M ETU
 Department of Mathematics

1. (25pts) For each of the following statements determine if it is true or false. Explain your answer briefly.

- Let G be a finite group and p be a prime number. There exists an element $a \in G$ of order p if and only if p divides $|G|$.

True. (\Rightarrow) by Lagrange's Theorem and (\Leftarrow) by Cauchy's Theorem.

- Let G be a finite group such that $|G|$ is divisible by p^{2} where p is prime. Then there exists an element $a \in G$ of order p^{2}.

False. The group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ does not have an element of order 4 .

- Let G be a finite group such that $|G|$ is divisible by p^{2} where p is prime. Then there exists a subgroup $H \leq G$ of order p^{2}.

True. Sylow's First Theorem.

- The set $S=\{2 a+b \sqrt{367} \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R}.

False. Because $\sqrt{367} \cdot \sqrt{367}=367 \notin R$.

- The subrings $2 \mathbb{Z}=\{2 k \mid k \in \mathbb{Z}\}$ and $3 \mathbb{Z}=\{3 k \mid k \in \mathbb{Z}\}$ of \mathbb{Z} are isomorphic.

False. Assume otherwise and let $f: 2 \mathbb{Z} \rightarrow 3 \mathbb{Z}$ be an isomorphism. Then $f(2)=3 k$ for some nonzero $k \in \mathbb{Z}$. Then $f(4)=f(2 \cdot 2)=f(2) \cdot f(2)=9 k^{2}$ and $f(4)=$ $f(2+2)=f(2)+f(2)=2 f(2)=6 k$. We have $9 k^{2}=6 k$, a contradiction.

2a. (5pts) State the class equation.
Theorem(Class Equation): Let G be a finite group. Then

$$
|G|=|Z(G)|+\sum_{a \notin Z(G)}\left[G: C_{G}(a)\right],
$$

where the sum runs over distinct conjugacy class representatives.
2b. (10pts) If G is a finite p-group with $|G|>1$, then show that $|Z(G)|>1$.

Theorem 7.2.7 in your textbook.
3. (10pts) Let G be a group of order 105.

- Show that G is not simple.

Assume that $n_{5}>1$ and $n_{7}>1$. Sylow's Third Theorem implies that $n_{5}=21$ and $n_{7}=15$. There are $21 \cdot 4=84$ elements of order 5 and $15 \cdot 6=90$ elements of order 7. In total there are $90+84=174$ elements in G of order 5 or 7 , a contradiction. Therefore $n_{5}=1$ or $n_{7}=1$. In either case there exists a unique Sylow p-subgroup which is normal in G. Thus G is not simple

- Show that G has a subgroup of order 35 .

Let P_{5} and P_{7} be a Sylow 5-subgroup and a Sylow 7-subgroup, respectively. From the previous part we know that P_{5} or P_{7} is normal in G. It follows that $H=P_{5} P_{7}$ is a subgroup of G. We have $P_{5} \cap P_{7}=\{e\}$ and therefore $|H|=\left|P_{5}\right|\left|P_{7}\right| /\left|P_{5} \cap P_{7}\right|=35$. We conclude that there exist a subgroup $H \leq G$ of order 35 .
4. (25pts) Let $M_{2}(\mathbb{Q})$ be the ring of 2×2 matrices with rational entries under the usual matrix addition and multiplication. Consider

$$
R=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Q}\right\} \quad \text { and } \quad I=\left\{\left.\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right] \right\rvert\, b \in \mathbb{Q}\right\} .
$$

- Show that R is a subring of $M_{2}(\mathbb{Q})$.

Pick $M=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ and $M^{\prime}=\left[\begin{array}{ll}a^{\prime} & b^{\prime} \\ 0 & c^{\prime}\end{array}\right]$ in R. Then $M-M^{\prime}=\left[\begin{array}{cc}a-a^{\prime} & b-b^{\prime} \\ 0 & c-c^{\prime}\end{array}\right]$ and $M \cdot M^{\prime}=$ $\left[\begin{array}{cc}a a^{\prime} & a b^{\prime}+b c^{\prime} \\ 0 & c c^{\prime}\end{array}\right]$ are also in R. Thus R is a subring of $M_{2}(\mathbb{Q})$.

- Show that I is not an ideal of $M_{2}(\mathbb{Q})$.

Pick $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \in M_{2}(\mathbb{Q})$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \in I$. Then $A \cdot B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ is not an element of I. Thus I is not an ideal of $M_{2}(\mathbb{Q})$.

- Show that I is an ideal of R.

It is easy to see that I is an additive subgroup of R. Pick $A=\left[\begin{array}{cc}a & b \\ 0 & c\end{array}\right] \in R$ and $B=\left[\begin{array}{ll}0 & b^{\prime} \\ 0 & 0\end{array}\right] \in I$. then $A \cdot B=\left[\begin{array}{cc}0 & a b^{\prime} \\ 0 & 0\end{array}\right]$ and $B \cdot A=\left[\begin{array}{cc}0 & b^{\prime} \\ 0 & 0\end{array}\right]$ which are both in I. Thus I is an ideal of R.

- Show that the map $f\left(\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]\right)=(a, c)$ is a ring homomorphism from R to $\mathbb{Q} \times \mathbb{Q}$. (Here $\mathbb{Q} \times \mathbb{Q}$ is the usual ring with componentwise addition and multiplication.)

Let $M=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ and $M^{\prime}=\left[\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & c^{\prime}\end{array}\right]$. Then

$$
f\left(M+M^{\prime}\right)=f\left(\left[\begin{array}{cc}
a+a^{\prime} & b+b^{\prime} \\
0 & c+c^{\prime}
\end{array}\right]\right)=\left(a+a^{\prime}, c+c^{\prime}\right)=(a, c)+\left(a^{\prime}, c^{\prime}\right)=f(M)+f\left(M^{\prime}\right),
$$

and

$$
f\left(M \cdot M^{\prime}\right)=f\left(\left[\begin{array}{cc}
a a^{\prime} a b^{\prime}+b c^{\prime} \\
0 & c c^{\prime}
\end{array}\right]\right)=\left(a a^{\prime}, c c^{\prime}\right)=(a, c) \cdot\left(a^{\prime}, c^{\prime}\right)=f(M) \cdot f\left(M^{\prime}\right) .
$$

Thus $f: R \rightarrow \mathbb{Q} \times \mathbb{Q}$ is a ring homomorphism.

- Show that the quotient ring R / I is isomorphic to $\mathbb{Q} \times \mathbb{Q}$.

The map $f: R \rightarrow \mathbb{Q} \times \mathbb{Q}$ is a ring homomorphism with $\operatorname{Ker}(f)=I$. Moreover, f is surjective. The first isomorphism theorem implies that $R / I \cong \mathbb{Q} \times \mathbb{Q}$ as rings.
5. (15pts) Set $i=\sqrt{-1}$ and consider the subring $R=\{a+b i \mid a, b \in \mathbb{Z}\}$ of \mathbb{C}. Let I be the ideal of R generated by 2 and $3+i$, i.e. $I=\langle 2,3+i\rangle$.

- Show that $I=\langle 1+i\rangle$.

Note that $2=(1+i) \cdot(1-i)$ and $3+i=(1+i) \cdot(2-i)$. Pick $\alpha \in\langle 2,3+i\rangle$. Then $\alpha=r \cdot 2+s \cdot(3+i)$ for some $r, s \in R$. Thus $\alpha=(1+i) \cdot(r \cdot(1-i)+s \cdot(2-i))$. It follows that $\langle 2,3+i\rangle \subseteq\langle 1+i\rangle$. On the other hand $1+i=(3+i)-2$. Pick $\beta \in\langle 1+i\rangle$. Then $\beta=r \cdot(1+i)$ for some $r \in R$. Thus $\beta=r \cdot(3+i-2)$ where $3+i-2 \in\langle 2,3+i\rangle$. Thus $\langle 2,3+i\rangle \supseteq\langle 1+i\rangle$. We conclude that $\langle 2,3+i\rangle=\langle 1+i\rangle$.

- Determine the number of elements in the quotient ring R / I.

The quotient ring is given by $R / I=\{r+I \mid r \in R\}$. Note that $i-1=i \cdot(1+i) \in I$. Thus $i+I=1+I$ since $1-i \in I$. It follows that $a+b i+I=a+b+I$. Moreover $a+b+I$ is equal to either $0+I$ or $1+I$ since $2 \in I$. The elements $0+I$ and $1+I$ are distinct in R / I because $1 \notin I$. Therefore $|R / I|=2$.
6. (10pts) Show that any finite field has order p^{n}, where p is prime. (Hint: Use the fundamental theorem of finite Abelian groups.)

Let $(F,+, \cdot)$ be a finite field. Then $(F,+)$ is a finite Abelian group and we have

$$
F \cong \mathbb{Z}_{p_{1}^{n_{1}}} \times \cdots \times \mathbb{Z}_{p_{k}^{n_{k}}}
$$

where p_{1}, \ldots, p_{k} are primes. It is enough to show that $p_{i}=p_{j}$ for all $1 \leq i, j \leq k$. Assume otherwise and let p and q be two distinct primes dividing the order F. By Cauchy's theorem, there exist elements $x, y \in F$ of order p and q, respectively. Note that $q x \neq 0$ and $p y \neq 0$. On the other hand

$$
(q x)(p y)=q p(x y)=(p x)(q y)=0
$$

It follows that there are zero divisors in the field F, a contradiction.

