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1. (25pts) For each of the following statements determine if it is true or false. Explain

your answer briefly.

• Let G be a finite group and p be a prime number. There exists an element a ∈ G of

order p if and only if p divides |G|.

True. (⇒) by Lagrange’s Theorem and (⇐) by Cauchy’s Theorem.

• Let G be a finite group such that |G| is divisible by p2 where p is prime. Then there

exists an element a ∈ G of order p2.

False. The group Z2 × Z2 does not have an element of order 4.

• Let G be a finite group such that |G| is divisible by p2 where p is prime. Then there

exists a subgroup H ≤ G of order p2.

True. Sylow’s First Theorem.

• The set S = {2a+ b
√

367 | a, b ∈ Z} is a subring of R.

False. Because
√

367 ·
√

367 = 367 /∈ R.

• The subrings 2Z = {2k | k ∈ Z} and 3Z = {3k | k ∈ Z} of Z are isomorphic.

False. Assume otherwise and let f : 2Z → 3Z be an isomorphism. Then f(2) = 3k

for some nonzero k ∈ Z. Then f(4) = f(2 · 2) = f(2) · f(2) = 9k2 and f(4) =

f(2 + 2) = f(2) + f(2) = 2f(2) = 6k. We have 9k2 = 6k, a contradiction.



2a. (5pts) State the class equation.

Theorem(Class Equation): Let G be a finite group. Then

|G| = |Z(G)|+
∑

a/∈Z(G)

[G : CG(a)],

where the sum runs over distinct conjugacy class representatives.

2b. (10pts) If G is a finite p-group with |G| > 1, then show that |Z(G)| > 1.

Theorem 7.2.7 in your textbook.

3. (10pts) Let G be a group of order 105.

• Show that G is not simple.

Assume that n5 > 1 and n7 > 1. Sylow’s Third Theorem implies that n5 = 21 and

n7 = 15. There are 21 · 4 = 84 elements of order 5 and 15 · 6 = 90 elements of order

7. In total there are 90 + 84 = 174 elements in G of order 5 or 7, a contradiction.

Therefore n5 = 1 or n7 = 1. In either case there exists a unique Sylow p-subgroup

which is normal in G. Thus G is not simple

• Show that G has a subgroup of order 35.

Let P5 and P7 be a Sylow 5-subgroup and a Sylow 7-subgroup, respectively. From

the previous part we know that P5 or P7 is normal in G. It follows that H = P5P7 is

a subgroup of G. We have P5∩P7 = {e} and therefore |H| = |P5||P7|/|P5∩P7| = 35.

We conclude that there exist a subgroup H ≤ G of order 35.
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4. (25pts) Let M2(Q) be the ring of 2× 2 matrices with rational entries under the usual

matrix addition and multiplication. Consider

R =
{[

a b
0 c

]∣∣ a, b, c ∈ Q
}

and I =
{[

0 b
0 0

]∣∣ b ∈ Q
}
.

• Show that R is a subring of M2(Q).

Pick M =
[
a b
0 c

]
and M ′ =

[
a′ b′

0 c′

]
in R. Then M −M ′ =

[
a−a′ b−b′
0 c−c′

]
and M ·M ′ =[

aa′ ab′+bc′

0 cc′

]
are also in R. Thus R is a subring of M2(Q).

• Show that I is not an ideal of M2(Q).

Pick A =
[
0 0
1 0

]
∈ M2(Q) and B =

[
0 1
0 0

]
∈ I. Then A · B =

[
0 0
0 1

]
is not an element

of I. Thus I is not an ideal of M2(Q).

• Show that I is an ideal of R.

It is easy to see that I is an additive subgroup of R. Pick A =
[
a b
0 c

]
∈ R and

B =
[
0 b′
0 0

]
∈ I. then A · B =

[
0 ab′
0 0

]
and B · A =

[
0 cb′
0 0

]
which are both in I. Thus

I is an ideal of R.

• Show that the map f
([

a b
0 c

])
= (a, c) is a ring homomorphism from R to Q × Q.

(Here Q×Q is the usual ring with componentwise addition and multiplication.)

Let M =
[
a b
0 c

]
and M ′ =

[
a′ b′

0 c′

]
. Then

f(M +M ′) = f(
[
a+a′ b+b′

0 c+c′

]
) = (a+ a′, c+ c′) = (a, c) + (a′, c′) = f(M) + f(M ′),

and

f(M ·M ′) = f(
[
aa′ ab′+bc′

0 cc′

]
) = (aa′, cc′) = (a, c) · (a′, c′) = f(M) · f(M ′).

Thus f : R→ Q×Q is a ring homomorphism.

• Show that the quotient ring R/I is isomorphic to Q×Q.

The map f : R → Q×Q is a ring homomorphism with Ker(f) = I. Moreover, f is

surjective. The first isomorphism theorem implies that R/I ∼= Q×Q as rings.
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5. (15pts) Set i =
√
−1 and consider the subring R = {a+ bi | a, b ∈ Z} of C. Let I be

the ideal of R generated by 2 and 3 + i, i.e. I = 〈2, 3 + i〉.
• Show that I = 〈1 + i〉.

Note that 2 = (1 + i) · (1− i) and 3 + i = (1 + i) · (2− i). Pick α ∈ 〈2, 3 + i〉. Then

α = r · 2 + s · (3 + i) for some r, s ∈ R. Thus α = (1 + i) · (r · (1 − i) + s · (2 − i)).
It follows that 〈2, 3 + i〉 ⊆ 〈1 + i〉. On the other hand 1 + i = (3 + i) − 2. Pick

β ∈ 〈1 + i〉. Then β = r · (1 + i) for some r ∈ R. Thus β = r · (3 + i − 2) where

3 + i− 2 ∈ 〈2, 3 + i〉. Thus 〈2, 3 + i〉 ⊇ 〈1 + i〉. We conclude that 〈2, 3 + i〉 = 〈1 + i〉.

• Determine the number of elements in the quotient ring R/I.

The quotient ring is given by R/I = {r+ I | r ∈ R}. Note that i− 1 = i · (1 + i) ∈ I.

Thus i+ I = 1 + I since 1− i ∈ I. It follows that a+ bi+ I = a+ b+ I. Moreover

a+ b+ I is equal to either 0 + I or 1 + I since 2 ∈ I. The elements 0 + I and 1 + I

are distinct in R/I because 1 /∈ I. Therefore |R/I| = 2.

6. (10pts) Show that any finite field has order pn, where p is prime. (Hint: Use the

fundamental theorem of finite Abelian groups.)

Let (F,+, ·) be a finite field. Then (F,+) is a finite Abelian group and we have

F ∼= Zp
n1
1
× · · · × Zp

nk
k

where p1, . . . , pk are primes. It is enough to show that pi = pj for all 1 ≤ i, j ≤ k. Assume

otherwise and let p and q be two distinct primes dividing the order F . By Cauchy’s

theorem, there exist elements x, y ∈ F of order p and q, respectively. Note that qx 6= 0

and py 6= 0. On the other hand

(qx)(py) = qp(xy) = (px)(qy) = 0.

It follows that there are zero divisors in the field F , a contradiction.
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