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Lecture Outline

Multiple Hypothesis Tracking (MHT) (50%)

Conceptual MHT
(hypothesis based and most of the time infeasible or inefficient)

Feasible Implementations of MHT (45%)
Hypothesis Based Implementation

N-best solutions to the assignment problem

Track Based Implementation
Output Presentation for MHT

General: Which multi TT method to choose? (5%)
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Multiple Hypothesis Tracking (MHT)

MHT is the name given to a type of TT algorithms that keep at each
time step multiple hypotheses about the past and current association
uncertainties.

The first structured MHT (which we will call “conceptual MHT”) was
described by D. B. Reid in 1979.

These algorithms do not use a separate track initialization procedure
and hence track initiation is integrated into the algorithm.

Between consecutive time instants, if the implemented MHT algorithm
keeps

hypotheses
tracks

the corresponding MHT implementation is called
hypothesis based
track based

respectively.
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Conceptual MHT

It was first described by D. B. Reid in 1979.

It is an hypothesis based brute force implementation i.e.,
between consecutive time instants, different hypotheses
{Θi

k−1}
Nh
i=1 about the past are kept in the memory.

The idea is to generate all possible hypotheses and then to
depend on pruning of these hypotheses, otherwise, it has a
combinatoric explosion in the number of hypotheses.

Uses techniques such as

Clustering;
Pruning of low probability hypotheses;
N-scan pruning;
Combining similar hypotheses

to reduce the number of hypotheses.
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Conceptual MHT

Each of the hypotheses {Θi
k−1}

Nh
i=1 kept about the past are

characterized by their assumed number of targets (tracks) and
their corresponding sufficient statistics.

Θ1
k−1, P (Θ1

k−1)

ŷ2k|k−1
ŷ1k|k−1

Θ2
k−1, P (Θ2

k−1)

ŷ1k|k−1
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Conceptual MHT

Hypothesis Generation: Form Θ`
k , {θk,Θi

k−1}
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Conceptual MHT

Hypothesis Probability: Let Θ`
k , {θk,Θi

k−1}
P (Θ`

k|y0:k) ∝p(yk|Θ`
k, y0:k−1)P (θk|Θi

k−1, y0:k−1)P (Θi
k−1|y0:k−1)

∝ βm
FA
k

FA β
mNTk
NT

 ∏
j∈J iD

P jDp
j
k|k−1(y

θ−1
k (j)

k )

 ∏
j∈J iND

(1− P jDP
j
G)

P (Θi
k−1|y0:k−1)

where we have used the “Fundamental Theorem of TT” introduced at
the last lecture.
Important remark: Note that the sets J iD and J iND are dependent on
the previous hypothesis Θi

k−1 because the number of targets and
estimates of the targets can be different for each different previous
hypothesis.
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Conceptual MHT

New Set of
Measurements
{yik}mk

i=1

Set of
Hypotheses
{Θi

k−1}Nh
i=1

Generate New
Hypotheses
{Θi

k}Nh
i=1

Calculate
Hyp. Probabilities
{P (Θi

k)}Nh
i=1

Reduce
Number of

Hypotheses Θi
k

z−1

User
Presentation

Logic
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Conceptual MHT

Computation and hypothesis number reduction techniques

Clustering.

Pruning of low probability hypotheses.

N-scan pruning

Combining similar hypotheses
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Conceptual MHT

Clustering is the processing of hypotheses about the groups of
targets (tracks) that do not share measurements (in the gates)
separately.
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Conceptual MHT
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Conceptual MHT

Cluster Management:

When targets get closer

If at any time instant a measurement falls inside the gates of
two tracks that have different clusters, the corresponding two
clusters must be merged into a super-cluster.
The hypotheses for each cluster are combined into
super-hypotheses.

When targets separate

If a group of tracks in a cluster did not share measurements
(inside their gates) with the rest of the of the tracks in the
cluster for some specified time period, the cluster can be
divided into two smaller clusters.
Hypotheses for the cluster are also divided into smaller
hypotheses corresponding to two smaller clusters.
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Conceptual MHT

Process Each Cluster Separately: Form Θ`
k , {θk,Θi

k−1} for
each cluster as if the other clusters do not exist.
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Conceptual MHT

Process Each Cluster Separately: Form Θ`
k , {θk,Θi

k−1} for
each cluster as if the other clusters do not exist.
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Conceptual MHT

Pruning low probability hypotheses: For each cluster

One can delete hypotheses that has probability less than a
threshold (e.g. 0.001).

Deletion Condition: P (Θi
k) < γp

Another idea is to sum the probabilities of the hypotheses in
descending order and discard the ones over a predetermined
probability mass (e.g. 0.99).

Deletion Condition:
i∑

`=1

P (Θ`
k) > γc

where the ordering ` = 1, . . . , Nh is descending in
probabilities.
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Conceptual MHT

N-scan Pruning:

This scheme assumes
that any uncertainty at
time k −N is perfectly
resolved by the time k
for all k.

It is a general
commonsense to choose
N ≥ 5

For this purpose, N last
ancestors of each created
hypothesis is kept in
memory.
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Conceptual MHT

Hypothesis Merging: It is also suggested in Reid’s original paper
to check for every hypothesis pair that

two hypotheses have same number of targets (tracks)

the estimates of the tracks are close to the corresponding ones
in the other hypothesis

If these conditions are satisfied

the two hypotheses are merged into a single hypothesis

the resulting single hypothesis is assigned the probability that
is obtained by summing the probabilities of the individual
hypotheses.
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Conceptual MHT

Conceptual MHT is attractive in the sense that each
hypothesis saved between time instants is an alternative
representation of reality and can be interpreted easily.

However, except for toy examples, generating all possible
hypotheses and then discarding most of them was deemed
inefficient because we are basically spending computation for
hypotheses that we, at the end, throw away.

Moreover, some hypotheses keep different combinations of
exactly the same tracks. Hence the number of actual tracks
we are considering is much less than the number of
hypotheses.

For these reasons, an alternative track based implementation
was adopted until an efficient way to implement a hypothesis
based MHT was found in [Cox (1996)] in 1996.
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Hypothesis Based Implementation

First proposed by Cox and Hingorani in 1996 in [Cox (1996)].

Instead of generating all hypotheses in the Conceptual MHT,
they proposed generating only the best hypotheses without
generating hypotheses that will possibly be deleted.

N-best solutions to the assignment problem, which was
introduced at the last lecture with GNN, is used.

The so called Murty’s algorithm found in 1968 is used to
find the N-best solutions to the assignment problem.

In the hypothesis based implementation, Nh-best hypothesis
are found with minimum number of unnecessary hypothesis
generations.

The same number of hypothesis reduction techniques can still
be used.
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Hypothesis Based Implementation

Reminder of Assignment Problem Let Θ`
k , {θk,Θi

k−1}.

P (Θ`
k|y0:k) ∝p(yk|Θ`

k, y0:k−1)P (θk|Θi
k−1, y0:k−1)P (Θi

k−1|y0:k−1)

∝ βm
FA
k

FA β
mNTk
NT

 ∏
j∈J iD

P jDp
j
k|k−1(y

θ−1
k (j)

k )

 ∏
j∈J iND

(1− P jDP
j
G)

P (Θi
k−1|y0:k−1)

Divide and multiply the right hand side by

Ci ,

niT∏
j=1

(1− P jDP
j
G) =

∏
j∈J iD

(1− P jDP
j
G)

∏
j∈J iND

(1− P jDP
j
G)
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Hypothesis Based Implementation

Reminder of Assignment Problem

P (Θ`
k|y0:k) ∝ βm

FA
k

FA β
mNTk
NT

 ∏
j∈J iD

P jDp
j
k|k−1(y

θ−1
k (j)

k )

1− P jDP
j
G

CiP (Θi
k−1|y0:k−1)

× represents
−∞.

`ij ,

log
P jDp

j
k|k−1(y

i
k)

(1−P jDP
j
G)

.

Taking the logs and forming the assignment matrices

A1 T1 T2 FA1 FA2 FA3 NT1 NT2 NT3

y1
k `11 `12 log βFA × × log βNT × ×
y2
k `21 × × log βFA × × log βNT ×
y3
k × × × × log βFA × × log βNT

A2 T1 FA1 FA2 FA3 NT1 NT2 NT3

y1
k `11 log βFA × × log βNT × ×
y2
k `21 × log βFA × × log βNT ×
y3
k × × × log βFA × × log βNT
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Hypothesis Based Implementation

Find the N-best Solutions to an Assignment Problem

Given an assignment matrix Ai, we can find the best solution
with Auction or similar algorithms in polynomial time.

People had considered the generalization of this problem to
N-best solutions.

The key point is to express finding N-best solutions problem
into a number of best solution assignment problems.

Then for each of the best solution assignment problems
Auction algorithm can be used.
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Hypothesis Based Implementation

Find the N-best Solutions to an Assignment Problem

Murty’s Algorithm

Given the assignment matrix Ai,
Find the best solution using Auction algorithm.

2nd best solution:

Express the 2nd best solution as the solution of a number of
best solution assignment problems.
Find the solution to each of these problems by Auction.
The solution giving the maximum reward (minimum cost) is
the second best solution.

Repeat the procedure if further solutions are required.
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Murty’s Algorithm

Description taken from:
I. J. Cox and S. L. Hingorani, “An efficient implementation of Reid’s multiple hypothesis tracking algorithm and its

evaluation for the purpose of visual tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol.18, no.2, pp.138–150, Feb. 1996. 23 / 36

Hypothesis Based Implementation

Our aim: Given the previous hypotheses {Θi
k−1}

Nh
i=1 and current

measurements {yik}
mk
i=1, we would like to find the best Nh current

hypotheses {Θ`
k}
Nh
`=1 without generating all the hypotheses.

Reminder of Hypothesis Probability

P (Θ`
k|y0:k) ∝ βm

FA
k

FA β
mNTk
NT

 ∏
j∈J iD

P jDp
j
k|k−1(y

θ−1
k (j)

k )

1− P jDP
j
G


︸ ︷︷ ︸

Maximized by Assignment Problem

CiP (Θi
k−1|y0:k−1)︸ ︷︷ ︸

Previous Hypothesis
Dependent Term

We would like to find {Θ`
k}
Nh
`=1 that maximizes P (Θ`

k|y0:k).

This can be obtained in two steps:

Obtain the solution from the assignment (Murty’s algorithm)
Multiply the obtained quantity by previous hypothesis dependent terms.
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Hypothesis Based Implementation

Generating Nh-best Hypotheses

Given previous hypotheses {Θi
k−1}

Nh
i=1, the corresponding hypothesis

probabilities P (Θi
k−1|y0:k−1)}Nhi=1 and current measurements {yik}

mk
i=1

Find assignment matrices {Ai}Nhi=1 for all previous hypotheses.

Obtain the best hypotheses shown as {Θ1i
k }

Nh
i=1 for each assignment

matrix.

Calculate the corresponding probabilities {P (Θ1i
k |y0:k)}Nhi=1.

Order the obtained hypotheses according to their probabilities. Call
the resulting ordered list as HYP-LIST and the corresponding list of
probabilities as PROB-LIST.

...
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Hypothesis Based Implementation

Generating Nh-best Hypotheses

...

For j = 2 : Nh

Loop through the assignment matrices and find the jth best solutions
{Θji

k }Nh
i=1 for each of them.

Calculate the probabilities {P (Θji
k )}Nh

i=1 corresponding to {Θji
k }Nh

i=1

If P (Θji
k ) is higher than the lowest probability in PROB-LIST, add

Θji
k to HYP-LIST and the corresponding probability to PROB-LIST.

Discard the lowest probability hypothesis from HYP-LIST and its
corresponding probability from PROB-LIST
If P (Θji

k ) is lower than the lowest probability in PROB-LIST discard

Θji
k and never use Ai again in subsequent recursions.

The hypotheses in the HYP-LIST are the Nh best hypotheses.
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Track Based Implementation

Most of the time, hypotheses are composed of combinations of
exactly same tracks. The number of tracks might be significantly
lower than the number of hypotheses.

Θ1
k−1, P (Θ1

k−1)

ŷ2k|k−1
ŷ1k|k−1

Θ2
k−1, P (Θ2

k−1)

ŷ1k|k−1

Instead of keeping Θ1
k−1 and Θ2

k−1 which would duplicate
information of T1, we can save T1 and T2 for the next time instant.
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Track Based Implementation

Tracks at time k are shown by {T ik}Nti=1

Each track is kept with its Score shown as Sc(T ik).

Instead of a hypotheses tree, form a track tree.

Delete low score tracks.

T
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Track Based Implementation

For reducing the number of tracks further and for user presentation,
generation of hypotheses is still necessary. One advantage this time is
that one can only use high score tracks for hypothesis generation.

For generating hypotheses, keeping the track compatibility information
is necessary. One can keep a binary matrix as below.

T 1
k T 2

k T 3
k T 4

k T 5
k T 6

k T 7
k T 8

k

T 1
k 0 0 0 1 1 0 1 1

T 2
k 0 1 1 1 1 1 1

T 3
k 0 0 0 0 1 1

T 4
k 0 0 1 1 1

T 5
k 0 1 0 1

T 6
k 0 1 1

T 7
k 0 1

T 8
k 0
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Track Based Implementation

Hypothesis Generation: An hypothesis is basically a collection of
compatible tracks.
Examples: Θ1

k = {T 1
k , T

5
k , T

8
k }, Θ2

k = {T 2
k , T

3
k , T

7
k , T

8
k }

Score of an Hypothesis

Sc(Θi
k) =

∑
T jk∈Θik

Sc(T jk )

Probability of a Track

P (T ik) =
∑

Θjk3T
i
k

P (Θj
k)

Probability of an Hypothesis

P (Θi
k) =

exp(Sc(Θi
k))

1 +
∑Nh

j=1 exp(Sc(Θj
k))
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Track Based Implementation

New Set of
Measurements
{yik}mk

i=1

Set of
Tracks
{T i

k−1}Nt
i=1

Generate New
Tracks
{T i

k}Nt
i=1

Discard
Low Score

Tracks

z−1

User
Presentation

Logic

Generate
Hypotheses
{Θi
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Discard
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Tracks

Calculate
Track

Probabilities
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Track Based Implementation

For keeping the number of tracks and hypothesis generation
computations under control

Clustering incompatible tracks into clusters can facilitate
hypothesis generation

N-scan pruning can be applied to track trees (instead of
hypothesis trees in the previous case) by keeping histories of
the tracks in memory.

Merging the tracks that have the same recent measurement
history is another idea to reduce the number of tracks.
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User Presentation Logic

The simplest method is to show the user the maximum
probability hypothesis.

However, this can be a little jumpy because the maximum
probability hypothesis can change quite erratically.

Another method is to show track clusters with their overall
(weighted) mean, covariance and expected number of targets
in them.

Another idea is to keep a separate track list which, at each
step, is updated with a selection of tracks from different
hypotheses.

Chapter 16 of the textbook gives extensive details about track
based implementation of MHT and user presentation logic.
Consult it for further details.
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General: Which Multi TT Method to Use?

XXXXXXXXXXXComputation
SNR

Low Normal High

Low Group TT or PHD GNN GNN

Normal MHT GNN or JPDA GNN

High TBD or MHT MHT Any

GNN and JPDA are very bad in low SNR.

When using GNN, one generally has to enlarge the
overconfident covariances to account for neglected data
association uncertainty.

JPDA has track coalescence and should not be used with
closely spaced targets, see the “coalescence avoiding”
versions.

MHT requires significantly higher computational load but it is
said to be able to work reasonably under 10-100 times worse
SNR.
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