M E T U Department of Mathematics

	Abstract Algebra
Final Exam	
Code : Math 367 Acad. Year : 2015 Semester : Fall Instructor : Küçüksakallı Date : Jan 19, 2016	Last Name : Name : Student No. : Signature :
Date : $Jan 19, 2016$ Time : $13:30$ Duration : 120 minutes	7 QUESTIONS ON 4 PAGES 100 TOTAL POINTS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 8

1. (25pts) For each of the following polynomials, determine whether it is an irreducible element of the indicated integral domain.

• $a(x) = 2x + 2 \in \mathbb{Z}[x].$

Not irreducible. Because $a(x) = 2 \cdot (x+1)$ but 2 and x+1 are not units in $\mathbb{Z}[x]$.

• $b(x) = x^2 + 2x + 4 \in \mathbb{Z}_5[x].$

Irreducible. Because b(x) has no roots in $\mathbb{Z}_5[x]$ and $\deg(b) \leq 3$.

• $c(x) = x^3 + 4x^2 + 6x + 4 \in \mathbb{Q}[x].$

Not irreducible. Because $c(x) = (x+2) \cdot (x^2 + 2x + 2)$.

• $d(x) = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$

Irreducible. We have $d(x + 1) = x^4 + 5x^3 + 10x^2 + 10x + 5$ and Eisenstein's criteria with p = 5 implies that d(x + 1) is irreducible in $\mathbb{Q}[x]$. As a result d(x) is irreducible in $\mathbb{Q}[x]$ as well.

• $e(x) = x^5 + x + 1 \in \mathbb{Z}_2[x].$

Not irreducible. Because $e(x) = (x^2 + x + 1) \cdot (x^3 + x^2 + 1)$ in $\mathbb{Z}_2[x]$.

- **2** (18pts) Let $n \ge 2$ be an integer and $I_n = \{f \in \mathbb{Z}[x] \mid f(0) \text{ is divisible by } n\}.$
 - Show that $I_n = \langle x, n \rangle$ in $\mathbb{Z}[x]$.

Pick $f(x) \in \langle x, n \rangle$. Then f(x) = xg(x) + nh(x) for some $g, h \in \mathbb{Z}[x]$. It follows that f(0) = nh(0) where $h(0) \in \mathbb{Z}$. We have n|nh(0) and $f(x) \in I_n$. Conversely pick $f(x) \in I_n$. Then f(0) = nk for some $k \in \mathbb{Z}$. The polynomial f(x) - nk is divisible by x and as a result f(x) - nk = xg(x) for some $g \in \mathbb{Z}[x]$. Therefore f(x) = xg(x) + nk and it is an element of $\langle x, n \rangle$.

• If I_n is a prime ideal of $\mathbb{Z}[x]$ then show that n is prime in \mathbb{Z} .

Suppose that n|ab. It follows that $ab \in I_n$. If I_n is a prime ideal, then either $a \in I_n$ or $b \in I_n$. As a result either a = a(0) is divisible by n or b = b(0) is divisible by n. We conclude that n is a prime element of \mathbb{Z} .

• If n is prime in \mathbb{Z} then show that I_n is a prime ideal of $\mathbb{Z}[x]$.

Suppose that $f(x)g(x) \in I_n$. It follows that f(0)g(0) is divisible by n. If n is a prime element in \mathbb{Z} , then either f(0) is divisible by n or g(0) is divisible by n. We conclude that $f(x) \in I_n$ or $g(x) \in I_n$. Therefore I_n is a prime ideal of $\mathbb{Z}[x]$.

3. (7pts) Show that $\mathbb{Z}[x]/\langle x^2+1\rangle$ and $\mathbb{Z}[\sqrt{2}]$ are not isomorphic as rings.

Assume otherwise and let $f : \mathbb{Z}[x]/\langle x^2 + 1 \rangle \to \mathbb{Z}[\sqrt{2}]$ be an isomorphism of rings. If $\alpha = x + \langle x^2 + 1 \rangle$, then $-\alpha^2 = 1 + \langle x^2 + 1 \rangle$ is the identity element of $\mathbb{Z}[x]/\langle x^2 + 1 \rangle$. It follows that $f(-\alpha^2) = 1$, where 1 is the identity element of $\mathbb{Z}[\sqrt{2}]$. On the other hand, $f(-\alpha^2) = -f(\alpha)^2$ by the properties of a ring homomorphism. It follows that $f(\alpha)^2 = -1$. This is a contradiction because $f(\alpha)$ is an element of $\mathbb{Z}[\sqrt{2}]$ and its square cannot be negative.

4. (13pts) Find all maximal ideals in \mathbb{Z}_{360} .

The ring $R = \mathbb{Z}_{360}$ is a principal ideal ring and each ideal is of the form $I = \langle [n] \rangle$ for some integer n. Without loss of generality we can assume that n|360 because

$$\langle [n] \rangle = \langle [\gcd(n, 360)] \rangle.$$

Consider the map $f : \mathbb{Z}_{360} \to \mathbb{Z}_n$ given by the formula f([x]) = [x]. It is well defined since n|360. Moreover it is a homomorphism of rings. We have $\operatorname{Ker}(f) = \langle [n] \rangle$. The first isomorphism theorem implies that $R/\langle [n] \rangle \cong \mathbb{Z}_n$. The ideal $I = \langle [n] \rangle$ is maximal if and only R/I is a field. We know that \mathbb{Z}_n is a field if and only if p is prime. Thus the ideals $\langle [2] \rangle, \langle [3] \rangle$ and $\langle [5] \rangle$ are the only maximal ideals of R.

5a. (6pts) What is the smallest positive integer n such that there are exactly three nonisomorphic Abelian groups of order n. Name the three groups.

$$n = 8,$$
 $A_1 = \mathbb{Z}_8,$ $A_2 = \mathbb{Z}_4 \times \mathbb{Z}_2,$ $A_3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2.$

5b. (6pts) What is the smallest positive integer n such that there are exactly four nonisomorphic Abelian groups of order n. Name the four groups.

$$n = 36, \quad A_1 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3, \quad A_2 = \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3, \quad A_3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9, \quad A_4 = \mathbb{Z}_4 \times \mathbb{Z}_9.$$

6. (13pts) Show that every Euclidean domain is a principal ideal domain.

This is Theorem 15.1.9 in your textbook

- 7. (12pts) Consider the binary operation * on the set of integers defined by a*b = a+b-4.
 - Show that $(\mathbb{Z}, *)$ is a group.

The binary operation is associative because (a * b) * c = a + b + c - 8 = a * (b * c) for all integers a, b, c and the binary operation + is associative. The identity element exists because a * 4 = a = 4 * a for every $a \in \mathbb{Z}$. For each element $a \in \mathbb{Z}$, let $a^{-1} = 8 - a$. Then $a * a^{-1} = 4 = a^{-1} * a$, we conclude that each element a has an inverse. Therefore $(\mathbb{Z}, *)$ is a group.

• Show that the groups $(\mathbb{Z}, *)$ and $(\mathbb{Z}, +)$ are isomorphic.

Define $f : \mathbb{Z} \to \mathbb{Z}$ by the formula f(x) = x + 4. The map f is a group homomorphism from $(\mathbb{Z}, +)$ to $(\mathbb{Z}, *)$ because

$$f(a + b) = a + b + 4$$

= (a + 4) + (b + 4) - 4
= f(a) + f(b) - 4
= f(a) * f(b).

It is easy to see that f is one-to-one and onto. Thus f is an isomorphism of groups and the groups $(\mathbb{Z}, *)$ and $(\mathbb{Z}, +)$ are isomorphic.