METU, Spring 2014, Math 504.
 Final (May 30)

1. (12 pts) Let $T: V \rightarrow V$ be a linear transformation on a finite dimensional vector space V over a field \mathbf{F}. Let $\mathbf{F}[T]$ be the ring of all linear operators on V that can be expressed as polynomials in T with coefficients from F. Assume that no nonzero proper subspace of V is mapped into itself by T. Show that $\mathbf{F}[T]$ is a field and $[\mathbf{F}[T]: F]=\operatorname{dim}_{F} V$.
Solution: The vector space V can be made into a $\mathbf{F}[x]$-module via $x \cdot v=T v$. Being finitely generated, V can be decomposed as $V=V_{\text {tors }} \oplus V_{\text {free }}$. Since V is finite dimensional, the free part $V_{\text {free }}$ must be trivial. As a result we have

$$
V \cong \mathbf{F}[x] /\left(p_{1}\right)^{n_{1}} \oplus \cdots \oplus \mathbf{F}[x] /\left(p_{k}\right)^{n_{k}}
$$

for some irreducible polynomials $p_{i} \in \mathbf{F}[x]$ and natural numbers n_{i}. Suppose that no nonzero proper subspace of V is mapped into itself by T. It follows that $V \cong \mathbf{F}[x] /\left(p_{1}\right)$ where p_{1} is of degree $n=\operatorname{dim}_{\mathbf{F}} V$. Consider the evaluation $\operatorname{map} \varphi: \mathbf{F}[x] \rightarrow \mathbf{F}[T]$ defined by $\varphi(f(x))=f(T)$. This map is a surjective ring homomorphism. Moreover its kernel is precisely the ideal generated by p_{1}. Therefore $\mathbf{F}[T]$ is a field and $[\mathbf{F}[T]: \mathbf{F}]=\operatorname{dim}_{\mathbf{F}} V$
2. (12 pts) Let R be a principal ideal domain. Determine all finitely generated R-modules M such that $M \otimes_{R} M \cong M$.
Solution: Let M be a cyclic R-module generated by $m \in M$. Then it is easy to see that $M \otimes_{R} M \cong M$ by the isomorphism $r_{1} m \otimes r_{2} m \mapsto r_{1} r_{2} m$. We want to justify that any finitely generated R-module M such that $M \otimes_{R} M \cong M$ is cyclic. The structure of M is given by

$$
M \cong R^{n} \oplus R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{k}\right)
$$

for some natural number n and $a_{i} \in R$ such that $a_{1}|\ldots| a_{k}$. Recall that

$$
(A \oplus B) \otimes_{R} C \cong\left(A \otimes_{R} C\right) \oplus\left(B \otimes_{R} C\right)
$$

From this fact, we see that $n \leq 1$. Moreover we have $M \otimes_{R} R /\left(a_{i}\right) \cong M /\left(a_{i}\right) M$ for each $i \in\{1, \ldots, k\}$. Thus either $M \cong R$ or the free part of M is trivial. Now suppose that the free part of M is trivial. If $i \leq j$, then we have $R /\left(a_{i}\right) \otimes R /\left(a_{j}\right) \cong R /\left(a_{i}\right)$ since $\operatorname{gcd}\left(a_{i}, a_{j}\right)=a_{i}$. It follows that M is cyclic and $M \cong R /\left(a_{i}\right)$.
3. Let F / K be a finite extension of fields. The intermediate fields E_{1} and E_{2} are said to be linearly disjoint if $\left[E_{1} E_{2}: K\right]=\left[E_{1}: K\right]\left[E_{2}: K\right]$ where $E_{1} E_{2}$ is the composite field.

- $(4 \mathrm{pts})$ If $\left[E_{1}: K\right]$ and $\left[E_{2}: K\right]$ are relatively prime, then show that E_{1} and E_{2} are linearly disjoint over K.
Solution: The composite extension $E_{1} E_{2}$ is a finite extension of K of dimension less than or equal to $\left[E_{1}: K\right]\left[E_{2}: K\right]$. To see this, let X_{i} be a basis for E_{i} where
$i=1,2$. Then any element in $E_{1} E_{2}$ can be written as a K-linear combination of elements from $\left\{x_{1} x_{2} \mid x_{1} \in X_{1}, x_{2} \in X_{2}\right\}$.
On the other hand $\left[E_{1} E_{2}: K\right]=\left[E_{1} E_{2}: E_{i}\right]\left[E_{i}: K\right]$ for each i by the tower law. Since $\left[E_{1} E_{2}: K\right]$ is divisible by both $\left[E_{1}: K\right]$ and $\left[E_{2}: K\right]$, which are relatively prime, we must have $\left[E_{1} E_{2}: K\right] \geq\left[E_{1}: K\right]\left[E_{2}: K\right]$. This finishes the proof.
- (6 pts) Give an example with $\left[E_{1}: K\right]=2=\left[E_{2}: K\right]$ to show that there are linearly disjoint fields without having relatively prime degrees.
Solution: Let $E_{1}=\mathbf{Q}(i)$ and $E_{2}=\mathbf{Q}(\sqrt{2})$. It is easy to see that $\zeta_{8}=\exp (2 \pi i / 8)$ is an element of $\mathbf{Q}(i, \sqrt{2})$. Since $\mathbf{Q}\left(\zeta_{8}\right) \subset E_{1} E_{2}$ and $\left[\mathbf{Q}\left(\zeta_{8}\right): \mathbf{Q}\right]=\varphi(8)=4$, we conclude that E_{1} and E_{2} are linearly disjoint.
- (6 pts) If $F=\mathbf{F}_{q}$ and $K=\mathbf{F}_{p}$ then find a sufficient and necessary condition so that the intermediate fields E_{1} and E_{2} are linearly disjoint.
Solution: Let $n_{i}=\left[E_{i}: \mathbf{F}_{p}\right]$ for $i=1,2$. By the first part, we see that the condition $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ is sufficient for being linearly disjoint. Now we will show that this condition is necessary in the case of finite fields. Assume otherwise and let $\operatorname{gcd}\left(n_{1}, n_{2}\right)=d>1$. The intermediate field E_{i} is the splitting field of $x^{p^{p_{i}}}-x$. Let e be least common multiple of n_{1} and n_{2}. The composite field $E_{1} E_{2}$ is contained in the splitting field of $x^{p^{e}}-x$ which is of dimension e over \mathbf{F}_{p}. However $e=n_{1} n_{2} / d$ and it is strictly less than $n_{1} n_{2}$.

4. (10 pts) Let F / K be a Galois extension and set $G=\operatorname{Aut}_{K} F$. Let $f(x) \in K[x]$ be a monic polynomial that splits over F and let $S \subseteq F$ be the set of roots of $f(x)$. Prove that $f(x)$ is a power of an irreducible polynomial in $K[x]$ if and only if G acts transitively on S.
Solution: (\Rightarrow) Suppose that $f(x)=p(x)^{n}$ for some irreducible polynomial $p(x)$ in $K[x]$. Let u, v be two elements of S. There exist an isomorphism of fields $K(u) \cong K(v)$ which maps u onto v. Moreover this isomorphism can be extended to an automorphism of F which contains the splitting field of $p(x)$ over K. Thus there exists $\sigma \in G$ such that $\sigma(u)=v$.
(\Leftarrow) Suppose that G acts transitively on S. Let u, v be two elements of S. Then there exists $\sigma \in G$ such that $\sigma(u)=v$. As a result $\left.\sigma\right|_{K(u)}$ is an isomorphism between $K(u)$ and $K(v)$ fixing K elementwise. Let $p(x) \in K[x]$ be the irreducible polynomial of $u \in F$. Observe that $p(v)=p(\sigma(u))=\sigma(p(u))=0$. Thus each element in S must be a root of $p(x)$. Therefore $f(x)$ is a power of an irreducible polynomial in $K[x]$.
5. (10 pts) Let F / K be a finite Galois extension and let $F=K(\alpha)$ for some $\alpha \in F$. Suppose that there is $\sigma \in \operatorname{Aut}_{K} F$ such that $\sigma(\alpha)=1 /(1-\alpha)$. Prove that $[F: K]$ is a multiple of three and $\left[K\left(\alpha+\sigma(\alpha)+\sigma^{2}(\alpha)\right): K\right]=[F: K] / 3$.
Solution: Observe that $\sigma^{3}(\alpha)=\alpha$. Since α is an element generating the Galois extension F / K, the automorphism σ is of order 3. According to the fundamental theorem of Galois theory the fixed field of the subgroup $\langle\sigma\rangle$ is of index 3 in F. Note that the element $\beta=\alpha+\sigma(\alpha)+\sigma^{2}(\alpha)$ remains fixed under the automorphism σ.
