EE793 Target Tracking: Lecture 0 Course Information

Umut Orguner umut@metu.edu.tr room: EZ-12 tel: 4425

Department of Electrical & Electronics Engineering Middle East Technical University Ankara, Turkey

Course Info

• Has widespread military and civilian applications:

- Defense surveillance (radar)
- Air traffic surveillance (radar)
- Video surveillance
- Robotics (video, laser)
- This problem has been studied for quite a long time.
- Estimation algorithms known as Kalman filters are used as the main solutions.
- Still a very active and expanding research area.

Course Info

This is an advanced graduate course given for the first time in METU-EEED.

Target tracking

- Target tracking is basically to use the state estimation tools in realistic environments.
- State estimation algorithms are developed theoretically under strict assumptions, in a real environment those assumptions are commonly violated.
- Some real environment aspects to consider are
 - Missing detections
 - Association uncertainty
 - Model mismatch (maneuvers)
- A combination of control theory and signal processing

2 / 20

Abstract textbook problem

Problem Definition

Consider the system

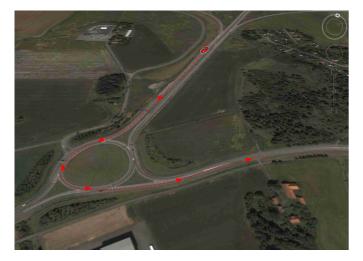
$$\begin{aligned} x_{k+1} &= f(x_k) + w_k \\ y_k &= h(x_k) + v_k \end{aligned}$$

where $x_0 \sim p(x_0)$. Aim: Find

$$\hat{x}_{k|k} = \mathbb{E}\{x_k|y_{0:k}\}$$
$$P_{k|k} = \mathbb{Cov}\{x_k|y_{0:k}\}$$

・ロト・日本・ モート・モー シックの

1/20


Visualization: Target tracking

Incorporates all significant aspects of estimation problems that appear in other applications.

Maneuvers $x_{k+1} = \mathbf{f}(x_k) + w_k$

Systems have a variety of modes

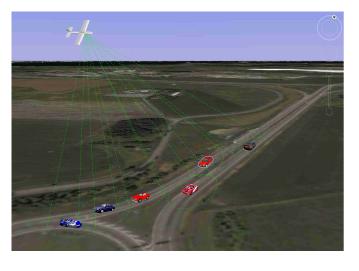
Back to abstract textbook problem

Problems with the Problem Definition Consider the system $x_{k+1} = f(x_k) + w_k \quad (maneuver)$ $y_k = \mathbf{h}(x_k) + v_k \quad (multiobjects)$ where $x_0 \sim p(x_0)$.(*initialization*) Aim: Find $\hat{x}_{k|k} = \operatorname{E}\{x_k|y_{0:k}\}$ $P_{k|k} = Cov\{x_k|y_{0:k}\}$ (multisensor) 6 / 20

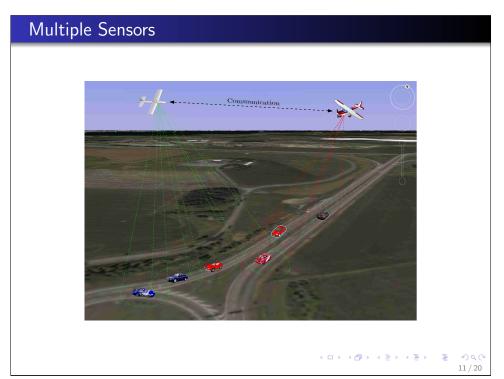
Maneuvers $x_{k+1} = f(x_k) + w_k$: Abstraction

Multiple model system description

$$x_{k+1} = f_{\boldsymbol{r_k}}(x_k) + w_k$$


where $r_k \in \{1, 2..., R\}$ is the mode variable which determines the target model by selecting among $\{f_1(\cdot), f_2(\cdot), \dots, f_R(\cdot)\}$.

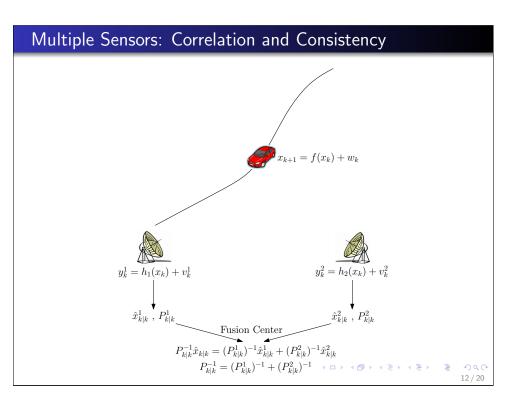
- Early approaches make decision+tracking (< 1990).
- State of the art: Use all models at the same time (> 1990)

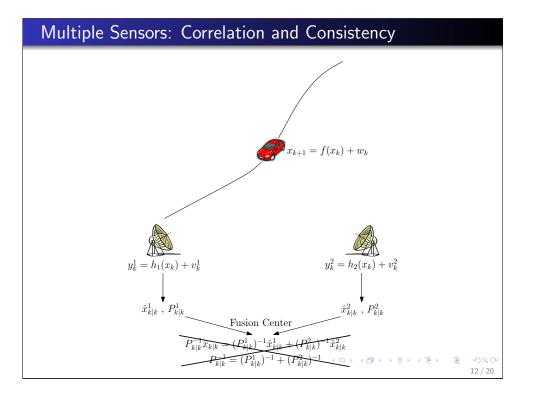

5/20

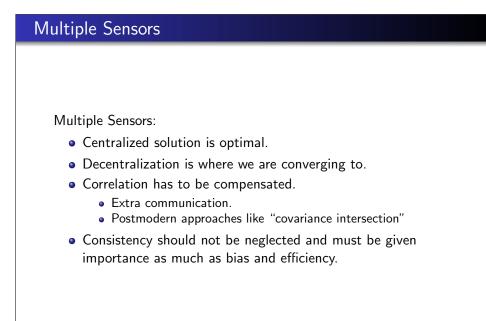
Multiple objects $y_k = h(x_k) + v_k$

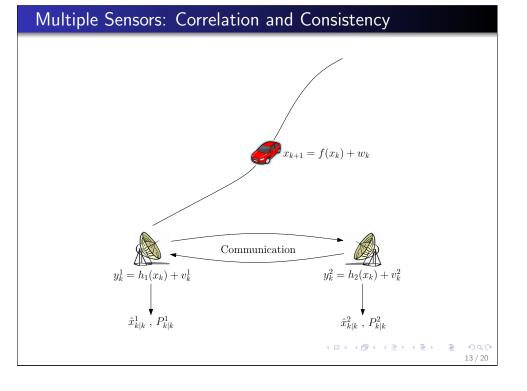
Data origin uncertainty

< □ > < ⑦ > < ≧ > < ≧ > E の < ⊙ 9/20


Multiple objects $y_k = h(x_k) + v_k$ cont'd


• Define $x_k \triangleq \begin{bmatrix} x_k^1, x_k^2, \dots, x_k^N \end{bmatrix}^T$


• Define
$$y_k \triangleq \left[y_k^{\sigma(1)}, y_k^{\sigma(2)}, \dots, y_k^{\sigma(N)}\right]^T$$


- Data Association + Single object estimation
- Computation: $N! \times$ Single object estimation!
- There are also false alarms and missed detections
- State of the art $(2000 \rightarrow)$:
 - Try to bypass data association
 - Use new modeling methodologies: Random sets, PMHT

\sim	
Course	nto.
COULSE	
Course	

Tentative Lecture Plan

Nr.	Subject
1	Course Info & Introduction to State Estimation
2	TT concepts and main issues
3	Single TT issues: Track life and association
4	Maneuvering TT Part I. Classical Approaches
5	Maneuvering TT Part II. Multiple model filtering, IMM
6	Multiple TT Part I. Single hypothesis tracking: GNN
7	Multiple TT Part II. Single hypothesis tracking: JPDA
8	Multiple TT Part III. Multiple hypothesis tracking MHT
9	Multiple sensor issues and architectures
10	Track association and fusion
11	Out of sequence measurements
12	Extended target tracking
13	An overview of advanced target tracking methods

Course Info: Literature

The only book that covers (almost) all of it is

Book:

S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems, Artech House, Norwood MA, 1999.

- A good reference in the long term if you are dealing with TT.
- Related section numbers to the lectures are given in the course web page (lectures). http://www.eee.metu.edu.tr/~umut/ee793/
- When a more detailed coverage or derivations are necessary, they will be provided in the class.

Course Info: Who can take this course?

- Knowledge about Probability and Stochastic Processes is required
 - to fully understand the concepts/derivations covered in the class
 - to succeed in the final exam
- A lot of time is required to complete the computer exercises.
 - A reasonable estimate for this time is $\hat{T} \geq 15$ working days spread over the semester.
 - The ones that have very limited time and unable to spend this much time on the course are highly recommended NOT to take the course.
- A good knowledge of how to program in Matlab is definitely necessary.

Course Info: Student responsibilities

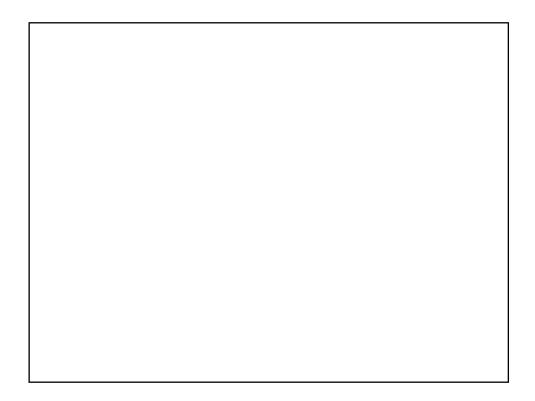
- Get an overview on the subject before the class by reading the related sections in the book (see webpage of lectures).
- Do not indulge in the details in the book while reading, just try to get an overview.
- Complete the exercises (50%) and submit their codes and reports.
- Midterm (practical 25%) and Final (theoretical 25%)

Tentative Plan for Exercises:

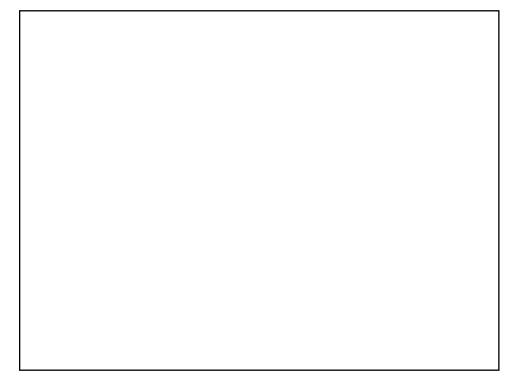
Nr.	Subject	
1	State Estimation	
2	Track handling in clutter and missed detections (Midterm)	
3	Maneuvering TT with IMM	1
4	Multiple TT Part I: GNN & JPDA	1
5	Multiple TT Part II: MHT	1
6	Multiple sensors and track fusion]
	〈ロ〉〈四〉〈之〉〈王〉 王	・

Course Info: Content Disclaimer

Target tracking is a vast field and no single course can cover all of its aspects. Below are some limitations on the content of this course.


- We mainly consider radar sensors to be of interest. The issues related to sensors like video or laser are mostly not covered.
- We are mostly constrained to point targets.
- Even with the radar sensors, issues like
 - Bias
 - Registration
 - Attribute (Target-Type) Estimation

are not covered.


16 / 20

QUESTIONS!

