M E T U Department of Mathematics

Abstract Algebra			
Midterm 2			
Code : Me	ath 367		Last Name :
Acad. Year : 2015 Semester : $Fall$ Instructor : $K\ddot{u}c\ddot{u}ksakalli$			Name :
		llı	Student No. :
	D (/ 00/5		Signature :
$\begin{array}{llllllllllllllllllllllllllllllllllll$		15	6 QUESTIONS ON 4 PAGES
		28	100 TOTAL POINTS
1 2 3	4	5 6	

1. (25pts) For each of the following statements determine if it is **true** or **false**. Explain your answer briefly.

- Let G be a finite group and p be a prime number. There exists an element $a \in G$ of order p if and only if p divides |G|.
- Let G be a finite group such that |G| is divisible by p^2 where p is prime. Then there exists an element $a \in G$ of order p^2 .
- Let G be a finite group such that |G| is divisible by p^2 where p is prime. Then there exists a subgroup $H \leq G$ of order p^2 .
- The set $S = \{2a + b\sqrt{367} \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R} .
- The subrings $2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\}$ and $3\mathbb{Z} = \{3k \mid k \in \mathbb{Z}\}$ of \mathbb{Z} are isomorphic.

2a. (5pts) State the class equation.

2b. (10pts) If G is a finite p-group with |G| > 1, then show that |Z(G)| > 1.

- **3.** (10pts) Let G be a group of order 105.
 - Show that G is not simple.

• Show that G has a subgroup of order 35.

4. (25pts) Let $M_2(\mathbb{Q})$ be the ring of 2×2 matrices with rational entries under the usual matrix addition and multiplication. Consider

 $R = \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}\right] \middle| \, a, b, c \in \mathbb{Q} \right\} \quad \text{and} \quad I = \left\{ \left[\begin{smallmatrix} 0 & b \\ 0 & 0 \end{smallmatrix}\right] \middle| \, b \in \mathbb{Q} \right\}.$

• Show that R is a subring of $M_2(\mathbb{Q})$.

• Show that I is not an ideal of $M_2(\mathbb{Q})$.

• Show that I is an ideal of R.

• Show that the map $f\left(\begin{bmatrix}a & b\\ 0 & c\end{bmatrix}\right) = (a, c)$ is a ring homomorphism from R to $\mathbb{Q} \times \mathbb{Q}$. (Here $\mathbb{Q} \times \mathbb{Q}$ is the usual ring with componentwise addition and multiplication.)

• Show that the quotient ring R/I is isomorphic to $\mathbb{Q} \times \mathbb{Q}$.

5. (15pts) Set $i = \sqrt{-1}$ and consider the subring $R = \{a + bi \mid a, b \in \mathbb{Z}\}$ of \mathbb{C} . Let I be the ideal of R generated by 2 and 3 + i, i.e. $I = \langle 2, 3 + i \rangle$.

• Show that $I = \langle 1 + i \rangle$.

• Determine the number of elements in the quotient ring R/I.

6. (10pts) Show that any finite field has order p^n , where p is prime. (Hint: Use the fundamental theorem of finite Abelian groups.)