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Multi Sensor Architectures

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Centralized

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Hierarchical without Memory

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Hierarchical with Memory

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Hierarchical with Feedback
without Memory

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Hierarchical with Feedback
with Memory

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Decentralized without Memory

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Decentralized with Memory

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Pros & Cons

The traditional centralized architecture gives optimal
performance but

Requires high bandwidth communications.
Requires powerful processing resources at the fusion center.
There is a single point of failure and hence reliability is low.

For distributed architectures

Communications can be reduced significantly by
communicating tracks less often.
Computational resources can be distributed to different nodes
Higher survivability.
It is a necessity for legacy systems e.g. radars sometimes might
not supply raw data.
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Problems in Multi Sensor TT

Registration: Coordinates (both time and space) of different
sensors or fusion agents must be aligned.

Bias: Even if the coordinate axes are aligned, due to the
transformations, biases can result. These have to be compensated.

Correlation: Even if the sensors are independently collecting data,
processed information to be fused can be correlated.

Rumor propagation: The same information can travel in loops in
the fusion network to produce fake information making the overall
system overconfident. This is actually a special case of correlation.

Out of sequence measurements: Due to delayed communications
between local agents, sometimes measurements belonging to a target
whose more recent measurement has already been processed, might
arrive to a fusion center.
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Correlation
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Correlation

Suppose the target follows the dynamics

xk = Axk−1 + wk

and the ith sensor measurement is given as

yik = Cixk + eik

Then with the KF equations

x̂ik|k =Ax̂ik−1|k−1 +Ki
k(y

i
k − CiAx̂ik−1|k−1)

=Ax̂ik−1|k−1 +Ki
kCi(xk −Ax̂ik−1|k−1) +Ki

ke
i
k

=Ax̂ik−1|k−1 +Ki
kCiA(xk−1 − x̂ik−1|k−1) +Ki

kCiwk +Ki
ke
i
k
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Correlation

Define x̃ik , xk − x̂ik|k, then

x̃ik =xk −Ax̂ik−1|k−1 −Ki
kCiA(xk−1 − x̂ik−1|k−1)−Ki

kCiwk −Ki
ke
i
k

=Axk−1 + wk −Ax̂ik−1|k−1 −Ki
kCiA(xk−1 − x̂ik−1|k−1)

−Ki
kCiwk −Ki

ke
i
k

=(I −Ki
kCi)Ax̃

i
k−1 + (I −Ki

kCi)wk −Ki
ke
i
k

Hence

x̃ik =(I −Ki
kCi)Ax̃

i
k−1 + (I −Ki

kCi)wk −Ki
ke
i
k

x̃jk =(I −Kj
kCj)Ax̃

j
k−1 + (I −Kj

kCj)wk −K
j
ke
j
k

We can calculate the correlation matrix Σij
k , E(x̃ikx̃

jT
k ) as

Σij
k = (I −Ki

kCi)AΣij
k−1A

T (I −Kj
kCj)

T + (I −Ki
kCi)Q(I −Kj

kCj)
T
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Correlation

Assuming that Σij
0 = 0, we can calculate the correlation between

the estimation errors of the local trackers recursively as

Σij
k = (I −Ki

kCi)AΣij
k−1A

T (I −Kj
kCj)

T + (I −Ki
kCi)Q(I −Kj

kCj)
T

This necessitates that the fusion center knows the individual
Kalman gains Ki

k and Kj
k of the local trackers which is not

very practical.

Assuming that the errors are independent is not a good idea
either.

Neglecting the correlation makes the resulting estimates
overconfident i.e., very small covariances meaning that too
small gates and smaller Kalman gains.

When Q = 0, Σij
k = 0, i.e., no correlation when no process

noise.
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Correlation Illustration

Maneuvers make this problem more dominant and visible.
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Rumor Propagation

Hierarchical Case: Rumor always flows to the fusion center

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Rumor Propagation

Decentralized case: Rumor propagates everywhere.

Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”

Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Track Association: Testing

Test for Track Association [Bar-Shalom (1995)]:

Two estimates x̂ik|k, x̂jk|k and the covariances Σi
k|k, Σj

k|k are
given from ith and jth local systems.

We calculate the difference vector ∆ij
k

∆ij
k , x̂ik|k − x̂

j
k|k

Then we calculate covariance Γijk , E(∆ij
k ∆ijT

k ) as

Γijk = Σi
k|k + Σj

k|k − Σij
k − ΣijT

k

Then test statistics Dij
k calculated as

Dij
k = ∆ijT

k (Γijk )−1∆ij
k ≶ γijk

can be used for checking track association.
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Track Association

What about the cross covariance Σij
k ?

Simple method is to set it Σij
k = 0.

It can be calculated using Kalman gains if they are transmitted to
the fusion center.

Approximation for cross covariance from [Bar-Shalom (1995)]:

The following cross-covariance approximation was proposed:

Σij
k ≈ ρ

(
Σi
k|k. ∗ Σj

k|k

). 1
2

where multiplication and power operations are to be done
element-wise. For negative numbers, square root must be taken on
the absolute value and sign must be kept.

The value of ρ must be adjusted experimentally. ρ = 0.4 was
suggested for 2D tracking.
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Track Association

Method proposed by [Blackman (1999)] for two local agents

Suppose local agent i and j have N i
T and N j

T tracks
respectively.

A track association hypothesis θk between local agents i and
j can be represented as a N i

T ×N
j
T -size binary matrix

Z = [zmn ∈ {0, 1}] such that

zmn =

1,
If track m of local agent i

is associated with
track n of local agent j

0, otherwise

Note that the constraints

N i
T∑

m=1

zmn ≤ 1 ∀n and

Nj
T∑

n=1

zmn ≤ 1 ∀m

must be satisfied for a valid track association hypothesis.
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Track Association

Method proposed by [Blackman (1999)] for two local agents

Define the quantities

βT : target density (number of targets/state-space volume)
Pi∈j : probability that local agent i has a track in the common field of
view with local agent j given that there is a target there.
βi
FT : False track density of the tracker of local agent i (same unit as
βT ).

Then the probability of a track association hypothesis is given by

P (θk) ∝ (βiNA)N
i
NA(βjNA)N

j
NA

∏
{m,n|zmn=1}

βTPi∈jPj∈iN (x̂mk|k − x̂nk|k; 0,Γmnk )

where

βi
NA = βTPi∈j(1−Pj∈i) + βi

FT and βj
NA = βTPj∈i(1−Pi∈j) + βj

FT

N i
NA , N i

T −
∑Ni

T
m=1

∑Nj
T

n=1 zmn and N j
NA , N j

T −
∑Ni

T
m=1

∑Nj
T

n=1 zmn
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Track Association

Method proposed by [Blackman (1999)] for two local agents

P (θk) ∝ (βiNA)N
i
NA(βjNA)N

j
NA

∏
{m,n|zmn=1}

βTPi∈jPj∈iN (x̂mk|k − x̂nk|k; 0,Γmnk )

Divide by the constant (βjNA)N
j
T

P (θk) ∝ (βiNA)N
i
NA

∏
{m,n|zmn=1}

βTPi∈jPj∈iN (x̂mk|k − x̂nk|k; 0,Γmnk )

βjNA

Maximizing this probability is equivalent to maximizing log of it.

logP (θk) = N i
NA log βiNA +

∑
{m,n|zmn=1}

log
βTPi∈jPj∈iN (x̂mk|k − x̂nk|k; 0,Γmnk )

βjNA
+ C
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Track Association: Assignment Problem

Method proposed by [Blackman (1999)] for two local agents

logP (θk) = N i
NA log βiNA +

∑
{m,n|zmn=1}

log
βTPi∈jPj∈iN (x̂mk|k − x̂nk|k; 0,Γmnk )

βjNA
+ C

Form the assignment matrix:

Aij T j1 T j2 T j3 T j4 NA1 NA2 NA3

T i1 `11 `12 `13 `14 log βiNA × ×
T i2 `21 `22 `23 `24 × log βiNA ×
T i3 `31 `32 `33 `34 × × log βiNA

where `mn , log
βTPi∈jPj∈iN (x̂m

k|k−x̂
n
k|k;0,Γmnk )

βjNA
.

Then, use auction(Aij) to get track association decisions.
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Track Association

Track association for more than two local agents.

One way is to solve multi dimensional assignment problem.

The simpler way is to do the so-called sequential pairwise
track association.

Suppose we have NL local agents whose tracks need to be fused.
Then, we order the local agents according to some criteria e.g.
accuracy, priority, etc.

Tracks of
Local Agent 1

Tracks of
Local Agent 2

Track
Association &
Track Fusion

Tracks of
Local Agent 3

Track
Association &
Track Fusion

Tracks of
Local Agent NL

Track
Association &
Track Fusion

Final
Fused Tracks
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Track Fusion: Independence Assumption

Once we associate two tracks, we have to fuse them to obtain a
fused track. This is called as track fusion.
Consider the track fusion at point A assuming tCR = tCT = t.

Independence assumption gives

(ΣA
t )−1 =(ΣB

t )−1 + (ΣC
t )−1

(ΣA
t )−1x̂At =(ΣB

t )−1x̂Bt + (ΣC
t )−1x̂Ct

This is simplistic and expected to
give very bad results here.

This is also called as naive fusion.
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Track Fusion: Optimal Solution

Consider the track fusion at point A assuming tCR = tCT = t.

Optimal solution

(ΣA
t )−1 =

(
I − (ΣC

t )−1ΣCB
t

)
∆−1
B +

(
I − (ΣB

t )−1ΣBC
t

)
∆−1
C

(ΣA
t )−1x̂At =

(
I − (ΣC

t )−1ΣCB
t

)
∆−1
B x̂Bt +

(
I − (ΣB

t )−1ΣBC
t

)
∆−1
C x̂Ct

where

∆B , ΣB
t − ΣBC

t (ΣC
t )−1ΣCB

t ∆C , ΣC
t − ΣCB

t (ΣB
t )−1ΣBC

t

This is very difficult to compute in
a scalable way for variable networks
(no fixed-structure).
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Track Fusion: Channel Filter

Consider the track fusion at point A assuming tCR = tCT = t.

Channel filter, equivalent measurements, tracklets etc.

(ΣA
t )−1 =(ΣB

t )−1 + (ΣC
t )−1 − (ΣD

t|t−td)
−1

(ΣA
t )−1x̂At =(ΣB

t )−1x̂Bt + (ΣC
t )−1x̂Ct − (ΣD

t|t−td)
−1x̂Dt|t−td

One can define ẑCt and ZCt , which are called equivalent
measurements or tracklets in the literature, as

(ZCt )−1 ,(ΣC
t )−1 − (ΣD

t|t−td)
−1

(ZCt )−1ẑCt ,(ΣC
t )−1x̂Ct − (ΣD

t|t−td)
−1x̂Dt|t−td

Transmitting these quantities
instead from a local agent, one can
use the independent track fusion
formulas.
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Track Fusion

Illustration of Correlation Independent Schemes.

zT (ΣB
t )−1z = 1

zT (ΣC
t )−1z = 1

zT (ΣA
t )−1z = 1

Largest Ellipsoid
Algorithm

Covariance Intersection
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Track Fusion: LEA Algorithm

Largest ellipsoid algorithm or safe fusion: Suppose we have local
estimates x̂Bt , ΣB

t and x̂Ct , ΣC
t .

Find SVD of ΣB
t = U1Λ1U

T
1

Define the transformation T1 = Λ
−1/2
1 UT1

Transform ΣC
t with T1 and define PC = T1ΣC

t T T1 .

Find SVD of PC = U2Λ2U
T
2 .

Define the transformation T2 = UT2 T1

Transform x̂Bt , ΣB
t and x̂Ct , ΣC

t with T2.

ẑBt = T2x̂
B
t and ẑCt = T2x̂

C
t

ZBt = T2ΣB
t T T2 = Inx and ZCt = T2ΣC

t T T2 = Λ2

...
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Track Fusion: LEA Algorithm

Largest ellipsoid algorithm continued:

...

Define set of indices I = {i|1 ≤ i ≤ nx, [Λ2]ii < 1}
Find vector ẑAt and covariance ZAt as

[ẑAt ]i ,

{
[ẑBt ]i i 6∈ I
[ẑCt ]i i ∈ I

, [ZAt ]ij ,


[ZBt ]ii i = j, i 6∈ I
[ZCt ]ii i = j, i ∈ I
0 i 6= j

Find fused estimate and covariance

x̂At =T −1
2 ẑAt ΣA

t =T −1
2 ZAt T −T2 .
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Track Fusion: CI

Covariance intersection

Define

(ΣA
t (w))−1 = w(ΣB

t )−1 + (1− w)(ΣC
t )−1

Find

w∗ = arg min
w∈[0,1]

|ΣA
t (w)|

using optimization.

Then the fused estimate and covariance are given as

(ΣA
t )−1 =w∗(ΣB

t )−1 + (1− w∗)(ΣC
t )−1

(ΣA
t )−1x̂At =w∗(ΣB

t )−1x̂Bt + (1− w∗)(ΣC
t )−1x̂CT
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Track Fusion

According to the recent work (recommended)

K. C. Chang, Chee-Yee Chong and S. Mori, “On scalable
distributed sensor fusion,” Proceedings of 11th
International Conference on Information Fusion, Jul.
2008.

channel filter seems to be the best algorithm for track fusion in
terms of

scalability;

estimation errors;

and memory.
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