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Multi Sensor Architectures: Centralized
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Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”
Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.

Multi Sensor Architectures: Hierarchical with Memory
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Figures taken from: M.E. Liggins and Kuo-Chu Chang

“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”
Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.

Multi Sensor Architectures: Hierarchical without Memory
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Figures taken from: M.E. Liggins and Kuo-Chu Chang

“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”
Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.

Multi Sensor Architectures: Hierarchical with Feedback
without Memory
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Figures taken from: M.E. Liggins and Kuo-Chu Chang

“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”
Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.




Multi Sensor Architectures: Hierarchical with Feedback
with Memory

Multi Sensor Architectures: Decentralized without Memory
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Figures taken from: M.E. Liggins and Kuo-Chu Chang

“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”
Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Decentralized with Memory
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Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”
Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”
Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Multi Sensor Architectures: Pros & Cons

@ The traditional centralized architecture gives optimal
performance but
e Requires high bandwidth communications.
e Requires powerful processing resources at the fusion center.
e There is a single point of failure and hence reliability is low.

@ For distributed architectures

e Communications can be reduced significantly by
communicating tracks less often.

e Computational resources can be distributed to different nodes

e Higher survivability.

e It is a necessity for legacy systems e.g. radars sometimes might
not supply raw data.

12/37




Problems in Multi Sensor TT

Registration: Coordinates (both time and space) of different
sensors or fusion agents must be aligned.

Bias: Even if the coordinate axes are aligned, due to the
transformations, biases can result. These have to be compensated.

Correlation: Even if the sensors are independently collecting data,
processed information to be fused can be correlated.

Rumor propagation: The same information can travel in loops in
the fusion network to produce fake information making the overall
system overconfident. This is actually a special case of correlation.

Out of sequence measurements: Due to delayed communications
between local agents, sometimes measurements belonging to a target
whose more recent measurement has already been processed, might

arrive to a fusion center.
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Correlation

Suppose the target follows the dynamics
T = Arp_1 + wg
and the ith sensor measurement is given as
yi, = Cimp + €},
Then with the KF equations

ﬁqk :Ai’?ﬂfukq + Kj(yj. — CiAj?Zq\kq)
=AZ} o + K Cilwg — A% _ypq) + Kiey,
=AZ) gy + KGCiA(r-1 — Ty ) + KpCiwg + Kpeg
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Correlation

Suppose the fusion center have the
prediction Zyx_1 in both cases.

Centralized Case
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where e,%/, and ez are independent.

Decentralized Case
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Correlation

N NP
Define 7}, = x, Ty then

¥, ok — Aiz—l\k—l — K} CiA(wpr — iz—uk—ﬁ — Kj.Cywy, — Kjej,
=Awpoy +wyp — Ady gy — KL CiA(zp—1 — 562_1%_1)
- K,@Czwk — K,dez
:(I - K]chz) ‘%2—1 + (I — K}CC’,)wk — K}Lﬁez
Hence
#, =(I — KiC)AZ},_y + (I — KjCi)wy, — Kjel,
fi], :(I — K}iCJ)A»ﬁc_l + (I — K]Z;Cj)wk — Ki:e‘z‘

We can calculate the correlation matrix Efcj = E(i:?ci"f) as
S = (I = KjC) AS] AT (1 = K{C)" + (I = Kj.C)QU — K{C))"
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Correlation

Assuming that Zf)j = 0, we can calculate the correlation between
the estimation errors of the local trackers recursively as

S = (I = KiC)ASY AT = KIC))T + (I = KCHQU — KJCj)T

@ This necessitates that the fusion center knows the individual
Kalman gains K}, and K,]C of the local trackers which is not
very practical.

@ Assuming that the errors are independent is not a good idea
either.

@ Neglecting the correlation makes the resulting estimates
overconfident i.e., very small covariances meaning that too
small gates and smaller Kalman gains.

e When Q =0, ¥}/ =0, i.e., no correlation when no process
noise.
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Rumor Propagation

Hierarchical Case: Rumor always flows to the fusion center
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Figures taken from: M.E. Liggins and Kuo-Chu Chang

“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”
Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Correlation lllustration

Maneuvers make this problem more dominant and visible.

o0 = 0.3m/s?

Rumor Propagation

Decentralized case: Rumor propagates everywhere.
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Figures taken from: M.E. Liggins and Kuo-Chu Chang
“Distributed Fusion Architectures, Algorithms, and Performance within a Network-Centric Architecture,”
Ch.17, Handbook of Multisensor Data Fusion: Theory and Practice, Taylor & Francis, Second Edition, 2009.
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Track Association: Testing

Test for Track Association [Bar-Shalom (1995)]:

: i ~J : i J
° Two estlmaFes xk|k,.xk|k and the covariances Zk|k, Zk|k are
given from ith and jth local systems.

@ We calculate the difference vector Ag
i A i
Ap = By — T
o Then we calculate covariance T'/ 2 E(AY AT as
ry=xi, 4+ —xv_yil
k= Zklk K|k k k
@ Then test statistics D,’ calculated as
0§ AT fign—1 A 8 ij
Dy _Ak (Fk) Ak S Y

can be used for checking track association.
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Track Association

Method proposed by [Blackman (1999)] for two local agents

@ Suppose local agent 7 and j have N% and N% tracks
respectively.

@ A track association hypothesis 05, between local agents 7 and
j can be represented as a N} x NZ-size binary matrix
Z = [zmn € {0,1}] such that

If track m of local agent ¢
is associated with

’ track n of local agent j

Zmn =

0, otherwise

@ Note that the constraints

N} N}
Z Zmm <1 Vn and szn <1 Vm
m=1 n=1

must be satisfied for a valid track association hypothesis.
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Track Association

What about the cross covariance Ezj?

@ Simple method is to set it Efgj = 0.
@ It can be calculated using Kalman gains if they are transmitted to
the fusion center.
Approximation for cross covariance from [Bar-Shalom (1995)]:

@ The following cross-covariance approximation was proposed:
1

y , CNd
S ~p (E}ﬂk. * nglk)

where multiplication and power operations are to be done
element-wise. For negative numbers, square root must be taken on
the absolute value and sign must be kept.

@ The value of p must be adjusted experimentally. p = 0.4 was
suggested for 2D tracking.

Track Association

Method proposed by [Blackman (1999)] for two local agents
@ Define the quantities

o [r: target density (number of targets/state-space volume)

o Pjc;: probability that local agent ¢ has a track in the common field of
view with local agent j given that there is a target there.

o B False track density of the tracker of local agent i (same unit as

Br).
@ Then the probability of a track association hypothesis is given by

i i j J ~m ~n
P(0k) o (Biya) N4 (B 4) VA H BrPicj PieiN (&}, — &7, 0, I%™)
{m,n|zmn=1}
where
° Bya=PBrPic;j(1— Pjei) + Bpr and B4 = BrPiei(1 — Piej) + Bpr

i A Az Ny Nz NN Ny Nz
° NNA _NT_Zmzl n=1*mn and NNA _NT_ZTYLzl n=1?mn
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Track Association

Method proposed by [Blackman (1999)] for two local agents
P(6r) o (B a) ™48 )"V T BrPieiPiesl (i, — 2j3:0.T3")
{m,n|zmn=1}

. . j J
Divide by the constant ( §VA)NT

BrPicj PieiN (&), — &3, 0, I7™)

PO) oc By ) ]

J
{m,n|zmn=1} 5NA
Maximizing this probability is equivalent to maximizing log of it.

log P(6)) = Nyalog Bya+ Y :
{m,n|zmn=1} NA

+C
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Track Association

Track association for more than two local agents.

@ One way is to solve multi dimensional assignment problem.

@ The simpler way is to do the so-called sequential pairwise
track association.

Suppose we have Ny, local agents whose tracks need to be fused.
Then, we order the local agents according to some criteria e.g.
accuracy, priority, etc.

Tracks of
Local Agent 3

Tracks of
Local Agent 2

Tracks of
Local Agent N

Track i
Final
,,,,,,, Association & T
Fused Tracks
Track Fusion

Track
Association &
Track Fusion

Track
Association &
Track Fusion

Tracks of
Local Agent 1
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Track Association: Assignment Problem

Method proposed by [Blackman (1999)] for two local agents

) ) ﬁTPieijeiN(f?k - “%Zk:; 0, F}Z}")
log P(0) = Niyalog By + > e H +C

{m,n|zmn=1} NA

Form the assignment matrix:

Ay | T 1) T T] NA; NAy NA;

Tf i1 L2l lig logpl X X

Té la1 loo a3zl X logBh, X

T§ l31 €32 3z L34 X X log B4

B Picj PjeiN (2, —&7 ;0,17
where /,,, £ log ER R (’“'k LA )
NA . . . .
Then, use auction(A4;;) to get track association decisions.
26 /37

Track Fusion: Independence Assumption

Once we associate two tracks, we have to fuse them to obtain a
fused track. This is called as track fusion.
Consider the track fusion at point A assuming tcr = tor = t.

@ Independence assumption gives System

EH7 =D
(=) e =(=P) 12 f + (50)'af

@ This is simplistic and expected to
give very bad results here.

@ This is also called as naive fusion.

W Sensor Observation ® Communication Transmission

O Sensor Data Reception O Communication Reception
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Track Fusion: Optimal Solution

Consider the track fusion at point A assuming tcr = ter = t.
@ Optimal solution
()7 = (1 - (5)IS0F) A + (1 - (3P) 18P0 A
()1 = (1= (£F)7'20P) Aplay + (1= (B7)727) Agla
where

Ap &SP - SPOEO)ISCR A 2 ¢ - nOB(SR)IEpC

@

@ This is very difficult to compute in
a scalable way for variable networks
(no fixed-structure).

|

]

29 /37

[llustration of Correlation Independent Schemes.

A EMH =1
Largest Ellipsoid
Algorithm

= ~Covariance Intersection
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Track Fusion: Channel Filter

Consider the track fusion at point A assuming tcr = tcr = t.
@ Channel filter, equivalent measurements, tracklets etc.

(EA)’1 =(EB)’1 (EC)’1 = (Sf) ™
(S~ et =(20) 8] + (20718 — (Shoi) e,

@ One can define 2 and Z, which are called equivalent
measurements or tracklets in the literature, as

(Z5)™H &) - (Zt|t W
(Z0) 120 2(80) a8 — (Sh,) T,

@ Transmitting these quantities
instead from a local agent, one can
use the independent track fusion
formulas.

Track Fusion: LEA Algorithm

Largest eIIipsoid algorithm or safe fusion: Suppose we have local
estimates 27, ©F and ¢, ©¢.
e Find SVD of ©f = U1\ UT
@ Define the transformation 71 = _1/2U1
o Transform ¢ with 77 and define Po = T2 T,L.
e Find SVD of Po = UsAyUY.
@ Define the transformation 75 = U2T7E
o Transform 22, ©F and ¢, ¢ with T5.

B —T2P and 3¢ =Ti¢

=TXBTl =1, and ZF =TX0TE = Ay
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Track Fusion: LEA Algorithm

Largest ellipsoid algorithm continued:
° ...
o Define set of indices Z = {i|1 < i < ng, [Ag]i; < 1}

o Find vector 2/ and covariance Z{* as

N [éB]i i1¢7 v ..
[ZiA]zﬁ{[;C] ieT’ [Zf]ijé [Ztc]n i=ji€L
L 0 i#j
@ Find fused estimate and covariance
R R
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According to the recent work (recommended)

K. C. Chang, Chee-Yee Chong and S. Mori, “On scalable
distributed sensor fusion,” Proceedings of 11th
International Conference on Information Fusion, Jul.
2008.

channel filter seems to be the best algorithm for track fusion in
terms of

o scalability;

@ estimation errors;

@ and memory.
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Track Fusion: Cl

Covariance intersection

@ Define
) =w®@P) T+ (- w) ()
e Find

w* = arg min |23 (w
s i [2400)

using optimization.
@ Then the fused estimate and covariance are given as
(S =0 (@) 7+ (- ) (ED)
()1 =t (588 + (1 - w)(5F) a6
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