M ETU
 Department of Mathematics

1. (25pts) For each of the following polynomials, determine whether it is an irreducible element of the indicated integral domain.

- $a(x)=2 x+2 \in \mathbb{Z}[x]$.
- $b(x)=x^{2}+2 x+4 \in \mathbb{Z}_{5}[x]$.
- $c(x)=x^{3}+4 x^{2}+6 x+4 \in \mathbb{Q}[x]$.
- $d(x)=x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Q}[x]$
- $e(x)=x^{5}+x+1 \in \mathbb{Z}_{2}[x]$.

2 (18pts) Let $n \geq 2$ be an integer and $I_{n}=\{f \in \mathbb{Z}[x] \mid f(0)$ is divisible by $n\}$.

- Show that $I_{n}=\langle x, n\rangle$ in $\mathbb{Z}[x]$.
- If I_{n} is a prime ideal of $\mathbb{Z}[x]$ then show that n is prime in \mathbb{Z}.
- If n is prime in \mathbb{Z} then show that I_{n} is a prime ideal of $\mathbb{Z}[x]$.

3. (7pts) Show that $\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle$ and $\mathbb{Z}[\sqrt{2}]$ are not isomorphic as rings.
4. (13pts) Find all maximal ideals in \mathbb{Z}_{360}.

5a. (6pts) What is the smallest positive integer n such that there are exactly three nonisomorphic Abelian groups of order n. Name the three groups.

$$
n=\quad A_{1}=\quad A_{2}=\quad A_{3}=
$$

5b. (6pts) What is the smallest positive integer n such that there are exactly four nonisomorphic Abelian groups of order n. Name the four groups.

$$
n=\quad A_{1}=\quad A_{2}=\quad A_{3}=\quad A_{4}=
$$

6. (13pts) Show that every Euclidean domain is a principal ideal domain.
7. (12pts) Consider the binary operation $*$ on the set of integers defined by $a * b=a+b-4$.

- Show that $(\mathbb{Z}, *)$ is a group.
- Show that the groups $(\mathbb{Z}, *)$ and $(\mathbb{Z},+)$ are isomorphic.

