M ETU
 Department of Mathematics

1. (25pts) For each of the following polynomials, determine whether it is an irreducible element of the indicated integral domain.

- $a(x)=2 x+2 \in \mathbb{Z}[x]$.

Not irreducible. Because $a(x)=2 \cdot(x+1)$ but 2 and $x+1$ are not units in $\mathbb{Z}[x]$.

- $b(x)=x^{2}+2 x+4 \in \mathbb{Z}_{5}[x]$.

Irreducible. Because $b(x)$ has no roots in $\mathbb{Z}_{5}[x]$ and $\operatorname{deg}(b) \leq 3$.

- $c(x)=x^{3}+4 x^{2}+6 x+4 \in \mathbb{Q}[x]$.

Not irreducible. Because $c(x)=(x+2) \cdot\left(x^{2}+2 x+2\right)$.

- $d(x)=x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Q}[x]$

Irreducible. We have $d(x+1)=x^{4}+5 x^{3}+10 x^{2}+10 x+5$ and Eisenstein's criteria with $p=5$ implies that $d(x+1)$ is irreducible in $\mathbb{Q}[x]$. As a result $d(x)$ is irreducible in $\mathbb{Q}[x]$ as well.

- $e(x)=x^{5}+x+1 \in \mathbb{Z}_{2}[x]$.

Not irreducible. Because $e(x)=\left(x^{2}+x+1\right) \cdot\left(x^{3}+x^{2}+1\right)$ in $\mathbb{Z}_{2}[x]$.

2 (18pts) Let $n \geq 2$ be an integer and $I_{n}=\{f \in \mathbb{Z}[x] \mid f(0)$ is divisible by $n\}$.

- Show that $I_{n}=\langle x, n\rangle$ in $\mathbb{Z}[x]$.

Pick $f(x) \in\langle x, n\rangle$. Then $f(x)=x g(x)+n h(x)$ for some $g, h \in \mathbb{Z}[x]$. It follows that $f(0)=n h(0)$ where $h(0) \in \mathbb{Z}$. We have $n \mid n h(0)$ and $f(x) \in I_{n}$. Conversely pick $f(x) \in I_{n}$. Then $f(0)=n k$ for some $k \in \mathbb{Z}$. The polynomial $f(x)-n k$ is divisible by x and as a result $f(x)-n k=x g(x)$ for some $g \in \mathbb{Z}[x]$. Therefore $f(x)=x g(x)+n k$ and it is an element of $\langle x, n\rangle$.

- If I_{n} is a prime ideal of $\mathbb{Z}[x]$ then show that n is prime in \mathbb{Z}.

Suppose that $n \mid a b$. It follows that $a b \in I_{n}$. If I_{n} is a prime ideal, then either $a \in I_{n}$ or $b \in I_{n}$. As a result either $a=a(0)$ is divisible by n or $b=b(0)$ is divisible by n. We conclude that n is a prime element of \mathbb{Z}.

- If n is prime in \mathbb{Z} then show that I_{n} is a prime ideal of $\mathbb{Z}[x]$.

Suppose that $f(x) g(x) \in I_{n}$. It follows that $f(0) g(0)$ is divisible by n. If n is a prime element in \mathbb{Z}, then either $f(0)$ is divisible by n or $g(0)$ is divisible by n. We conclude that $f(x) \in I_{n}$ or $g(x) \in I_{n}$. Therefore I_{n} is a prime ideal of $\mathbb{Z}[x]$.
3. (7pts) Show that $\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle$ and $\mathbb{Z}[\sqrt{2}]$ are not isomorphic as rings.

Assume otherwise and let $f: \mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle \rightarrow \mathbb{Z}[\sqrt{2}]$ be an isomorphism of rings. If $\alpha=x+\left\langle x^{2}+1\right\rangle$, then $-\alpha^{2}=1+\left\langle x^{2}+1\right\rangle$ is the identity element of $\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle$. It follows that $f\left(-\alpha^{2}\right)=1$, where 1 is the identity element of $\mathbb{Z}[\sqrt{2}]$. On the other hand, $f\left(-\alpha^{2}\right)=-f(\alpha)^{2}$ by the properties of a ring homomorphism. It follows that $f(\alpha)^{2}=-1$. This is a contradiction because $f(\alpha)$ is an element of $\mathbb{Z}[\sqrt{2}]$ and its square cannot be negative.
4. (13pts) Find all maximal ideals in \mathbb{Z}_{360}.

The ring $R=\mathbb{Z}_{360}$ is a principal ideal ring and each ideal is of the form $I=\langle[n]\rangle$ for some integer n. Without loss of generality we can assume that $n \mid 360$ because

$$
\langle[n]\rangle=\langle[\operatorname{gcd}(n, 360)]\rangle
$$

Consider the map $f: \mathbb{Z}_{360} \rightarrow \mathbb{Z}_{n}$ given by the formula $f([x])=[x]$. It is well defined since $n \mid 360$. Moreover it is a homomorphism of rings. We have $\operatorname{Ker}(f)=\langle[n]\rangle$. The first isomorphism theorem implies that $R /\langle[n]\rangle \cong \mathbb{Z}_{n}$. The ideal $I=\langle[n]\rangle$ is maximal if and only R / I is a field. We know that \mathbb{Z}_{n} is a field if and only if p is prime. Thus the ideals $\langle[2]\rangle,\langle[3]\rangle$ and $\langle[5]\rangle$ are the only maximal ideals of R.

5a. (6pts) What is the smallest positive integer n such that there are exactly three nonisomorphic Abelian groups of order n. Name the three groups.

$$
n=8, \quad A_{1}=\mathbb{Z}_{8}, \quad A_{2}=\mathbb{Z}_{4} \times \mathbb{Z}_{2}, \quad A_{3}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

5b. (6pts) What is the smallest positive integer n such that there are exactly four nonisomorphic Abelian groups of order n. Name the four groups.
$n=36, \quad A_{1}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \quad A_{2}=\mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \quad A_{3}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9}, \quad A_{4}=\mathbb{Z}_{4} \times \mathbb{Z}_{9}$.
6. (13pts) Show that every Euclidean domain is a principal ideal domain.

This is Theorem 15.1.9 in your textbook
7. (12pts) Consider the binary operation $*$ on the set of integers defined by $a * b=a+b-4$.

- Show that $(\mathbb{Z}, *)$ is a group.

The binary operation is associative because $(a * b) * c=a+b+c-8=a *(b * c)$ for all integers a, b, c and the binary operation + is associative. The identity element exists because $a * 4=a=4 * a$ for every $a \in \mathbb{Z}$. For each element $a \in \mathbb{Z}$, let $a^{-1}=8-a$. Then $a * a^{-1}=4=a^{-1} * a$, we conlude that each element a has an inverse. Therefore $(\mathbb{Z}, *)$ is a group.

- Show that the groups $(\mathbb{Z}, *)$ and $(\mathbb{Z},+)$ are isomorphic.

Define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by the formula $f(x)=x+4$. The map f is a group homomorphism from $(\mathbb{Z},+)$ to $(\mathbb{Z}, *)$ because

$$
\begin{aligned}
f(a+b) & =a+b+4 \\
& =(a+4)+(b+4)-4 \\
& =f(a)+f(b)-4 \\
& =f(a) * f(b) .
\end{aligned}
$$

It is easy to see that f is one-to-one and onto. Thus f is an isomorphism of groups and the groups $(\mathbb{Z}, *)$ and $(\mathbb{Z},+)$ are isomorphic.

