
EE793 Target Tracking: Computer Exercise 1

Due: 12.03.2013, 23:59

1 Bayesian State Estimation

This first computer exercise aims that you implement three basic state estimation algorithms
and observe the related quantities that was illustrated in class.

a) Download the true target data from the web address
http://www.eee.metu.edu.tr/~umut/ee793/files/trueTarget.mat.
When you load this mat file in Matlab, it is going to load into your workspace a 3×151 size
matrix named trueTarget (k = 0, . . . , 150). The first, second and third rows of this matrix
contain the time stamps (i.e., the time values to which the data belongs), true x-positions
xk and true y-positions yk of the target you will consider in the following parts. Plot the
x− y positions and observe the true target trajectory.

b) We now define our state vector as xk =
[
xk yk vxk vyk

]T
where the variables vxk and

vyk represent the velocity of the target along the x and y axes respectively. We assume
that the target state evolves according to a nearly constant velocity model which is given
below.

xk =

[
I2 TI2
02 I2

]
︸ ︷︷ ︸

,A

xk−1 +

[
T 2

2 I2
TI2

]
︸ ︷︷ ︸

,B

wk (1)

where I2 and 02 are identity and zero matrices of size 2× 2; T = 1s is the sampling period
and

wk ∼ N (wk; 0, I2). (2)

Suppose that x0 ∼ N (x0; x̄0, P0) where

x̄0 =
[

1000m 1000m 0m/s 0m/s
]T
, (3)

P0 = diag
[

1002m2 1002m2 102m2/s2 102m2/s2
]
. (4)

Consider that we obtain noisy measurements x̃k, ỹk of xk, yk as follows.

zk ,

[
x̃k
ỹk

]
=

[
xk
yk

]
+

[
vxk
vyk

]
(5)

where zk is our measurement vector and[
vxk
vyk

]
∼ N

([
vxk
vyk

]
;

[
0
0

]
,

[
σ2x 0
0 σ2y

])
(6)

where σx = σy = 100m.

1

http://www.eee.metu.edu.tr/~umut/ee793/files/trueTarget.mat
http://www.eee.metu.edu.tr/~umut/ee793/files/trueTarget.mat

Now generate the noisy measurements of the target and observe the noisy measurements
plotted on top of the true target positions you obtained in part (a).
Hint: In order to generate Gaussian random variables with specified mean µ and variance
σ2 in Matlab, you can use the command randn(rowsize,columnsize) which generates
a matrix (with specified number of rows and columns) of zero-mean and unity variance
random variables as follows:

>> v = σ*randn(rowsize,columnsize) + µ; (7)

c) Now, implement a Kalman filter using the models and the initial state parameters described
in part (b). The Kalman filter is supposed to take the noisy measurements {zk}150k=1 as
input in order to obtain the estimates {x̂k|k}150k=1, predictions {x̂k|k−1}150k=1 and the measure-
ment predictions {ẑk|k−1}150k=1. Plot the estimated target trajectory on top of the plot you
obtained in part (b). Observe also the position estimation (x̂k|k) and prediction (x̂k|k−1)
errors obtained for the Kalman filter i.e., plot

ek|k ,
√

(xk − x̂k|k)2 + (yk − ŷk|k)2 (8)

ek|k−1 ,
√

(xk − x̂k|k−1)2 + (yk − ŷk|k−1)2 (9)

with respect to the discrete time index k. Which one of the errors ek|k or ek|k−1 is larger
most of the times, why? Calculate the RMS estimation and prediction errors given below.

RMSk|k ,

√√√√ 1

150

150∑
k=1

e2k|k (10)

RMSk|k−1 ,

√√√√ 1

150

150∑
k=1

e2k|k−1 (11)

Hint: When there is a gain matrix B multiplying the process noise as in (1), the prediction
update for the covariance in the Kalman filter becomes Pk|k−1 = APk−1|k−1A

T +BQBT.

d) In this part, in order to gain more intuition about how a Kalman filter works, you are
required to run your Kalman filter on exactly the same measurements that you obtained
in part (b) but with different measurement noise and process noise covariances. In other
words, you will use the Kalman filter under model mismatch.

• First fix the process noise covariance you use in Kalman filter in part (c) and then
increase and decrease the measurement noise covariance you use in the Kalman filter
100 times (Note that the measurement noise covariance you use while generating your
measurement noise should remain the same as in part (b) and only the covariance R
you use in the filter should change.) Plot the estimated target trajectory, the true
target trajectory and the measurements on the same plot for each case.

• This time fix the measurement noise covariance you use in Kalman filter in part (c)
and then increase and decrease the process noise covariance you use in the Kalman
filter 100 times. Plot the estimated target trajectory, the true target trajectory and
the measurements on the same plot for each case.

Comment on your results.

2

e) Now assume that you have a sensor at the origin and you measure (instead of x and y

positions) the range i.e., rk ,
√

x2k + y2k and bearing θk , arctan (yk/xk) of the target

with zero-mean Gaussian measurement noises with standard deviations σr = 100m and
σθ = 5degrees for the range and the bearing respectively. In other words,

zk ,

[
r̃k
θ̃k

]
=

[
rk
θk

]
+

[
vrk
vθk

]
(12)

where zk is our measurement vector and[
vrk
vθk

]
∼ N

([
vrk
vθk

]
;

[
0
0

]
,

[
σ2r 0
0 σ2θ

])
. (13)

Generate your measurement data and observe the measured noisy range and bearing values
of the target.

f) Now implement EKF and UKF which both use the same noisy measurements obtained in
part (e) in order to estimate the state xk. Note that since only the measurement equation
is nonlinear, only measurement update requires a treatment different than Kalman filter
(You can take π(0) = 1/9 for UKF.). Observe the position estimation and prediction errors
for the filters that you have implemented on the same plot. Calculate the RMS estimation
and prediction errors and comment on the performance of the filters.

3

	Bayesian State Estimation

