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We consider the following jump Markov linear system (JMLS).
x =A(ry)Tp—1 + B(ry)wy, (1)
yr =C(r)z + D(ry)vg (2)

where

e 1, € R™ is the base state;

o 7, €{1,2,...,N,} is the mode state;

e y. € R™ is the measurement;

e wj € R™ is the process noise distributed with wy ~ N (wg;0, Q);

e v € R™ is the measurement noise distributed with vy ~ N (vg; 0, R);

e The properly sized matrices A(-), B(:), C(-) and D(-) are known functions of the mode
state.

The time behavior of the mode state r; € {1,2,...,N,} is modeled as a homogeneous
(time invariant) Markov chain with transition probability matrix (TPM) II = [m;; = P(ry =
jlrk—1 = 4)]. The problem is to estimate or approximate the posterior distribution p(zx|yo.x) in
a computationally tractable way.

We have seen in the class that the optimal p(xg|yo.x) is a mixture of Gaussians with an
exponentially growing number of components. Hence approximations are necessary. The so-
called interacting multiple model (IMM) filter [1] makes the approximation

N,
p(@rlyor) = Y N (2r; By Ship) (3)
i—1
where
i = P(r = ilyox) (4)

are the posterior mode probabilities. When such an approximation is given, one can calculate
the overall posterior mean &y, and covariance X, using the standard Gaussian mixture mean
and covariance formulas as

Ny
Tk ZZ%%% (5)
Y = Z:U'k [ kik t xk|k - xklk)(xk\k — i) (6)

This estimate and covariance can be given to the user as the output. The mode conditional means
{:%}CI k}fV; |» covariances {Zzl k}fV:” | and mode probabilities {z4}", must be calculated recursively
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from their previous values {i‘iil‘ o1’ 227” b1’ ,uzfl}fv:* 1- For deriving such a recursion, we write
the posterior density as follows.
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We know from the previous step that
p(@r-1lyo:k—1,7k—1 = J) = N(Tp—1; %71%,1, Sk 1kt (13)

Substituting this into (12) would clearly yield a Gaussian mixture with N2 components for
p(zk|yo.k). Therefore we make the following approximation

P(Tr—1|Yok—1,7Tk = 1) Zuk 1k—1P(@-1Yok—1,Tk—1 = J) (14)
—Z“k et N (-1 By jpm1 Zh—jk—1) (15)
%N(xk—ﬁ xk—1|k—17 Egi—uk—ﬁ (16)

’\OZ . O'L . .
where the merged mean Tp 1 k-1 and covariance Zk_” _1 are obtained by moment matching as

Ny

~0i _ Ji ~J

Tp—1lk—1 —Zﬂk_nk—lxk—uk—l? (17)
Jj=1
Ny

0i _ ji ~0i ~j _ A0i T

Xk-1lk-1 _Z'uk:—l\k—l [Ek 1k— |+ (@ -1~ Trape—1) @y — Tplapo) ] (18)
Jj=1

In order to separate the merging in (17) and (18) from the merging in output calculation (i.e., in
(5) and (6)), the merging in (17) and (18) is called “mixing” in the literature [1]. The estimate



xg k=1 and covariance X% are called the mixed estimate and covariance accordingly. Now

k—1]k—1
substituting the approximation (16) into (12), we get

yk TkyTk =1 . 0 .
p(@k|yo:r) Z 1 [z, ) /P(l’k|$k—1, re = DN (@138 11 S 1)k
P(Yklyo:k—1,7K = 1)

(19)
Noticing that
p(exlar—1,m = i) = N(zx; A(D)z—1, B)QB™ (i) (20)
the integral in (19) represents a prediction update with ith model. Hence, we see that
p(yklzr, i = i) i i
p(Tk|yo:k) 14 N (@5 Ty 15 D 21
‘ 0 Z k yk‘yOkz 1aTk—2) ( klk—1> “k|k 1) ( )
where
$k|k 1 *A(Z)xk 1\k 1 (22)
Ehk—1 =A@)Z 1)k— L AT(0) + B(i)QB™ (i) (23)
Again noticing that
p(Yrlzr, i = i) = N(yx; C(i)ax, D()) RD™ (3)), (24)
the multiplication in (21) represents a measurement update with the ith model. Hence
N,
p(zk|yor) = Z N (@ j?ﬂk’ E;dk) (25)

=1
where
Bk =1 + KWk — hpp_1) (26)
Shik =Skpo1 — KLSLKG" (27)
?jfcvc—l :C(i)i;ﬂk—l (28)
S =C())Shy1C" () + DERD™ (i) (29)
K =S 1 CT ()(S)) ™ (30)

We have obtained the recursions for the estimates and covariances. In order to complete the re-
cursion, all we need to do is to give recursions for the probabilities {u} } 7, in terms of {4, 1}

and we have to find an expression for “k—1| Ee1-

: . . i N,
The following gives a recursion for {u; };";

pi, £P(r, = ilyox) (31)
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=N (yrb} 1 -Sk)
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Hence, we have

~n . N;,- .
Mi _ N(yka y;ﬂk_la S]ZC) ijl ﬂ-jiui:—l (35)
k= M- - N, —.
Zézl N(yka y£|k_17 Sf;) ijl Fjgﬂi_l

We can calculate the mixing probabilities ,u,?i” p_1 a8

Mf_l‘k_l SP(rp-1 = jlre = i, yo:r—1) (36)
ocP(ry, = i|rr—1 = J,Yok—1) P(rr—1 = jlyo:r—1) (37)
Mo
=P(ry = ilre_1 = j) 4, (38)
o
=iy, (39)
Hence, we have
ji Wjiﬂi 1
:“J?fukq R (40)
(1 Teikg g

Now we can give a verbal description of one step of the IMM filter as follows.

Algorithm 1 Single Step of IMM filter: Suppose we have the previous sufficient statis-
tics {xk k- 1’Ek ke 1,,uk 1}] 1- Then, a single step of the IMM algorithm to obtain current

sufficient statistics {:vk|k, E}c‘k,uk}izl is given as follows.
e Mixing:

— Calculate the mizing probabilities {uf_l‘k_l}f\;?”zl as

J
. i
i _ Jt k-1
Mk 1k—1 = <N, . (41)
1 Ty
B . . ~0i N, : 0i Ny
Calculate the mized estimates {xk—1|k—1}i:1 and covariances {Zk—1|k—1}i:1 as
Ny
~0i _ Ji ~J
Tk—1lk-1 _Z/‘k—uk—ﬂk_uk_p (42)
jfl
- _ 206 ~J ~0i T
i 1|1<: 1= Zﬂk 1)k— 1[ k— 1|k—1+($k—l|k—l wk—1|k’—1)($k—l|kz 1~ Bl apee)
(43)

e Mode Matched Prediction Update: For ith model, i = 1,..., N,, calculate the pre-
dicted estzmate l’k'k , and covariance Ek|k | from the mized estimate i.gi—llk—l and co-

variance Y0 as

kl\kl

xk\k 1 *A(Wfk 1|k 1 (44)
k-1 =AD" 1)k~ L AT(@) + B() QBT (4). (45)

e Mode Matched Measurement Update: For ith model, i =1,..., N,,



— Calculate the updated estimate j;;:'k and covariance E?ﬂk from the predicted estimate

~i : i
Thlk—1 and covariance Ek|k—1 as

Bhk =hpo1 + KL Wk — 1) (46)
Sik =Sheo1 — KLSLEL (47)
@é\k—l :C(i)'ﬁc\k—lﬁ (48)
St =C (i)}, _1C" (i) + D(i)RD™ (i), (49)
K}, =%}, CT()(Sp) 7" (50)

— Calculate the updated mode probability u}; as

~g 5 N’l‘ N
N(?Jk% y};‘k_p S;lﬁ) Zj:l ﬂjiui_l
NT' e NT‘ 3 .
Zé:l N (s y£|k,17 Sﬁ) ijl ﬂ—jé'u;f—l

i, = (51)

e Output Estimate Calculation: Calculate the overall estimate Ty, and covariance as

N,
Brgle = D ki (52)
=1
N/r‘ . . . .
Shik =D 1 [Zm + @y — Trgr) (B, — i"k|k)T} : (53)
=1
|

Remark 1 The output calculation step is done only for output purposes and therefore does not
affect the sufficient statistics. |

A block diagram of a single step of the IMM filter is given in Figure 1 below.
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Figure 1: Block diagram of a single step of the IMM algortihm for N-models.



