M E T U Department of Mathematics

	Abstract Algebra
Final Exam	
Code: Math 367Acad. Year: 2015Semester: FallInstructor: Küçüksakallı	Last Name : Name : Student No. : Signature :
Date : Jan 19, 2016 Time : 13:30 Duration : 120 minutes	7 QUESTIONS ON 4 PAGES 100 TOTAL POINTS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8

1. (25pts) For each of the following polynomials, determine whether it is an irreducible element of the indicated integral domain.

• $a(x) = 2x + 2 \in \mathbb{Z}[x].$

•
$$b(x) = x^2 + 2x + 4 \in \mathbb{Z}_5[x].$$

•
$$c(x) = x^3 + 4x^2 + 6x + 4 \in \mathbb{Q}[x].$$

•
$$d(x) = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$$

• $e(x) = x^5 + x + 1 \in \mathbb{Z}_2[x].$

- **2 (18pts)** Let $n \ge 2$ be an integer and $I_n = \{f \in \mathbb{Z}[x] \mid f(0) \text{ is divisible by } n\}.$
 - Show that $I_n = \langle x, n \rangle$ in $\mathbb{Z}[x]$.

• If I_n is a prime ideal of $\mathbb{Z}[x]$ then show that n is prime in \mathbb{Z} .

• If n is prime in \mathbb{Z} then show that I_n is a prime ideal of $\mathbb{Z}[x]$.

3. (7pts) Show that $\mathbb{Z}[x]/\langle x^2+1\rangle$ and $\mathbb{Z}[\sqrt{2}]$ are not isomorphic as rings.

4. (13pts) Find all maximal ideals in \mathbb{Z}_{360} .

5a. (6pts) What is the smallest positive integer n such that there are exactly three nonisomorphic Abelian groups of order n. Name the three groups.

 $n = \qquad A_1 = \qquad A_2 = \qquad A_3 =$

5b. (6pts) What is the smallest positive integer n such that there are exactly four nonisomorphic Abelian groups of order n. Name the four groups.

 $n = \qquad A_1 = \qquad A_2 = \qquad A_3 = \qquad A_4 =$

6. (13pts) Show that every Euclidean domain is a principal ideal domain.

- 7. (12pts) Consider the binary operation * on the set of integers defined by a*b = a+b-4.
 - Show that $(\mathbb{Z}, *)$ is a group.

 \bullet Show that the groups $(\mathbb{Z},*)$ and $(\mathbb{Z},+)$ are isomorphic.