M ET U
 Department of Mathematics

1. (25pts) For each of the following statements determine if it is true or false. Explain your answer briefly.

- Let G be a finite group and p be a prime number. There exists an element $a \in G$ of order p if and only if p divides $|G|$.
- Let G be a finite group such that $|G|$ is divisible by p^{2} where p is prime. Then there exists an element $a \in G$ of order p^{2}.
- Let G be a finite group such that $|G|$ is divisible by p^{2} where p is prime. Then there exists a subgroup $H \leq G$ of order p^{2}.
- The set $S=\{2 a+b \sqrt{367} \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R}.
- The subrings $2 \mathbb{Z}=\{2 k \mid k \in \mathbb{Z}\}$ and $3 \mathbb{Z}=\{3 k \mid k \in \mathbb{Z}\}$ of \mathbb{Z} are isomorphic.

2a. (5pts) State the class equation.

$$
\begin{aligned}
& \text { Theorem(Class Equation): Let } \ldots+\text {. } \quad \text { Then } \\
& \qquad|G|=\ldots
\end{aligned}
$$

where \qquad .

2b. (10pts) If G is a finite p-group with $|G|>1$, then show that $|Z(G)|>1$.
3. (10pts) Let G be a group of order 105.

- Show that G is not simple.
- Show that G has a subgroup of order 35 .

4. (25pts) Let $M_{2}(\mathbb{Q})$ be the ring of 2×2 matrices with rational entries under the usual matrix addition and multiplication. Consider

$$
R=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Q}\right\} \quad \text { and } \quad I=\left\{\left.\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right] \right\rvert\, b \in \mathbb{Q}\right\} .
$$

- Show that R is a subring of $M_{2}(\mathbb{Q})$.
- Show that I is not an ideal of $M_{2}(\mathbb{Q})$.
- Show that I is an ideal of R.
- Show that the map $f\left(\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]\right)=(a, c)$ is a ring homomorphism from R to $\mathbb{Q} \times \mathbb{Q}$. (Here $\mathbb{Q} \times \mathbb{Q}$ is the usual ring with componentwise addition and multiplication.)
- Show that the quotient ring R / I is isomorphic to $\mathbb{Q} \times \mathbb{Q}$.

5. (15pts) Set $i=\sqrt{-1}$ and consider the subring $R=\{a+b i \mid a, b \in \mathbb{Z}\}$ of \mathbb{C}. Let I be the ideal of R generated by 2 and $3+i$, i.e. $I=\langle 2,3+i\rangle$.

- Show that $I=\langle 1+i\rangle$.
- Determine the number of elements in the quotient ring R / I.

6. (10pts) Show that any finite field has order p^{n}, where p is prime. (Hint: Use the fundamental theorem of finite Abelian groups.)
