METU Mathematics Department
 MATH 112: Exercise set VII

1. Find a recurrence relation for the number of bit (0 and 1) sequences of length n with an even number of 0's.
2. Determine the number of n-digit of quaternary ($0,1,2$ and 3) sequences in which there is never a 1 anywhere to the left of 0 .
3. Find a linear homogeneous recurrence relation with constant coefficients that has the following general solution

$$
a_{n}=c_{1}(-2)^{n}+c_{2} 5^{n}+c_{3}
$$

where c_{1}, c_{2}, c_{3} are constants.
4. Consider the recurrence relation

$$
a_{n}-4 a_{n-2}=2^{n}, \quad n \geq 2, \quad a_{0}=4, a_{1}=5 .
$$

(a) Find $a_{n}^{(h)}$ by finding a solution to the homogenous equation

$$
a_{n}-4 a_{n-2}=\mathbf{0}, \quad n \geq 2 .
$$

(b) Verify that $a_{n}^{(p)}=n 2^{n-1}$ is a solution of

$$
a_{n}-4 a_{n-2}=2^{n}, \quad n \geq 2,
$$

but it does not satisfy $a_{0}^{(p)}=4, a_{1}^{(p)}=5$.
(c) Use part (a) and (b) to solve the original recurrence relation.
5. Solve each of the following first degree recurrence relations:
(a) $a_{n+1}-a_{n}=n^{3}+1, \quad n \geq 0, \quad a_{0}=0$.
(b) $a_{n+1}+a_{n}=n, \quad n \geq 0, \quad a_{0}=1$.
(c) $a_{n+1}-5 a_{n}=5^{n}, \quad n \geq 0, \quad a_{0}=2$.
6. Solve each of the following second degree recurrence relations:
(a) $a_{n+2}+3 a_{n+1}-10 a_{n}=3^{n}, \quad n \geq 0, \quad a_{0}=0, a_{1}=1$.
(b) $a_{n+2}-2 a_{n+1}+a_{n}=1, \quad n \geq 0, \quad a_{0}=1, a_{1}=2$.
7. The solution of a first degree recurrence relation

$$
a_{n+1}-a_{n}=f(n+1), \quad n \geq 0, \quad a_{0}=0
$$

is given by $a_{n}=n^{5} / 5+n^{4} / 2+n^{3} / 3-n / 30$ for all $n \geq 0$.
(a) Determine $f(n)$.
(b) What can you say about $\sum_{i=1}^{n} f(i)$?

