M ETU
 Department of Mathematics

1. (24pts) Consider $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 6 & 1 & 2 & 7 & 3 & 5\end{array}\right)$ and $\tau=(123)(345)(678)$ in S_{8}.

- Express σ as a product of transpositions.
- Express τ as a product of disjoint cycles.
- Find σ^{100}.
- Is it possible to find a permutation $\gamma \in S_{8}$ such that $\gamma \sigma \gamma^{-1}=\tau$? If your answer is yes, then find such a permutation.

2. (24pts) Let $G=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+4 y^{2}=4\right\}$. Set $\left(x_{1}, y_{1}\right) \star\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} x_{2}}{2}-2 y_{1} y_{2}, \frac{x_{1} y_{2}+x_{2} y_{1}}{2}\right)$.

- Consider $P=(6 / 5,4 / 5)$. Is P an element of G ? Is $P \star P$ an element of G ?
- Show that \star is a binary operation on G.
- Show that (G, \star) is a group.
- Let $H=G \cap \mathbb{Q}^{2}$. Show that $H \leq G$.

3. (16pts) Let G be a group. Let H be the subgroup of G generated by the squares of elements in G, i.e. $H=\left\langle\left\{g^{2} \mid g \in G\right\}\right\rangle$.

- Show that $H \unlhd G$.
- Show that G / H is commutative.

4. (10pts) Show that the groups $(\mathbb{C},+)$ and $(\mathbb{C}-\{0\}, \times)$ are not isomorphic.
5. (16pts) If a cyclic subgroup C of G is normal in G, then show that every subgroup of C is normal in G.
6. (10pts) Let $n \geq 3$ be an integer. Consider the map $f: S_{n} \rightarrow S_{n}$ defined by the formula $f(\sigma)=\sigma^{2}$. Show that f is not a homomorphism.
