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Abstract

This document investigates the properties of a fine-resolution frequency estimator which
uses an arbitrary number of DFT coefficients. A detailed derivation of the estimator is first
presented. An analysis for the mean-square-error (MSE) of the estimator is made under
high signal to noise ratio (SNR) conditions. Cross-covariance between the estimates using
different (discrete Fourier transform) DFT bins is also derived under high-SNR, assumption.
Details on the fusion rule are presented by approximating the high-SNR MSE and cross-
correlation via a small |0 assumption. The quality of the approximate analytical MSE and
cross-covariance expressions is evaluated via simulations. Some results on the number of
DFT bins to use in the fused estimate are given. Finally, a Matlab implementation of the
estimator is provided.
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1 Preliminaries

We consider a noisy complex exponential signal r[-] of unknown amplitude, phase and frequency
given as

rin] = AP0 4 oywln],  n=0,...,N -1, (1)

The frequency variable f in (1) is the normalized frequency defined over the interval [0,1). The
frequency is defined in terms of the discrete Fourier transform (DFT) bins, that is f = (k,+0)/N
where k), is an integer in [0, N — 1] and ¢ is a real number in —1/2 < § < 1/2. The white noise
wl+] is circularly symmetric complex-valued Gaussian distributed with zero-mean and variance
o2 that is, w[n] ~ CN(0,02). The signal-to-noise ratio (SNR) is defined as SNR = A%/02.

The aim is the estimation of the frequency f = (k,+9)/N from the samples of the signal r[-].
The estimation is carried out in two stages. The first stage calculates that DFT of the signal
r[] and finds the index of the bin with the maximum magnitude which gives an estimate of k,,
the coarse part of the frequency. In the second stage, the fine-resolution frequency estimate is
calculated using the DFT samples via the formula

~ N R[k, + kle 7 %* — R[k, — k]e/~F
o = — tan~![ tan (1k> Re | p+.ﬁ]e ~ L i - N2R[ks] @)
m N Rlky + kle™/N" + Rlk, — K/ 3" — e
COSs N

which gives an estimate of § using 3 DFT bins, that is, R[k,] and two bins which are k bins away
from k,. It is possible to fuse the estimates gk, k=1,...,N/2—1 to obtain a final fused estimate
SF. This document investigates the properties of the fine-resolution frequency estimator Sk given
in (2) and the fused estimator 5p.

2 Derivation of the Estimator
We consider the noiseless DFT samples R[k, + k] where

Rlky + K] = AT 5 078 siii?;g(é—_kf/)f)v ) °

and k) is index of the maximum magnitude bin. Substituting k£ = 0 into (3), we get

N-1s5 sin(76)

Rk, = Ae?®el™ N 0 L 4
) cren sin (w0 /N) )
We now define the ratio v, £ Rgﬁg}k} which can be given as

—jm =l sin (w(d — k)) sin(wd/N) (5)
sin(w(d — k)/N) sin(7d)

Expanding the sine functions in (5), we obtain

. itk sin (mwd) cos (k) — sin (7k) cos (1) sin (wd/N) (6)
sin (md/N) cos (mk/N) — sin (wk/N) cos (7§ /N) sin (7d)
Ea sin (wd/N) )
sin (wd/N) cos (mk/N) — sin (mk/N) cos (75 /N)



where we have used the facts that sin(7k) = 0 and cos(7k) = €/™ Vk. The expression (7) can
be written as

vre I NF [sin (16 /N) cos (wk/N) — sin (7k /N) cos (76 /N)] = sin (76 /N).. (8)
Making the substitution k <— —k, we can write (8) as
y_re? N [sin (16 /N) cos (wk/N) + sin (7k /N) cos (76 /N)] = sin (76 /N).. 9)

We now sum the expressions (8) and (9) and then divide both sides by cos (7d/N) cos(wk/N)

to obtain

jm tan (70 /N)

tan (/) (eI -4l 74) o tan (V) (eI T g0 TH) =2 22D 10

which is equivalent to

2

N —ixk s LA
tan (6 ><w et

> — (e I * — o R tan (wh/N) . (11)

We can rearrange the terms in (11) to get

(yee 7Nk — 41 eI F) tan (1k/N)

tan (76 /N) = —— — (12)
e INE el N — ey
ky, + kle 7 NF — Rk, — k]e/VF
— tan (7k/N) Real Rilky + kle 7" = Rlky — kel (13)

g s R[k
R[k, + ke 7%"* + R[k, — k|e/¥* — %

where we used the definitions of ¢, v_; with the fact that both sides of the first equation are
real to obtain the second equation. Solving for § then gives

R[k, + kle 9%k — R[k, — k]! w*

_iT ;T 2R[k
R[k, + kle 9% + R[k, — k]e! ™" — %

~ N
or = — tan~ ! | tan (7k/N) Real (14)
™

3 MSE for the Estimator S\k under High-SNR

In this section, under sufficiently high SNR assumption we derive an approximate expression for
the MSE of the propose estimator. The proposed estimator d given in (2) is repeated below for

convenience.
~ N Rk, + kle I~k — Rlk, — kled ™k
5 =~ tan~" | tan (7k/N) Real [ pi}: Rl pw]e i (15)
™ Rlky + kle 7N + R[k, — kl]e!N" — oV

Note that in a real scenario, R[k), + k], R[k, — k] and R[k,] will be noisy DFT samples and they
will be related to the noiseless DFT samples as

Rlky] =Rlkp] + g, (16)
Rk, + K| :E[kp + k| + Nkp+k (17)
Rk, — k] =R[ky — k] + 11, (18)



where g, k= 0,...,N/2 — 1 are independent identically distributed circularly-symmetric com-
plex Gaussian noise samples, with zero-mean and variance No2. The quantities R[k, + k|,
R[k, — k] and R|[k,] represent the noiseless DFT samples. Substituting R[k, + k], R[k, — k] and
Rlkp] into the argument of the real operator in (15), we get

Rk, + kle Nk — R[k, — k]e/NF
i ;T Rlk
R[k, + k]e %% 4 R[k, — k]eI ™k — %
Rk, + kle 7% — Rk, — k]e/ ¥k

Rk, + kle /%% + Rk, — k]e/ ¥ — 2R[ky]

cos(mk/N)
n ﬁkp+k€_j%k - ﬁkp—kej%k
- _im —= S 2R[k
Rlky + kle 7 ¥* + Rk, — kel ¥+ — ksl -
R[k, + kle I %% — R[k, — kle/~* . 2
- R[ P—iA_ ]6 j R[ pA ]6 NQﬁ[k] <77kp+k€ Nk —I—T]k kejfk COS(;ZZp/J\]))
(Rlky + Kle7%% 4 Rlk, — He % — 2Tl °
(19)
B Rk, + keI ~* — R[k, — k]e/N*
T = i = p 2R[kp
Rlkp + ke /%" + Rlk), — k]e/ V" — 7cos(7r[k/;\f)
1 < _img ik
+ — Mhp+k€ 7 N° — N, €’ N
- i - Tl 2R[kp P P
Rlky + kle I ¥* + Rk, — Ked §* — 2l
R[k, + kle 7 N* — R[k, — k]e/ N F n 20,
e [ p_jﬂ']k [ J= k:] 2R[kp) Mhep k€ o +nk _kej v COS(Wk/N)) )
R[kp + k]e NT A+ R[kp B k]e o cos(mk/N)
(20)

where we have made a first-order Taylor series expansion with the assumption that the noise
terms are small (under high SNR). Noting that the noiseless DFT samples R[k, + k], R[k, — k|
and R[k,] satisfy the expression

Rk, + kle 7 %% — R[k, — k]e/VF

N
§ = —tan" ! [ tan (7k/N)Real { — — — 5T (21)
T R[kp + k;]e_Jﬁk + R[kp - k]ejﬁk o cos(ﬂ'[k%\f)
and the argument of the real operator is always real, we can write
Rk, + keI N* — R[k, — k]e/N* _ tan(nd/N) (22)
= _im = p 2R[k,] '
Rlky + kle 7% + R[k, — k]e/¥* — % tan(mk/N)
We now use (22) to write (20) as
Rk, + kle 9%k — R[k, — keI vk _tan(md/N)
_ R[k ~
Rlky, + kle ™% + Rlk, — kle/ ¥ — 2l tan(rk/N)
_ m tan(md/N) i Ea 21,
5 ink _ g ednk o ZANTE/AY) ik eI nk T
+ Sk(9) (nkp+k€ N® = N, —k€' N tan(rh/N) Miep+k€ “N° + Mi,—pe’ N cos(rk/N)
(23)



where

_ 1
Sk(0) £ = — — = (24)
Rk, + Kle %% + Rlk, — kle/7F — 20k

is a deterministic complex-valued function of § and k. Substituting (23) into (15), we get

~

N — s .
Ok N tan~! (tan(ﬁé/N) + Real{Sk((s) <tan(7rk:/N) (nkp+ke_JNk — nkp_kejzvk)

x 2
B i I k_ _ ZIkp
tan(md/N) (nk pe TN T k€N Cos(ﬂk‘/N)>>}> )
1
7 1+ tan?(md/N)

X Real{Sk(6) (tan(ﬂk/N) (nkarke_j%k — nkp,kej%k)

%54-

. T - T 277]€
— tan(md /N e Ink _pedwk o T 26
(/) (e T T e (26)
where we have made another first-order Taylor series expansion in the tan=1(:) function with
the assumption that noise terms are small (under high SNR).
Hence the estimation error is given as

> N 1 _ B g
O =0 = a2 (/) Real{Sk((S)(tan(wk/N) (nkp+ke RF oy, gel ® )
E 20,
- N —inN JN kK “rp ] 9
tan{me/N) (Uk whe AR Ty =k cos(wk/N)) >} (27)

We now rearrange the terms in (27) to get
N 1
7 1+ tan?(md/N)

— (tan(nk/N) + tan(7d/N)) Real{gk(é)nkp_kej%k} n mReal{sk(é)nkp}

o — 6 =

< (tan(mk/N) — tan(md/N)) Real{?k(d)nkp+ke—j%k}

N———

Taking the square of both sides and then taking the expected value, we obtain
MSE;, £E[(5) — 6)?] (29)

N2 1 B -
7 (14 tan(x8/N))? < (tan(h/N) — tan(md/N))? B |Real*{ Sy (), e /5]

+ (tan(rk/N) + tan(rd/N))? E [Rea12{§k(5)nkp_kej%k”

+ WE [Real2{§k(5)nkp}] ) (30)

where we used the independence of the noise terms 7y, £, 1k, and ng, to get rid of the cross
terms. Since the noise terms 7y, 1 &, Mk, and 7k, are also identically distributed and circularly
symmetric, the following equalities hold.

E [Reaﬁ{ék(a)nkﬁke*ﬁ%k}} —E [Real2{§k(5)nkp,kej%k” —E {Realz{gk(é)nkp}} (31)



which gives

MSE;, = 7[_2 T tan? (7-(5/]\[)) E [RealQ {?k((;)’l’]kp}]

(1
2

X ( (tan(wk/N) — tan(wd /N))* + (tan(wk/N) + tan(wd /N))* + W) (32)
N? 1

72 (1 + tan2(76/N))

2

X (2 tan®(k/N) + 2 tan®(76/N) + W) (33)
_ 2N?sin*(7k/N) + (2 + cos?(wk/N)) tan? (6 /N)
w2 (1 + tan?(w6/N))? cos?(rk /N)

s E {Real2 {gk (0)n, }]

E [RealQ{gk(é)nka (34)

In order to be able to take the expected value on the right hand side of (34), we now concentrate
on the quantity Sg(d) which is given as

T A 1

Sk(0) = = —j%k P JEk 2R[ky]
R[kp + k]e NT A+ R[kp - k]e N cos(wk/N)

(35)

We write the denominator as

IRk,
cosk/N
No1y sin(m(6 — k)) T
sin (m(d — k)/N)
pidginicte jriicty SI(TO+K)) sz
4 sin (7 (6 1+ K)/N)
B 2 Apibpin s sin(md)
cos(mk/N) sin (wd/N)
sin(7(d — k)) 4 Aeibeim s ik sin(7(0 + k))
sin (m(6 — k)/N) sin (m(0 +k)/N)

Rk, + kle 7% + R[k, — kle/¥F —
P P

_Aemeyw Ls e IT

(36)

— AT pim VN0 ik

2 N-15 sin(70)
_ Jédm=5—6

cos(mk /Ny A G ma N

sin(7d) jo_inN=ls sin(7d)

sn(ro— k)N A e+ /N
2 N-15 sin(70)
_ Jédm=5—6

cos(mh/N) A G ma N

—AeieI™ T sin(r ! 1 B :
=Aeel Rl v T ey s Si““”%&

:Aequejﬂ'%é

= AeiPeim R sin(7d)

" < 1 n 1 _ 4 )
sin (7(6 —k)/N) = sin(w(0 +k)/N) sin(n(d — k)/N) +sin (7(d + k)/N) w0

_ Aei®e™ 5 sin(78) (sin (7(5 — k) /N) — sin (7(8 + k) /N))?
sin (7(6 — k)/N)sin (7(6 + k)/N) (sin (7(§ — k)/N) + sin (7 (0 + k) /N))

(41)
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_ AP N0 sin(ro) (sin (m(6 — k)/N) — sin (n(8 + k) /N))?
2cos(mk/N) sin(wd/N)  sin(7w(d — k)/N)sin (7 (0 + k)/N)

_flfaj‘?s.ej”%‘S sin(7) 2sin?(mk/N) cos?(md/N)

~ cos(mk/N) sin(md/N)sin (7(5 — k)/N)sin (7(6 + k)/N)

(42)

(43)

where we have used the trigonometric sum formulae (for sin(g + b)) and the sum-to-product
formula (for the sine function) to obtain the final form. Then S (J) is given as

- 1 Nois sin(7wd/N) sin (7(§ — k)/N) sin (7(d + k)/N)

Sk (0) = 24 cos(mh/N)e %" sin(md) sin?(7k/N) cos?(m§/N) (44)

We can now take the expected value in (34) as follows.

sin?(76/N) sin? (7(6 — k)/N) sin? (7(6 + k) /N)
sin?(76) sin(rk/N) cos*(n6/N)

cos®(mk/N)

E [RealQ{gk(é)nka = &

(45)

where we used the circular symmetricity of the noise term. Now, substituting the expected
value (45) into (34), we get

2N2sin?(nk/N) + (2 + cos?(wk/N)) tan?(7§/N)

MSE}, =

2 (1 + tan2(78 /N))? cos?(wk/N)
N sin?(76/N) sin? (7(6 — k)/N) sin? (7(6 + k) /N)
X 55N o (TH/N) sin?(1d) sin® (rk/N) cost (73 /N) (46)
3
:M*;VW (sin2(k/N) + (2 + cos?(nk/N)) tan?(w8/N))
y sin?(76/N) sin? (7(6 — k)/N) sin? (7 (6 + k) /N). (47)

sin?(md) sint(rk/N)

4 Cross-Covariance Between the Estimates 0, and 0y (k # k)
under High-SNR

In order to calculate the cross-covariance between the estimates gk and gk/ where k # k', we
consider the estimation error in (28) given as

F zg - tan; 3 < (tan(rk/N) — tan(r8/N)) Real{ﬁk(é)nkp+ke—j%’f}
— (tan(rk/N) + tan(7d/N)) Real{ﬁk(a)nkp,kej%k} + mReal{Sk(é)nkp})
(48)
We now write the cross-covariance E [(gk — &) (0w — 6)} as
~ ~ _ N? 1 4tan?(md/N)
E [(5k —0)0w — 6)] " 72 (1 + tan%(76/N))2 cos(nk/N) cos(nk! /N
x FE [Real{?k (5)77kp }Real{?k/(é)nkp }] (49)



where all of the other terms in the multiplication (6, — 8)(8x — &) have zero expectations.
Substituting the expression of Sj and Sy into (49) and then taking the expected value, we get

- ~ 3 sin?(7 sin (m(§ — sin (7
E (=)o = 0)] =g o /) e S S =B e R B
sin (w(6 — k')/N) sin (7(6 + k') /N)
8 sin?(7k’/N) ' (50)

As a result, the correlation coefficient pgr between the estimates gk and gk/ is given as

o 2 E |:(gk —8) (0w — 5)} E [(Sk — )G — 5)] .
kk! = _
\/E |:(25\k - 5)2} \/E [(Sk/ — 5)2] VMSE,/MSE,,

B 2 tan? (%5)

J5in? (k) + (2 -+ cos? (k) tan? () /sin? (FK) + (2 + cos? (FH)) tan? ()
(52)

5 Fusion of the Estimates

In this section we will define a fusion rule for the estimates gk For this purpose, we first
approximate the MSE in (47) and the cross-covariance in (50) by using a small || assumption.
5.1 MSE and Cross-Covariance Approximation

In the previous sections the MSE of the kth estimate gk and the cross covariance between the
estimates d; and oy (k # k) were found as

3
MSEy, ZMNW (sin?(h/N) + (2 + cos?(mk/N)) tan® (x6/N))
sin?(76/N) sin? (7(6 — k) /N) sin? (7(6 + k)/N) (53)
sin?(md) sint(mk/N) '
~ ~ 3 sin?(w sin (w(0 — sin (7w
(B = 56 — 5] ~ gy o/ V) T SO B R0 L D)
sin (7(6 — k') /N) sin (7(§ + k') /N)
8 sin?(mk’/N) ' (54)

These MSE and correlation expressions which are valid under high-SNR are too complicated
to use in a fusion rule and moreover, they depend on the unknown true value of § (i.e., the
quantity to be estimated) in a complicated manner. Therefore, in this section, we make a small
|0] assumption, which enables us to have the following approximations.

tan?(7d /N) ~ 0. (55)

sin? (w(8 — k) /N) sin® (w(6 + k)/N)
sin(rk/N) ~ 1 (56)




Substituting these approximations into (53) and (54), we get

1 sin?(7k/N) N?sin?(76/N)

MSEy ~4NSNR w2 /N2 sin?(76) (57)
E [(Sk — )y — 5)] ~0 (58)

which are approximately valid under both high-SNR and small |§| assumptions. The expres-
sion (58) means that the estimates are approximately uncorrelated under both high-SNR and
small |4| assumptions.

5.2 Fusion Rule

The proposed fused estimate is the best linear unbiased estimator (BLUE) which is given as
(See [1, p.139])

~ k=1 (MSE),

N/2-1 1 gk
oF = .

(59)

N/2—1 1

k=1 (MSE),

Note also that any constant multiplier(s) of the weights yj = m which does not depend on

k (although it may depend on ) can be removed from the weights thanks to the normalization
term. We know that

72 /N? sin?(7d)

— ANSNR
H sin?(7k/N) N2sin(76/N)

(60)

where we used the MSE approximation provided in (57). Note that all the terms except
sin?(mk/N) are constants with respect to & on the right hand side of (60). Therefore, these
terms can be removed thanks to the normalization operation on the weights, which gives

M X SH12(7T1]€/]V) (61)
Hence, the BLUE S\F can be obtained using the formula
N/2-1 13
o = kN;2—1sm2Wi/N)6k' (62)
k=1 sin®(rk/N)
There is an analytical formula for the summation in the denominator which is given as [2]
N/2-1 1 N/2-1 ) 1
; RN k; csc?(nk/N) = (N +2)(N = 2) (63)

for even N values.



5.3 Approximate MSE of the Fused Estimate
Considering the fact that the MSE of the BLUE in (59) can be calculated as (See [1, p.139])
1

(MSE)F = N/2—1 1 ’ (64)
k=1 (MSE),
the MSE of 6z in (62) is approximately given as
6N N2sin?(76/N)
MSEr ~ ) 65
7 (2r)2SNR(N —2)(N +2)  sin®(nd) (65)
where we used (57) and (63), which converges to the CRLB for the problem [3] given as
CRLB £ 6 (66)
~ (2m)2NSNR

when N is sufficiently large and || is sufficiently small.

6 Simulations Related to the Approximations

6.1 MSE Approximations

In this sub-section, we compare the simulated root mean square errors (RMSE) of the estimators
Sk with the RMSE approximations given by (47) and (57). We consider the complex exponential
signal of length N = 16 and frequency f = (2+6)/N, i.e., the maximum bin k, = 2. The RMSE
performance of estimators §k7 k =1,...,7 are evaluated on 100000 Monte Carlo (MC) runs
for different values of § under the condition SNR= 10 dB. In each MC-run different noise
w[-] and phase (¢ ~ Uniform[0,27]) realizations are used. Figures 1(a) and 1(b) show the
simulated RMSE of the estimators 6, k = 1,...,7 with respect to k along with the analytical
approximations given by (47) and (57), respectively, for different true d-values. It is seen that
the RMSE values increase as true 6 and k increases, which is expected. The approximations (47)
and (57) both follow the simulated RMSE values quite closely while the latter being only slightly
worse than the former.

6.2 Cross-Covariance Approximation

In this sub-section, we evaluate the correlation coefficients given in (52) for § = 0.05 and § = 0.45.
The experiment parameters are the same as those in the previous sub-section. Table 1 and
Table 2 give the values of pyp in (52) for 6 = 0.05 and § = 0.45, respectively, for k. k' =1,...,7.
Note that the expression (52) is valid only in the case k # k’. The elements of the tables for
the cases k = k' are naturally set to unity. It is seen that when § = 0.05, the estimates are
almost uncorrelated confirming the approximation made in (58) under high-SNR and small |d|
assumptions. When § = 0.45, on the other hand, the correlation coefficients can be as high as
0.15. Most of the correlation coefficient values for § = 0.45 are still less than 0.1 and therefore
the quality of the approximation (58) degrades a little with increasing |0 but still remains at a
reasonable level.
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RMSE of 3 for N =16 SNR=10 dB
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(a) MSE approximation given by (47).
RMSE of & for N =16 SNR=10 dB
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(b) MSE approximation given by (57).

Figure 1: Analytical (approximate) (dash-dotted lines) and simulated RMSE (solid lines) per-
formances of the estimators d, k = 1,...,7 for different true J-values.
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Table 1: Correlation coefficients pyys for k, k' =1,...,7 when ¢ = 0.05.
k/

1 2 3 4 5 6 7

1 0.0026 | 0.0018 | 0.0014 | 0.0012 | 0.0011 | 0.0010
0.0026 1 0.0009 | 0.0007 | 0.0006 | 0.0005 | 0.0005
0.0018 | 0.0009 1 0.0005 | 0.0004 | 0.0004 | 0.0004
0.0014 | 0.0007 | 0.0005 1 0.0003 | 0.0003 | 0.0003
0.0012 | 0.0006 | 0.0004 | 0.0003 1 0.0003 | 0.0002
0.0011 | 0.0005 | 0.0004 | 0.0003 | 0.0003 1 0.0002
0.0010 | 0.0005 | 0.0004 | 0.0003 | 0.0002 | 0.0002 1

N | OO | W N

Table 2: Correlation coefficients pyys for k, k' = 1,...,7 when ¢ = 0.45.
k/

1 2 3 4 ) 6 7

1 0.1543 | 0.1104 | 0.0879 | 0.0753 | 0.0679 | 0.0641
0.1543 1 0.0665 | 0.0530 | 0.0453 | 0.0409 | 0.0386
0.1104 | 0.0665 1 0.0379 | 0.0324 | 0.0293 | 0.0276
0.0879 | 0.0530 | 0.0379 1 0.0259 | 0.0233 | 0.0220
0.0753 | 0.0453 | 0.0324 | 0.0259 1 0.0200 | 0.0188
0.0679 | 0.0409 | 0.0293 | 0.0233 | 0.0200 1 0.0170
0.0641 | 0.0386 | 0.0276 | 0.0220 | 0.0188 | 0.0170 1

N | OO | W N

7 How many bins to use?

Although, in general, it can be said that the fusion of the estimates will improve the performance
no matter how many bins are used in the fused estimate, it is difficult to make a theoretical
analysis on how to choose the number of bins to use. However, some practical recommendations
can still be made as follows. Consider the estimator

K 1 S
g[( . Ek:l sin?(mk/N) O
=

67)
K 1 (
Zk:l sin? (k/N)

where K < N/2 — 1 is the number of bins used to form the fused estimate. In order for the

performance of 3\1{5 to be close to the fused estimate gp = gg/ *~1 Which uses all of the available
DFT bins, one would need that a significant mass of all weights is contained in the summation

Z,I::l m A reasonable rule might be to choose K as the smallest integer such that the
inequality below is satisfied.

K ) N/2-1 1 o
e Rl Doy R A A o

where 0 < a < 1 determines the confidence level of the K value selected. Noting the MSE
expression for the fused estimate given in (64), the condition (68) ensures that the fused estimator
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with K bins has at most 1/a times the MSE of the fused estimator with all bins (i.e., K =
N/2 —1). The inequality (68) can be written equivalently as

1

K i
sin? (k/N)
g N2 1 > a. (69)
k=1 Zf:l sin?(mf/N)

Hence, considering the normalized weights on the left hand side of (69) to form a probability
mass function, choosing the value aw = 0.95 will ensure that the used weights (k = 1,..., K) will
contain at least the 95th percentile of the available normalized weights (k =1,...,N/2 —1).

It is interesting to see what the value of K would be for some value of & when N is very
large. In order to investigate this, we can take the following limit.

1

- sin? (rk/N) . 6 1
lim = lim (70)
o N/2—1 1 — oy 3
Voo S gy e WA DW= 2) sin®(mk/N)
6N
=1 1
N oo T2k2(N + 2)(N — 2) (71)
6 1
T r2E2 (72)
Substituting the limit into (69), we get
K
6 1
2 > e (73)
k=1

Noting that, as K — oo , the summation approaches from 1 to 72/6, we see that the left hand
side of (73) approaches from 6/m% ~ 0.61 to 1 (Hence, if a < 6/7%, then K = 1.). Using the
definition of the generalized harmonic numbers [4, p. 277] given as

n
1
Hym 2 = (74)
k=1
we can write (73) as
ar?

Hence, we see that, as N grows, the number of bins to use converges to the smallest integer K
for which the generalized harmonic number Hp » is larger than “g-.
For finite N case, we argue as follows. It is known that sin(x) < x for x > 0. Hence we have,

sin(rk/N) < wk/N (76)
for all k£ > 0. Therefore we can write
1 N?
> . 77
sin?(7k/N) = m2k? (77)

6

Multiplying both sides by the positive number N (N=2) (assuming N > 2), we get

6 1 6N2
(N 1+ 2)(N — 2) sin2(k/N) (N2 — d)n2k2’

(78)
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Table 3: K values obtained for a-values in [0.9,0.99].

o | 09091092093 |094|0.95]|0.96 | 0.97 | 0.98 | 0.99
6 7 8 9 10 12 15 20 30 61

Table 4: K values obtained for several a-values close to unity.

a | 091099 |0.999 | 0.9999 | 0.99999 | 0.999999 | 0.9999999 | 0.99999999
6 61 608 6079 60793 607927 6079276 61418896

Noting that N]X—; = 1/(1 — 4/N?) is strictly decreasing with increasing N, the inequality (78)
is preserved when we take the limit of the right hand side of (78) as N goes to infinity. Hence
we can write

6 16 79)
(N 4+ 2)(N —2)sin®(nk/N) = w2k%
Now summing both sides of (79) from k£ =1 to k = K, we obtain
K K
6 1 6 1 6
2N =2H 80
(N +2)(N —2) ; SinZ(7k/N) 2 ; 2 g2 2 (80)

Hence we see that, the sum of the first K normalized weights is always larger than the number
%H K,2- Hence if we ensure that the number %H K,2 is larger than «, the sum of the first K
normalized weights would be larger than «. As a result, we can suggest that, for any N value, if
we choose K as the smallest integer such that the generalized harmonic number Hp o is larger

than O‘T’Tz, we always satisfy the condition (69). Note that these K values do not depend on
N and they depend only on a. In Table 3, K values obtained for some « values are listed.
The values in Table 3 say that, if one wants to use at least 90 percent of the weights (or if one
want to work at most 10/9 times the MSE of dp (i.e., MSEp)), then it is sufficient to use only 6
bins, independent of the value of N (of course as long as we have at least 6 bins, i.e., N > 14).
Similarly 99 percent of the weights (or at most 100/99 times MSEr) would require 61 bins.

Having seen the previous values for K, we calculated K values for some more « values in
Table 4. Noting that the o values in Table 4 can be written as a =1 —0.1¢ for £ =1,...,8, we
can write the interesting approximate empirical formula for K given as

(81)

. 2
K =~ round (060797) ,

1l -«

which has been seen to hold for all « values in our trials except the last two columns of Table 4.
Hence the empirical formula (81) might not be correct for very close values of a to unity. Note
that the empirical constant 0.607927 shares some digits with 6/72 = 0.607927101854027 but it
is not the same.
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8

Matlab Implementation

© W N s W N

Croot O Ot Ot Ut s s e R R R R R R R W W W W W W W W W W NN N NN NN NN R R R R R e e e
G = W N = O © 0 N O O k= W N = O © 0 OO WwWwN O © N0 U R W= O © NN U R W N = O

function outfreq = fine_freg._est (data,maxorder);
function outfreq = fine_freg_est (data,maxorder);
Generates frequency estimates via fusing maxorder estimates given by

\ahat_-k = N/pi atan(tan(pi k/N) Real { Ratio } )

where
Ratio = (R[kp+kle " {—3jk pi/N} — R[kp — kle {+jk pi/N}) /

(R[kptkle"{—jk pi/N} + Rl[kp — kle " {+jk pi/N} — 2R[kp]/cos (pi k/N))
data : N x Mcnum matrix , (N: number of samples, Mcnum: number of vectors)

maxorder : Number of estimates to be fused (maxorder < N/2 )
outfreq : 1 x Mcnum vector

March 2014
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[N,MCnum] = size(data);
if exist ('maxorder')==0, maxorder = N/2 — 1; end;

umutall = zeros (maxorder,MCnum) ;

$%%First Estimate

morder = 1; %do the first estimation (\ahat_1)
[outfreqg.dum, outf, outmaxind] = est_sub (data,morder);
umutall (morder, :) = outfreqg-dum;

clear dataj;

$%%Remaining Estimates
for morder=2:maxorder, $%$Do the rest, if maxorder>1

outfreg.dum = est_sub ([],morder,outf, outmaxind) ;
umutall (morder, :) = outfreg_dum;
end;
$Fusion
dum = l:maxorder; fusw = 1./ (sin(pixdum/N))."2; fusw = fusw/sum(fusw);

outfreq = fuswxumutall;

function [outfreq,outf,outmaxind] = est_sub (data,morder,outf,outmaxind);
if exist('outf')==0, %If outf is provided at the input, do not repeat
% FFT calculation
[N,MCnum] = size (data);
outf=fft (data, []1,1); clear data;
out = real (outf) .xreal (outf) + imag(outf) .*imag(outf);
[outmaxval, outmaxind] = max(out, [],1);
else
[N,MCnum] = size (outf);
end;
dumvec = (0:length (outmaxind)—1) xN;
vec = outmaxind — 1; % 0 < vec elements < N—1
vecp = mod(vec + morder, N); % 0 < vec elements < N—1
vecm = mod(vec — morder, N); % 0 < vec elements < N—1
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56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

vec = vec + dumvec + 1;

vecp = vecp + dumvec + 1;
vecm = vecm + dumvec + 1;
index = [vecm;vec;vecp];
out = outf (index);

o

%$Constants

expp=exp (j*pi*rmorder/N); expm=exp(—j*xpirmorder/N);
mycos=cos (pi*morder/N); mytan=tan (pi*morder/N) ;

o
°

out = [—expp 0 expm; expp —2/mycos expm]*out;
outfreq = N/pixatan(real (mytanxout (1l,:)./out(2,:)));
outfreq = outfreq + outmaxind — 1;
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