M E T U Department of Mathematics

Abstract Algebra								
Midterm 2								
Code	: Mat	h 367		Last Nan	ne :			
Acad. Year	: 2015 : Fall : Küçüksakallı : Dec 14, 2015 : 17:40			Name : Student No. : Signature :				
Instructor								
mouración								
Date Time				6 QUESTIONS ON 4 PAGES				
Duration : 120 minutes				100 TOTAL POINTS				
1 2	3	4	5 6					

1. (25pts) For each of the following statements determine if it is **true** or **false**. Explain your answer briefly.

• Let G be a finite group and p be a prime number. There exists an element $a \in G$ of order p if and only if p divides |G|.

True. (\Rightarrow) by Lagrange's Theorem and (\Leftarrow) by Cauchy's Theorem.

• Let G be a finite group such that |G| is divisible by p^2 where p is prime. Then there exists an element $a \in G$ of order p^2 .

False. The group $\mathbb{Z}_2 \times \mathbb{Z}_2$ does not have an element of order 4.

• Let G be a finite group such that |G| is divisible by p^2 where p is prime. Then there exists a subgroup $H \leq G$ of order p^2 .

True. Sylow's First Theorem.

• The set $S = \{2a + b\sqrt{367} \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R} .

False. Because $\sqrt{367} \cdot \sqrt{367} = 367 \notin R$.

• The subrings $2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\}$ and $3\mathbb{Z} = \{3k \mid k \in \mathbb{Z}\}$ of \mathbb{Z} are isomorphic.

False. Assume otherwise and let $f : 2\mathbb{Z} \to 3\mathbb{Z}$ be an isomorphism. Then f(2) = 3k for some nonzero $k \in \mathbb{Z}$. Then $f(4) = f(2 \cdot 2) = f(2) \cdot f(2) = 9k^2$ and f(4) = f(2+2) = f(2) + f(2) = 2f(2) = 6k. We have $9k^2 = 6k$, a contradiction.

2a. (5pts) State the class equation.

Theorem (Class Equation): Let G be a finite group. Then

$$|G| = |Z(G)| + \sum_{a \notin Z(G)} [G : C_G(a)].$$

where the sum runs over distinct conjugacy class representatives.

2b. (10pts) If G is a finite p-group with |G| > 1, then show that |Z(G)| > 1.

Theorem 7.2.7 in your textbook.

- **3.** (10pts) Let G be a group of order 105.
 - Show that G is not simple.

Assume that $n_5 > 1$ and $n_7 > 1$. Sylow's Third Theorem implies that $n_5 = 21$ and $n_7 = 15$. There are $21 \cdot 4 = 84$ elements of order 5 and $15 \cdot 6 = 90$ elements of order 7. In total there are 90 + 84 = 174 elements in G of order 5 or 7, a contradiction. Therefore $n_5 = 1$ or $n_7 = 1$. In either case there exists a unique Sylow *p*-subgroup which is normal in G. Thus G is not simple

• Show that G has a subgroup of order 35.

Let P_5 and P_7 be a Sylow 5-subgroup and a Sylow 7-subgroup, respectively. From the previous part we know that P_5 or P_7 is normal in G. It follows that $H = P_5P_7$ is a subgroup of G. We have $P_5 \cap P_7 = \{e\}$ and therefore $|H| = |P_5||P_7|/|P_5 \cap P_7| = 35$. We conclude that there exist a subgroup $H \leq G$ of order 35. 4. (25pts) Let $M_2(\mathbb{Q})$ be the ring of 2×2 matrices with rational entries under the usual matrix addition and multiplication. Consider

 $R = \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}\right] \middle| a, b, c \in \mathbb{Q} \right\} \quad \text{and} \quad I = \left\{ \left[\begin{smallmatrix} 0 & b \\ 0 & 0 \end{smallmatrix}\right] \middle| b \in \mathbb{Q} \right\}.$

• Show that R is a subring of $M_2(\mathbb{Q})$.

Pick $M = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ and $M' = \begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix}$ in R. Then $M - M' = \begin{bmatrix} a-a' & b-b' \\ 0 & c-c' \end{bmatrix}$ and $M \cdot M' = \begin{bmatrix} aa' & ab'+bc' \\ 0 & cc' \end{bmatrix}$ are also in R. Thus R is a subring of $M_2(\mathbb{Q})$.

• Show that I is not an ideal of $M_2(\mathbb{Q})$.

Pick $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \in M_2(\mathbb{Q})$ and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in I$. Then $A \cdot B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is not an element of I. Thus I is not an ideal of $M_2(\mathbb{Q})$.

• Show that I is an ideal of R.

It is easy to see that I is an additive subgroup of R. Pick $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in R$ and $B = \begin{bmatrix} 0 & b' \\ 0 & 0 \end{bmatrix} \in I$. then $A \cdot B = \begin{bmatrix} 0 & ab' \\ 0 & 0 \end{bmatrix}$ and $B \cdot A = \begin{bmatrix} 0 & cb' \\ 0 & 0 \end{bmatrix}$ which are both in I. Thus I is an ideal of R.

• Show that the map $f\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) = (a, c)$ is a ring homomorphism from R to $\mathbb{Q} \times \mathbb{Q}$. (Here $\mathbb{Q} \times \mathbb{Q}$ is the usual ring with componentwise addition and multiplication.)

Let
$$M = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$
 and $M' = \begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix}$. Then
 $f(M + M') = f(\begin{bmatrix} a+a' & b+b' \\ 0 & c+c' \end{bmatrix}) = (a + a', c + c') = (a, c) + (a', c') = f(M) + f(M'),$

and

$$f(M \cdot M') = f(\begin{bmatrix} aa' & ab' + bc' \\ 0 & cc' \end{bmatrix}) = (aa', cc') = (a, c) \cdot (a', c') = f(M) \cdot f(M').$$

Thus $f : R \to \mathbb{Q} \times \mathbb{Q}$ is a ring homomorphism.

• Show that the quotient ring R/I is isomorphic to $\mathbb{Q} \times \mathbb{Q}$.

The map $f : R \to \mathbb{Q} \times \mathbb{Q}$ is a ring homomorphism with $\operatorname{Ker}(f) = I$. Moreover, f is surjective. The first isomorphism theorem implies that $R/I \cong \mathbb{Q} \times \mathbb{Q}$ as rings.

5. (15pts) Set $i = \sqrt{-1}$ and consider the subring $R = \{a + bi \mid a, b \in \mathbb{Z}\}$ of \mathbb{C} . Let I be the ideal of R generated by 2 and 3 + i, i.e. $I = \langle 2, 3 + i \rangle$.

• Show that $I = \langle 1 + i \rangle$.

Note that $2 = (1+i) \cdot (1-i)$ and $3+i = (1+i) \cdot (2-i)$. Pick $\alpha \in \langle 2, 3+i \rangle$. Then $\alpha = r \cdot 2 + s \cdot (3+i)$ for some $r, s \in R$. Thus $\alpha = (1+i) \cdot (r \cdot (1-i) + s \cdot (2-i))$. It follows that $\langle 2, 3+i \rangle \subseteq \langle 1+i \rangle$. On the other hand 1+i = (3+i) - 2. Pick $\beta \in \langle 1+i \rangle$. Then $\beta = r \cdot (1+i)$ for some $r \in R$. Thus $\beta = r \cdot (3+i-2)$ where $3+i-2 \in \langle 2,3+i \rangle$. Thus $\langle 2,3+i \rangle \supseteq \langle 1+i \rangle$. We conclude that $\langle 2,3+i \rangle = \langle 1+i \rangle$.

• Determine the number of elements in the quotient ring R/I.

The quotient ring is given by $R/I = \{r + I \mid r \in R\}$. Note that $i - 1 = i \cdot (1 + i) \in I$. Thus i + I = 1 + I since $1 - i \in I$. It follows that a + bi + I = a + b + I. Moreover a + b + I is equal to either 0 + I or 1 + I since $2 \in I$. The elements 0 + I and 1 + I are distinct in R/I because $1 \notin I$. Therefore |R/I| = 2.

6. (10pts) Show that any finite field has order p^n , where p is prime. (Hint: Use the fundamental theorem of finite Abelian groups.)

Let $(F, +, \cdot)$ be a finite field. Then (F, +) is a finite Abelian group and we have

$$F \cong \mathbb{Z}_{p_1^{n_1}} \times \dots \times \mathbb{Z}_{p_k^{n_k}}$$

where p_1, \ldots, p_k are primes. It is enough to show that $p_i = p_j$ for all $1 \le i, j \le k$. Assume otherwise and let p and q be two distinct primes dividing the order F. By Cauchy's theorem, there exist elements $x, y \in F$ of order p and q, respectively. Note that $qx \ne 0$ and $py \ne 0$. On the other hand

$$(qx)(py) = qp(xy) = (px)(qy) = 0.$$

It follows that there are zero divisors in the field F, a contradiction.