over Fp.
However e = n1n2/d and it is strictly less than n1n2.

4. (10 pts) Let F/K be a Galois extension and set G = AutKF . Let f(x) ∈ K[x] be
a monic polynomial that splits over F and let S ⊆ F be the set of roots of f(x).
Prove that f(x) is a power of an irreducible polynomial in K[x] if and only if G acts
transitively on S.

Solution:(⇒) Suppose that f(x) = p(x)n for some irreducible polynomial p(x) in K[x].
Let u, v be two elements of S. There exist an isomorphism of fields K(u) ∼= K(v) which
maps u onto v. Moreover this isomorphism can be extended to an automorphism of F
which contains the splitting field of p(x) over K. Thus there exists σ ∈ G such that
σ(u) = v.

(⇐) Suppose that G acts transitively on S. Let u, v be two elements of S. Then there
exists σ ∈ G such that σ(u) = v. As a result σ|K(u) is an isomorphism between K(u)
and K(v) fixing K elementwise. Let p(x) ∈ K[x] be the irreducible polynomial of
u ∈ F . Observe that p(v) = p(σ(u)) = σ(p(u)) = 0. Thus each element in S must be
a root of p(x). Therefore f(x) is a power of an irreducible polynomial in K[x].

5. (10 pts) Let F/K be a finite Galois extension and let F = K(α) for some α ∈ F .
Suppose that there is σ ∈ AutKF such that σ(α) = 1/(1− α). Prove that [F : K] is a
multiple of three and [K(α + σ(α) + σ2(α)) : K] = [F : K]/3.

Solution: Observe that σ3(α) = α. Since α is an element generating the Galois exten-
sion F/K, the automorphism σ is of order 3. According to the fundamental theorem
of Galois theory the fixed field of the subgroup 〈σ〉 is of index 3 in F . Note that the
element β = α + σ(α) + σ2(α) remains fixed under the automorphism σ.


