Target Tracking: Lecture 5 Multiple Target Tracking: Part I

Umut Orguner umut@metu.edu.tr room: EZ-12 tel: 4425

Department of Electrical & Electronics Engineering Middle East Technical University Ankara, Turkey

> ◆□ → < □ → < ≥ → < ≥ → ≥ < ○ へ (?) 1/28

What is a hypothesis?

Definition

An (association) **hypothesis** is a partitioning of a set of measurements according to the their origin.

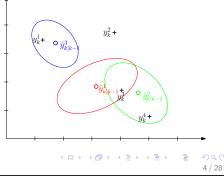
- At each time step, a single hypothesis tracking algorithm keeps only a single hypothesis about all of the measurements received in the past.
 - Global nearest neighbor algorithm does this by selecting the best hypothesis according to a criterion.
 - Joint probabilistic data association filter (JPDAF) combines all possible current hypotheses into a single one to form a single composite hypothesis. For this reason it can also be called as a "composite hypothesis tracker".
- A multiple hypothesis tracker, on the other hand, keeps multiple hypotheses about the origin of the received data and has much more computation and memory requirements.

Lecture Outline

- What is an hypothesis?
- What is
 - Single Hypothesis Tracking (SHT)?
 - Multiple Hypothesis Tracking (MHT)?
- Single Hypothesis Tracking
 - Global nearest neighbor (GNN)
 - Joint probabilistic data association (JPDA)

Basic Scenario Considered in the Lecture

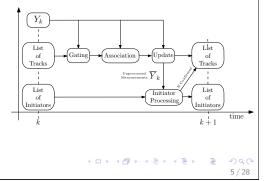
- All the past is summarized by a 3 track hypothesis and possibly some tentative tracks.
- Tentative track processing is the same as what we learned in Lecture-3.
- Using single target tracking methods for each target gives only locally optimal results.
- The global picture must be taken into account for targets sharing measurements in their gates or possibly some other measurement-to-target association conflict.

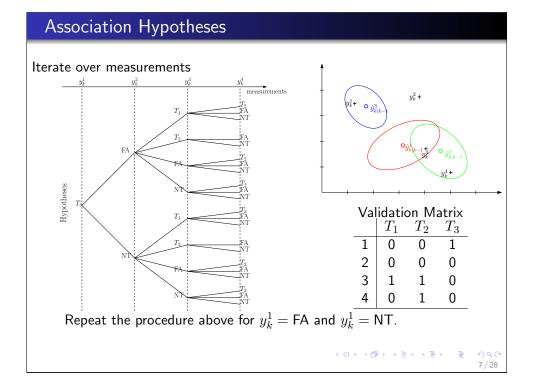


2/28

Single hypothesis tracking

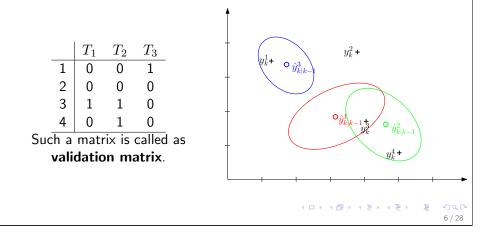
- All the past is summarized by a single hypothesis.
- In this single hypothesis, we have n_T tracks and n_I initiators (or tentative tracks). Generally, the initiation procedure is separated from the main logic.
- When a set of new measurements arrives, one first gates the measurements with the existing (confirmed) targets.
- Using the gating results, association is carried out.
- Using association results, confirmed tracks are updated.
- Unprocessed remaining measurements are sent to the initiator logic.





Gating

• Suppose there are $n_T = 3$ (confirmed) tracks in the hypothesis summarizing the past. Once we get the measurements $Y_k = \{y_k^1, \ldots, y_k^4\}$, using the gate criteria we can prepare the following matrix to facilitate hypothesis generation.



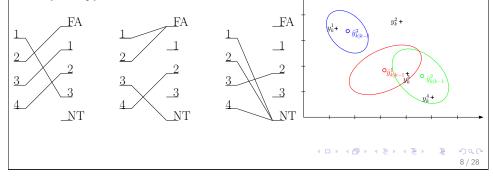
Association Hypotheses

We can define an association hypothesis θ_k formally as a mapping

$$\theta_k(\cdot): \{1, 2, \dots, m_k\} \rightarrow \{\mathsf{FA}, 1, 2, \dots, n_T, \mathsf{NT}\}$$

- where m_k is the number of measurements in Y_k i.e., $Y_k = \{y_k^1, \ldots, y_k^{m_k}\}$
- n_T is the number of targets formed in the past.

Example Hypotheses with $m_k = 4$, $n_T = 3$



Probability of a Hypothesis

Suppose we are at time k at an intermediate stage of tracking. We have $j=1,\ldots,n_T$ targets established previously and have just received $Y_k=\{y_k^1,\ldots,y_k^{m_k}\}$

Suppose $\theta_k(\cdot)$ is an arbitrary hypothesis about the origin of Y_k .

- Number of false alarms m_k^{FA} in S, the surveillance region is distributed as $P_{FA}(m_k^{FA})$;
- False alarm spatial density is $p_{FA}(y)$
- Number of new targets in S, the surveillance region is distributed as $P_{NT}(m_k^{NT})$;
- New target spatial density is $p_{NT}(y)$;
- Detection probability of the *j*th target: P_D^j ;
- Gate probability of the *j*th target: P_G^j ;
- Predicted measurement density of *j*th target: $p_{k|k-1}^{j}(y)$.

Fundamental Theorem of TT

Theorem: Suppose θ_k is an association hypothesis about the current measurement set Y_k . Then the posterior probability of θ_k is given as

$$P(\theta_k|Y_{0:k}) \propto \beta_{FA}^{m_k^{FA}} \beta_{NT}^{m_k^{NT}} \left[\prod_{j \in \mathcal{J}_D} P_D^j p_{k|k-1}^j \left(y_k^{\theta_k^{-1}(j)} \right) \right] \left[\prod_{j \in \mathcal{J}_{ND}} (1 - P_D^j P_G^j) \right]$$

where

- \mathcal{J}_D is the set of indices of detected targets, i.e., indices of targets which were assigned a measurement by θ_k .
- \mathcal{J}_{ND} is the set of indices of non-detected targets i.e., indices of target that were not assigned a measurement by θ_k .
- $\theta_k^{-1}(j)$ is the index of the measurements that is assigned to target when $j\in \mathcal{J}_D.$

Standard Settings

•
$$P_{FA}(m_k^{FA}) = \frac{(\beta_{FA}V_S)^{m_k^{FA}}\exp(\beta_{FA}V_S)}{m_k^{FA}!}$$

• $p_{FA}(y) = 1/V_S$ when $y \in V_S$.
• $P_{NT}(m_k^{NT}) = \frac{(\beta_{NT}V_S)^{m_k^{NT}}\exp(\beta_{NT}V_S)}{m_k^{NT}!}$
• $p_{NT}(y) = 1/V_S$ when $y \in V_S$.

Fundamental Theorem of TT

Since there is a single hypothesis for the past, the term

$$\prod_{j=1}^{n_T} (1 - P_D^j P_G^j) = \prod_{j \in \mathcal{J}_D} (1 - P_D^j P_G^j) \prod_{j \in \mathcal{J}_{ND}} (1 - P_D^j P_G^j)$$

is constant for all hypotheses. Then, we have

$$P(\theta_k|Y_{0:k}) \propto \beta_{FA}^{m_k^{FA}} \beta_{NT}^{m_k^{NT}} \prod_{j \in \mathcal{J}_D} \frac{P_D^j p_{k|k-1}^j \left(y_k^{\theta_k^{-1}(j)} \right)}{(1 - P_D^j P_G^j)}$$

Taking the logarithm, we have

$$\log P(\theta_k|Y_{0:k}) = m_k^{FA} \log \beta_{FA} + m_k^{NT} \log \beta_{NT} + \sum_{j \in \mathcal{J}_D} \log \frac{P_D^j p_{k|k-1}^j \left(y_k^{o_k} \right)}{(1 - P_D^j P_G^j)}$$

 $\left(\begin{array}{c} a^{-1}(i) \end{array} \right)$

Fundamental Theorem of TT

$ \begin{array}{c} \log \beta_{FA} & \times \\ \times & \log \beta_F \\ \times & \times \\ \times & \times \end{array} $	• Findin	$\times \\ \times \\ \times \\ \log \beta_{FA}$	$\overset{\log \beta_{NT}}{\times} \\ \times \\ \times \\ \times$	$\times \\ \log \beta_{NT} \\ \times \\ \times \\ \times$	$\times \\ \times \\ \log \beta_{NT} \\ \times$	$\times \\ \times \\ \times \\ \log \beta_{NT}$
		$\times \\ \times \\ \log \beta_{FA}$	× × ×	$\overset{\log \beta_{NT}}{\times} \\ \times$	$\times \\ \log \beta_{NT} \\ \times$	\times \times $\log \beta_{NT}$
		$\underset{\log \beta_{FA}}{\times}$	× ×	× ×	$\overset{\log\beta_{NT}}{\times}$	\times $\log \beta_{NT}$
		$\log \beta_{FA}$	×	×	\times	$\log \beta_{NT}$
$rac{\left(y_k^i ight)}{\left(y_G^j ight)}.$ led	the conj_{i_1} \neq j_{i_1}	j_{i_2} for	ndices $1 \le i_1$	$ \begin{cases} j_1, j_2, \\ \neq i_2 \le \end{cases} $	$j_3, j_4\}$ 4 sucl	, h that
I	ed	ed $j_{i_1} \neq j_{i_1}$	ed $j_{i_1} \neq j_{i_2}$ for the sum Σ^4	ed $j_{i_1} \neq j_{i_2} \text{ for } 1 \leq i_1$ the sum $\sum_{i_1}^4 f_{i_1}$	ed $j_{i_1} \neq j_{i_2}$ for $1 \leq i_1 \neq i_2 \leq j_1 \leq j_2 \leq j_1 \leq j_2 \leq j_2 \leq j_1 \leq j_2 \leq j_2$	ed $j_{i_1} \neq j_{i_2}$ for $1 \leq i_1 \neq i_2 \leq 4$ such the sum $\sum_{i_1}^4 A_{i_1}$ is maximized

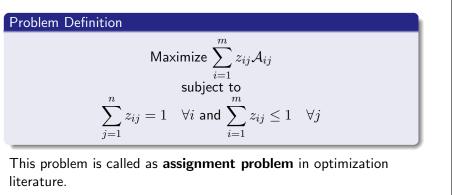
Assignment Problem

- Considered first in economics.
- Possible equivalents are assigning personnel to jobs or assigning delivery trucks to locations.
- Earlier methods used linear programming techniques, like Hungarian method which is computationally costly.
- Less computationally expensive methods appeared later when different applications were found.
 - Munkres algorithm
 - JVC algorithm (by Jonker and Volgenant)
 - Auction algorithm (by Bertsekas): Explained thoroughly in the book.

Assignment Problem

We can make a formal definition of the problem as follows

- We are given the matrix $\mathcal{A} \in \mathbb{R}^{m \times n}$ with $n \ge m$.
- Define the auxiliary matrix $Z = [z_{ij}]$ where $z_{ij} \in \{0, 1\}$.

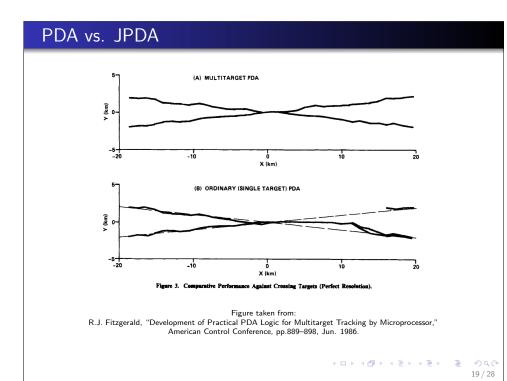


Glo	bal	Nea	rest	Neigh	ibor (GNN) Alg	orithr	n		
\mathcal{A}	T_1	T_2	T_3	FA_1	FA_2	FA_3	FA_4	NT_1	NT_2	NT_3	NT_4
y_k^1	×	×	ℓ_{13}	$\log \beta_{FA}$	×	×	×	$\log\beta_{NT}$	×	×	×
$\mathcal{Y}_{k2k3k4k}^{1}$	×	×	×	×	$\log \beta_{FA}$	Х	Х	×	$\log\beta_{NT}$	×	×
	ℓ_{31}	ℓ_{32}	×	×	×	$\log\beta_{FA}$	Х	\times	×	$\log\beta_{NT}$	×
y_k^3	~31										

- Choose the best (largest probability) association hypothesis.
- The measurements associated to targets in the best association hypothesis are processed by target KFs.
- The measurements associated to FA and NT are handled by the initiator logic.

GNN Algorithm

• T					(EX). ces be		Poissor	with o	density	β_{EX} =	$= \beta_{FA}$	$+\beta_{NT}.$
\mathcal{A}	T_1	T_2	T_3	8	FA_1	FA_2	FA_3	FA_4	NT_1	NT_2	NT_3	NT_4
y_k^1	×	×	ℓ_{13}	3]	$\log \beta_{FA}$	Х	Х	Х	$\log\beta_{NT}$	Х	Х	×
\mathcal{J}_{k}^{1} \mathcal{J}_{k}^{2} \mathcal{J}_{k}^{3}	×	\times	×		×	$\log \beta_{FA}$	\times	×	\times	$\log \beta_{NT}$	\times	\times
\mathcal{Y}_k^3	ℓ_{31}	ℓ_{32}	×		×	×	$\log\beta_{FA}$	×	\times	×	$\log\beta_{NT}$	\times
J_k^4	×	ℓ_{42}	X		×	×	×	$\log\beta_{FA}$	×	×	×	$\log\beta_{NT}$
			$\mathcal{A} \mid$	T_1	T_2	T_3	EX_1	EX_2	EX_3	EX_4		
		_	y_k^1	×	×	ℓ_{13}	$\log \beta_{EX}$	×	Х	×	_	
			$egin{array}{c} y_k^1 & & \ y_k^2 & & \ y_k^3 & & \ y_k^4 & & \ y_k^4 & & \ \end{array}$	\times	×	×	×	$\log \beta_{EX}$	\times	×		
			y_k^3	ℓ_{31}	ℓ_{32}	×	\times	×	$\log \beta_{EX}$	×		
			y_k^4	\times	ℓ_{42}	×	\times	×	\times	$\log \beta_{EX}$		
												E の



Global Nearest Neighbor (GNN) Algorithm

GNN

- Time k = 0: Send all measurements to initiation logic.
- Time k > 0: Suppose we have m_k measurements and n_T targets
 - Form the assignment matrix $\mathcal{A} \in \mathbb{R}^{m_k imes (n_T + m_k)}$
 - auction(A)
 - Process the targets with their associated measurements.
 - Send the measurements associated to external sources (EX) to initiation logic.
 - Process the initiators (tentative tracks with EX associated measurements).
 - Add any confirmed tentative track to the confirmed track list.

18 / 28

Joint Probabilistic Data Association (JPDA) Filter

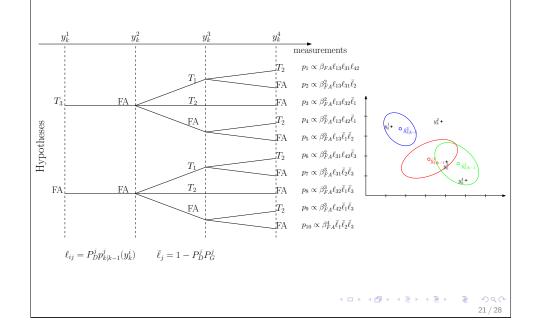
- Soft decision equivalent of GNN in the way that PDA is a soft version of NN.
- All past is again summarized with a single hypothesis (n_T confirmed targets n_I tentative targets).
- The number of targets is assumed fixed in the association, hence no NT associations in the possible hypotheses.
- For each previously established target, we need to calculate

$$P(T_j \leftrightarrow y_k^i)$$
 and $P(T_j \leftrightarrow \phi)$ (1)

for y_k^i that are in the gate of the target. The update is then made with PDA update formulas by using these probabilities instead.

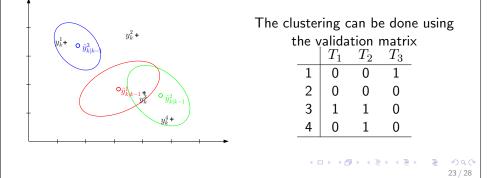
• A separate track initiation logic must run along with JPDAF to detect and initiate new tracks.

JPDAF

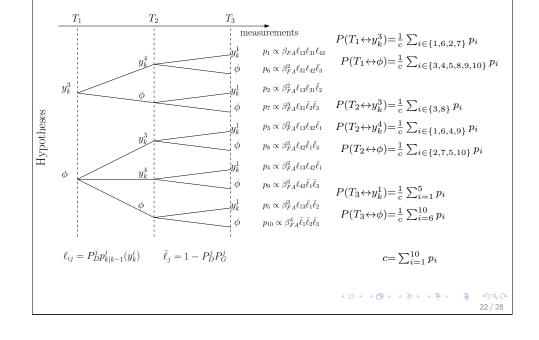


JPDAF

- Probability calculations show that the calculations can be done separately for the clusters of targets that does not share gated measurements.
- In other words our previous scenario can be grouped into two clusters $T_1\&T_2$, T_3 and probability calculations can be done separately for the corresponding hypothesis trees.



JPDAF



T_{1} y_{k}^{3} ϕ $\ell_{ij} = P_{D}^{i} p_{k k-1}^{j}$	$y_k^3 p_3 \propto \ y_k^4 p_4 \propto$	$\begin{aligned} &\beta_{FA}\ell_{31}\bar{\ell}_2\\ &\beta_{FA}\ell_{32}\bar{\ell}_1\\ &\beta_{FA}\ell_{42}\bar{\ell}_1\\ &\beta_{FA}^2\ell_{12}\bar{\ell}_2 \end{aligned}$	$P(T_1 \leftrightarrow \phi) = \frac{1}{c_1}(p_3 + p_4 + p_5)$
--	---	---	--

JPDAF

JPDAF

- Time k = 0: Send all measurements to initiation logic.
- Time k > 0: Suppose we have m_k measurements and n_T targets
 - Form the validation matrix.
 - Group the targets into clusters in which targets share gated measurements.
 - For each cluster, calculate PDA probabilities for each target in the cluster by using a hypothesis tree.
 - Update targets with the weighted equivalent measurements as PDA.
 - Send the unprocessed measurements and possibly gated extra measurements to initiation logic.
 - Process the initiators.
 - Add any confirmed tentative track to the confirmed track list.

<□ → <部 → < 注 → < 注 → 注 の Q (?) 25 / 28

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○○

27 / 28

References

- R. J. Fitzgerald, "Development of Practical PDA Logic for Multitarget Tracking by Microprocessor," American Control Conference, pp.889–898, Jun. 1986.
- H. A. P. Blom, and E. A. Bloem, "Probabilistic data association avoiding track coalescence," *IEEE Transactions on Automatic Control*, vol.45, no.2, pp.247–259, Feb. 2000.
- I. J. Cox and S. L. Hingorani, "An efficient implementation of Reid's multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking" *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol.18, no.2, pp.138–150, Feb. 1996.
- R. Danchick and G. E. Newnam, "Reformulating Reid's MHT method with generalised Murty K-best ranked linear assignment algorithm," *IEE Proceedings* – *Radar, Sonar and Navigation*, vol.153, no.1, pp. 13–22, 16 Feb. 2006.

Track Coalescence Problem of JPDAF

