M E T U Department of Mathematics

Abstract Algebra	
Midterm 1	
Code : Math 367	Last Name :
Acad. Year : 2015	Name :
Instructor : Kücüksakallı	Student No. :
	Signature :
Date : $Nov \ 9, \ 2015$	6 QUESTIONS ON 4 PAGES
$\begin{array}{llllllllllllllllllllllllllllllllllll$	100 TOTAL POINTS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

- **1.** (24pts) Consider $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 6 & 1 & 2 & 7 & 3 & 5 \end{pmatrix}$ and $\tau = (123)(345)(678)$ in S_8 .
 - Express σ as a product of transpositions.

• Express τ as a product of disjoint cycles.

• Find σ^{100} .

• Is it possible to find a permutation $\gamma \in S_8$ such that $\gamma \sigma \gamma^{-1} = \tau$? If your answer is yes, then find such a permutation.

2. (24pts) Let
$$G = \{(x, y) \in \mathbb{R}^2 \mid x^2 + 4y^2 = 4\}$$
. Set $(x_1, y_1) \star (x_2, y_2) = \left(\frac{x_1 x_2}{2} - 2y_1 y_2, \frac{x_1 y_2 + x_2 y_1}{2}\right)$

• Consider P = (6/5, 4/5). Is P an element of G? Is $P \star P$ an element of G?

• Show that \star is a binary operation on G.

• Show that (G, \star) is a group.

• Let $H = G \cap \mathbb{Q}^2$. Show that $H \leq G$.

3. (16pts) Let G be a group. Let H be the subgroup of G generated by the squares of elements in G, i.e. $H = \langle \{g^2 | g \in G\} \rangle$. • Show that $H \leq G$.

• Show that G/H is commutative.

4. (10pts) Show that the groups $(\mathbb{C}, +)$ and $(\mathbb{C} - \{0\}, \times)$ are not isomorphic.

5. (16pts) If a cyclic subgroup C of G is normal in G, then show that every subgroup of C is normal in G.

6. (10pts) Let $n \ge 3$ be an integer. Consider the map $f : S_n \to S_n$ defined by the formula $f(\sigma) = \sigma^2$. Show that f is <u>not</u> a homomorphism.