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1. (25pts) For each of the following polynomials, determine whether it is an irreducible

element of the indicated integral domain.

� a(x) = 2x+ 2 ∈ Z[x].

Not irreducible. Because a(x) = 2 · (x+ 1) but 2 and x+ 1 are not units in Z[x].

� b(x) = x2 + 2x+ 4 ∈ Z5[x].

Irreducible. Because b(x) has no roots in Z5[x] and deg(b) ≤ 3.

� c(x) = x3 + 4x2 + 6x+ 4 ∈ Q[x].

Not irreducible. Because c(x) = (x+ 2) · (x2 + 2x+ 2).

� d(x) = x4 + x3 + x2 + x+ 1 ∈ Q[x]

Irreducible. We have d(x+ 1) = x4 + 5x3 + 10x2 + 10x+ 5 and Eisenstein’s criteria

with p = 5 implies that d(x+1) is irreducible in Q[x]. As a result d(x) is irreducible

in Q[x] as well.

� e(x) = x5 + x+ 1 ∈ Z2[x].

Not irreducible. Because e(x) = (x2 + x+ 1) · (x3 + x2 + 1) in Z2[x].



2 (18pts) Let n ≥ 2 be an integer and In = {f ∈ Z[x] | f(0) is divisible by n}.

� Show that In = ⟨x, n⟩ in Z[x].

Pick f(x) ∈ ⟨x, n⟩. Then f(x) = xg(x) + nh(x) for some g, h ∈ Z[x]. It follows that
f(0) = nh(0) where h(0) ∈ Z. We have n|nh(0) and f(x) ∈ In. Conversely pick

f(x) ∈ In. Then f(0) = nk for some k ∈ Z. The polynomial f(x)−nk is divisible by

x and as a result f(x)−nk = xg(x) for some g ∈ Z[x]. Therefore f(x) = xg(x)+nk

and it is an element of ⟨x, n⟩.

� If In is a prime ideal of Z[x] then show that n is prime in Z.

Suppose that n|ab. It follows that ab ∈ In. If In is a prime ideal, then either a ∈ In

or b ∈ In. As a result either a = a(0) is divisible by n or b = b(0) is divisible by n.

We conclude that n is a prime element of Z.

� If n is prime in Z then show that In is a prime ideal of Z[x] .

Suppose that f(x)g(x) ∈ In. It follows that f(0)g(0) is divisible by n. If n is a prime

element in Z, then either f(0) is divisible by n or g(0) is divisible by n. We conclude

that f(x) ∈ In or g(x) ∈ In. Therefore In is a prime ideal of Z[x].

3. (7pts) Show that Z[x]/⟨x2 + 1⟩ and Z[
√
2 ] are not isomorphic as rings.

Assume otherwise and let f : Z[x]/⟨x2 + 1⟩ → Z[
√
2 ] be an isomorphism of rings. If

α = x + ⟨x2 + 1⟩, then −α2 = 1 + ⟨x2 + 1⟩ is the identity element of Z[x]/⟨x2 + 1⟩. It

follows that f(−α2) = 1, where 1 is the identity element of Z[
√
2 ]. On the other hand,

f(−α2) = −f(α)2 by the properties of a ring homomorphism. It follows that f(α)2 = −1.

This is a contradiction because f(α) is an element of Z[
√
2 ] and its square cannot be

negative.
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4. (13pts) Find all maximal ideals in Z360.

The ring R = Z360 is a principal ideal ring and each ideal is of the form I = ⟨[n]⟩ for some

integer n. Without loss of generality we can assume that n|360 because

⟨[n]⟩ = ⟨[gcd(n, 360)]⟩.

Consider the map f : Z360 → Zn given by the formula f([x]) = [x]. It is well defined

since n|360. Moreover it is a homomorphism of rings. We have Ker(f) = ⟨[n]⟩. The first

isomorphism theorem implies that R/⟨[n]⟩ ∼= Zn. The ideal I = ⟨[n]⟩ is maximal if and

only R/I is a field. We know that Zn is a field if and only if p is prime. Thus the ideals

⟨[2]⟩, ⟨[3]⟩ and ⟨[5]⟩ are the only maximal ideals of R.

5a. (6pts) What is the smallest positive integer n such that there are exactly three

nonisomorphic Abelian groups of order n. Name the three groups.

n = 8, A1 = Z8, A2 = Z4 × Z2, A3 = Z2 × Z2 × Z2.

5b. (6pts) What is the smallest positive integer n such that there are exactly four

nonisomorphic Abelian groups of order n. Name the four groups.

n = 36, A1 = Z2×Z2×Z3×Z3, A2 = Z4×Z3×Z3, A3 = Z2×Z2×Z9, A4 = Z4×Z9.
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6. (13pts) Show that every Euclidean domain is a principal ideal domain.

This is Theorem 15.1.9 in your textbook

7. (12pts) Consider the binary operation ∗ on the set of integers defined by a∗b = a+b−4.

� Show that (Z, ∗) is a group.

The binary operation is associative because (a∗b)∗c = a+b+c−8 = a∗(b∗c) for all
integers a, b, c and the binary operation + is associative. The identity element exists

because a ∗ 4 = a = 4 ∗ a for every a ∈ Z. For each element a ∈ Z, let a−1 = 8− a.

Then a∗a−1 = 4 = a−1 ∗a, we conlude that each element a has an inverse. Therefore

(Z, ∗) is a group.

� Show that the groups (Z, ∗) and (Z,+) are isomorphic.

Define f : Z → Z by the formula f(x) = x+4. The map f is a group homomorphism

from (Z,+) to (Z, ∗) because

f(a+ b) = a+ b+ 4

= (a+ 4) + (b+ 4)− 4

= f(a) + f(b)− 4

= f(a) ∗ f(b).

It is easy to see that f is one-to-one and onto. Thus f is an isomorphism of groups

and the groups (Z, ∗) and (Z,+) are isomorphic.
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