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Preface

These notes describe the basic ideas of the theory of representations of finite
groups. Most of the essential structural results of the theory follow imme-
diately from the structure theory of semisimple algebras, and so this topic
occupies a long chapter.

Material not covered here include the theory of induced representations.
The arithmetic properties of group characters are also not dealt with in detail.

It is not the purpose of these notes to give comprehensive accounts of
all aspects of the topics covered. The objective is to see the theory of rep-
resentations of finite groups as a coherent narrative, building some general
structural theory and applying the ideas thus developed to the case of the
symmetric group Sn. It is also not the objective to present a very efficient
and fast route through the theory. For many of the ideas we pause the exam-
ine the same set of results from several different points of view. For example,
in Chapter 10, we develop the the theory of decomposition of a module with
respect to the commutant ring in three distinct ways.

I wish to thank Thierry Lévy for many useful comments. The present
version also includes some of several changes suggested by referees. These
notes have been begun at a time when I have been receiving support from
the US National Science Foundation grant DMS-0601141. Any opinions,
findings and conclusions or recomendations expressed in this material are
those of the author and do not necessarily reflect the views of the National
Science Foundation.
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Chapter 1

Basic Concepts and
Constructions

A group is an abstract mathematical object, a set with elements and an
operation satisfying certain axioms. A representation of a group realizes
the elements of the group concretely as geometric symmetries. The same
group will generally have many different such representations. Thus, even a
group which arises naturally and is defined as a set of symmetries may have
representations as geometric symmetries at different levels.

In quantum physics the group of rotations in three-dimensional space
gives rise to symmetries of a complex Hilbert space whose rays represent
states of a physical system; the same abstract group appears once, classically,
in the avatar of rotations in space and then expresses itself at the level of a
more ‘implicate order’ in the quantum theory as unitary transformations on
Hilbert spaces.

In this chapter we (i) introduce the basic concepts, defining group repre-
sentations, irreducibility and characters, (ii) carry out certain useful standard
constructions with representations, and (iii) present a result or two of interest
which follow very quickly from the basic notions.

All through this chapter G denotes a group, and F a field. We will work
with vector spaces, denoted V , W , E, F , over the field F.

9
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1.1 Representations of Groups

A representation ρ of a group G on a vector space V associates to each
element x ∈ G an invertible linear map

ρ(x) : V → V : v 7→ ρ(x)v

such that

ρ(xy) = ρ(x)ρ(y) for all x, y ∈ G.

ρ(e) = I,
(1.1)

where I : V → V is the identity map. Here, our vector space V is over a
field F. We denote by

EndF(V )

the ring of endomorphisms of a vector space V . A representation ρ of G on
V is thus a map

ρ : G→ EndF(V )

satisfying (1.1) and such that ρ(x) is invertible for every x ∈ G.
A complex representation is a representation on a vector space over the

field C of complex numbers.
The homomorphism condition (1.1) implies

ρ(e) = I, ρ(x−1) = ρ(x)−1 for all x ∈ G.

We will often say ‘the representation E’ instead of ‘the representation ρ
on the vector space E’.

If V is finite-dimensional with basis b1, ..., bn, then the matrix
ρ(g)11 ρ(g)12 . . . ρ(g)1n

ρ(g)21 ρ(g)22 . . . ρ(g)2n
...

...
...

...
ρ(g)n1 ρ(g)n2 . . . ρ(g)nn

 (1.2)

of ρ(g) ∈ EndF(V ) is often useful to explicitly express the representation or
to work with it. Indeed, with some basis in mind, we will often not make a
distinction between ρ(x) and its matrix form.
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Sometimes the term ‘matrix element’ is used to mean a function on G
which arises from a reprsentation ρ as

G→ F : x 7→ 〈f |ρ(g)|v〉,

where |v〉 is a vector in the representation space of ρ, and 〈f | is in the dual
space.

Consider the group Sn of permutations of [n] = {1, ..., n}, acting on the
vector space Fn by permutation of coordinates:

Sn × Fn → Fn :
(
σ, (v1, ..., vn)

)
7→ R(σ)(v1, ..., vn)

def
= (vσ−1(1), ..., vσ−1(n)).

Another way to understand this is by specifying

R(σ)ej = eσ(j) for all j ∈ [n].

Here ej is the j-th vector in the standard basis of Fn; it has 1 in the j-th
entry and 0 in all other entries. Thus, for example, for S4 acting on F4, the
matrix for R

(
(134)

)
relative to the standard basis of F4, is

R
(
(134)

)
=


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


1.2 Representations and their Morphisms

If ρ and ρ′ are representations of G on vector spaces E and E ′ over F, and

A : E → E ′

is a linear map such that

ρ′(x) ◦ A = A ◦ ρ(x) for all x ∈ G (1.3)

then we can consider A to be a morphism from the representation ρ to the
representation ρ′. For instance, the identity map I : E → E is a morphism
from ρ to itself.

The composition of two morphisms is clearly also a morphism, and the
inverse of an invertible morphism is again a morphism.



12 Ambar N. Sengupta

Two representations ρ and ρ′ of G are isomorphic or equivalent if there is
an invertible intertwining operator between them, i.e. a linear isomorphism

A : E → E ′

for which
Aρ(x) = ρ′(x)A for all x ∈ G. (1.4)

1.3 Sums, Products, and Tensor Products

If ρ1 and ρ2 are representations of G on E1 and E2, respectively, then we
have the direct sum

ρ1 ⊕ ρ2

representation on E ⊕ E ′:

(ρ1 ⊕ ρ2)(x) = (ρ1(x), ρ2(x)) ∈ EndF(E1 ⊕ E2)

If bases are chosen in E1 and E2 then the matrix for (ρ ⊕ ρ′)(x) is block
diagonal, with the blocks ρ1(x) and ρ2(x) on the diagonal:

x 7→
[
ρ1(x) 0

0 ρ2(x)

]
This notion clearly generalizes to a direct sum (or product) of any family

of representations.
We also have the tensor product ρ1 ⊗ ρ2 of the representations, acting on

E1 ⊗ E2, specified through

(ρ1 ⊗ ρ2)(x) = ρ1(x)⊗ ρ2(x) (1.5)

1.4 Change of Field

There is a more subtle operation on vector spaces, which involves changing
the ground field over which the vector space is defined. Suppose then that
V is a vector space over a field F, and let F′ ⊃ F be a field which contains F
as a sub-field. Then V specifies an F′-vector-space

VF′ = F′ ⊗F V (1.6)
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Here we have, on the surface, a tensor product of two F-vector-spaces: F′,
treated as a vector space over the subfield F, and V itself. But VF′ acquires
the structure of a vector space over F′ by the multiplication rule

c(a⊗ v) = (ca)⊗ v,

for all c, a ∈ F′ and v ∈ V . More concretely, if V 6= 0 has a basis B then the
same set B is a basis for the F′-vector-space VF′ , simply by using coefficients
from the field F′.

Now suppose ρ is a representation of a group G on a vector space over
V . Then there is, naturally induced, the reprsentation ρF′ on VF′ as follows:

ρF′(x)(a⊗ v) = a⊗ ρ(x)v (1.7)

for all a ∈ F′ and v ∈ V .
To get a concrete feel for ρF′ let us look at the matrix form. Choose a

basis b1, ..., bn for V , assumed finite-dimensional and non-zero. Then, almost
by definition, this is also a basis for VF′ , only with scalars to be drawn from
F′. Thus, the matrix for ρF′(x) is exactly the same as the matrix for ρ(x),
for every x ∈ G. The difference is only that we should think of this matrix
now as a matrix over F′ whose entries happen to lie in the subfield F.

This raises a fundamental and deep question. Given a representation ρ,
is it possible to find a basis of the vector space such that all entries of all the
matrices ρ(x) lie in some proper subfield of the field we started with? A re-
markable result of Brauer shows that all irreducible complex representations
of a finite group can be realized over a field obtained by adjoining suitable
roots of unity to the field Q of rationals. Thus, in effect, under very simple
requirements, the abstract group essentially specifies a certain number field
and geometries over this field in which it is represented as symmetries.

1.5 Invariant Subspaces and Quotients

A subspace W ⊂ V is said to be invariant under ρ if

ρ(x)W ⊂ W for all x ∈ G.

In this case,

x 7→ ρ(x)|W ∈ EndF(W )
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is a representation of G on W . It is a subrepresentation of ρ. Put another
way, the inclusion map

W → V : w 7→ w

is a morphism from ρ|W to ρ.
If W is invariant, then there is induced, in the natural way, a representa-

tion on the quotient space

V/W

given by

ρV/W (x) : a+W 7→ ρ(x)a+W, for all a ∈ V (1.8)

The following result is readily checked:

Proposition 1.5.1 Suppose V is a representation of a group G, and W ⊂ V
a subrepresentation. Then the map

W ⊕ (V/W )→ V : (w, v +W ) 7→ w + v

gives an isomorphism of representations.

1.6 Dual Representations

For a vector space V over a field F, let V ′ be the dual space of all linear
mappings of V into F:

V ′ = HomF(V,F). (1.9)

If ρ is a representation of a group G on V there is induced a representation
ρ′ on V ′ specified as follows:

ρ′(x)f = f ◦ ρ(x)−1 for all x ∈ G. (1.10)

When working with a vector space and its dual, there is a visually ap-
pealing notation due to Dirac. A vector in V is denoted

|v〉

and is called a ‘ket’, while an element of the dual V ′ is denoted

〈f |
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and called a ‘bra.’ The evaluation of the bra on the ket is then, conveniently,
the ‘bra-ket’

〈f |v〉 ∈ F.
Suppose now that V is finite-dimensional, with a basis |b1〉, ..., |bn〉. Then

there is a corresponding dual basis of V ′ made up of the elements 〈b1|, ..., 〈bn| ∈
V ′ which are specified by

〈bj|bk〉 = δjk =

{
1 if j = k;

0 if j 6= k.
(1.11)

If T : V → V is a linear map its matrix relative to the basis |b1〉, ..., |bn〉 has
entries

Tjk = 〈bj|T |bk〉
Note that, by convention and definition, Tjk is the j-th component of the
vector obtained by applying T to the k-th basis vector.

There is one small spoiler: the notation 〈bj| wrongly suggests that it is
determined solely by the vector |bj〉, when in fact one needs the full basis
|b1〉, ..., |bn〉 to give meaning to it.

Let us work out the matrix form of the dual representation ρ′ relative to
bases. If |b1〉, ..., |bn〉 is a basis of the representation space of ρ then

ρ′(x)jk = 〈ρ′(x)bk|bj〉
= 〈bk|ρ(x)−1|bj〉

= ρ(x−1)kj

Thus, the matrix for ρ′(x) is the transpose of the matrix for ρ(x−1):

ρ′(x) = ρ(x−1)tr, (1.12)

as matrices.

1.7 Irreducible Representations

A representation ρ on V is irreducible if V 6= 0 and the only invariant sub-
spaces of V are 0 and V .

Thus, an irreducible representation is a kind of ‘atom’ (or, even better,
‘elementary particle’) among representations; there is no smaller representa-
tion than an irreducible one, other than the zero representation.
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A nice, non-trivial, example of an irreducible representation of the sym-
metric group Sn can be extracted by looking first at the ‘natural’ action of Sn
on the basis vectors of an n-dimensional space. We have the representation
of Sn on the n-dimensional vector space Fn given by

Sn × Fn → Fn : (σ, vx) 7→ R(σ)v = v ◦ σ−1, (1.13)

where v ∈ Fn is to be thought of as a map v : {1, ..., n} → F : j 7→ vj. Thus,
if e1, ..., en is the standard basis of Fn, we have

R(σ)ej = eσ(j)

The subspaces

E0 = {(v1, ..., vn) ∈ Fn : v1 + · · ·+ vn = 0} (1.14)

and
D = {(v, v, ..., v) : v ∈ F} (1.15)

are clearly invariant subspaces. If n1F 6= 0 in F then the subspaces D and E0

have in common only the zero vector, and provide a decomposition of Fn into
a direct sum of proper, invariant subspaces. Moreover, the representations
obtained by restricting R to the subspaces D and E0 are irreducible. (See
Exercise 3.)

As we will see later, for a finite group G, for which |G| 6= 0 in the field
F, every representation is a direct sum of irreducible representations. One
of the major tasks of representation theory is to determine the irreducible
representations of a group.

A one-dimensional representation is automatically irreducible. Our defi-
nitions all the trivial representation on the trivial space V = {0} as a repre-
sentation as well, and so we have to try to be careful everywhere to exclude
this silly case as necessary.

1.8 Character of a Representation

The character χρ of a representation of a group G on a finite-dimensional
vector space E is the function on G given by

χρ(x)
def
= tr ρ(x) for all x ∈ G. (1.16)
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For instance, for the simplest representation, where ρ(x) is the identity I on
E for all x ∈ G, the character is the constant function with value dimFE.

It may seem odd to single out the trace, and not, say, the determinant
or some other such natural function of ρ(x). But observe that if we know
the trace of ρ(x), with x running over all the elements of G, then we know
the traces of ρ(x2), ρ(x3), etc., which means that we know the traces of all
powers of ρ(x), for every x ∈ G. This is clearly a lot of information about a
matrix. Indeed, as we shall see later, ρ(x) can, under some mild conditions, be
written as a diagonal matrix with respect to some basis (generally dependent
on x), and then knowing traces of all powers of ρ(x) would mean that we
would know this diagonal matrix completely, up to permutation of the basis
vectors. Thus, knowledge of the character of ρ pretty much specifies each
ρ(x) up to basis change. In other words, under some simple assumptions,
if ρ1 and ρ2 are finite-dimensional non-zero representations with the same
character then for each x, there are bases in which the matrix of ρ1(x) is the
same as the matrix of ρ2(x). This leaves open the possibility, however, that
the special choice of bases might depend on x. Remarkably, this is not so!
As we shall see much later, in Theorem 6.2.1, the character determines the
representation up to equivalence. For now we will be satisfied with a simple
observation:

Proposition 1.8.1 If ρ1 and ρ2 are equivalent representations on finite-
dimensional vector spaces then

tr ρ1(x) = tr ρ2(x) for all x ∈ G.

Proof Let e1, ..., ed be a basis for the representation space E for ρ1 (if this
space is {0} then the result is obviously and trivially true, and so we discard
this case). Then in the representation space F for ρ2, the vectors fi = Aei
form a basis, where A is any isomorphism E → F . We take in the present
case, the isomorphism A which intertwines ρ1 and ρ2:

ρ2(x) = Aρ1(x)A−1 for all x ∈ G.

Then, for any x ∈ G, the matrix for ρ2(x) relative to the basis Ae1, ..., Aed
is the same as the matrix of ρ1(x) relative to the basis e1, ..., ed. Hence, the

trace of ρ2(x) equals the trace of ρ1(x). QED
The following observations are readily checked by using bases:
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Proposition 1.8.2 If ρ1 and ρ2 are equivalent representations on finite-
dimensional vector spaces then

χρ1⊕ρ2 = χρ1 + χρ2
χρ1⊗ρ2 = χρ1χρ2

(1.17)

Characters provide an extremely useful tool to understand representa-
tions. As we shall see in examples, it is often possible to work out the char-
acter of a representation without first having to work out the representation
itself explictly.

Let us work out the character of the representation of the permutation
group Sn on Fn, and on the subspaces D and E0 given in (1.14) and (1.15),
discussed earlier in section 1.7. Recall that for σ ∈ Sn, and any standard-
basis vector ej of Fn,

ρn(σ)ej
def
= eσ(j)

Hence,
χρn(σ) = number of fixed points of σ. (1.18)

Now consider the restriction ρD of this action to the ‘diagonal’ subspace
D = F(e1 + · · · + en). Clearly, ρD(σ) is the identity map for every σ ∈ Sn,
and so

χρD(σ) = 1 for all σ ∈ Sn
Then we can readily deduce the character of the representation ρE0 = ρ(·)|E0:

χρ0(σ) = χρ(σ)− χD(σ) = |{j : σ(j) = j}| − 1 (1.19)

Next, for n ∈ {2, 3, ...}, consider the 1-dimensional representation ε of Sn
specified by requiring that a permutation σ act through multiplication by the
signature ε(σ) of the permutation σ; recall that ε(σ) is specified by requiring
that

n∏
1≤j<k≤n

(Xσ(j) −Xσ(k)) = ε(σ)
n∏

1≤j<k≤n

(Xj −Xk) (1.20)

for any formal variables X1, ..., Xn. Then we have the tensor product repre-
sentation ε⊗ ρE0 on the (n− 1)-dimensional space E0.

Characters could get confusing when working with representations over
different fields at the same time. Fortunately, at least in the simplest natural
situation there is no confusion:
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Proposition 1.8.3 If ρ is a representation of a finite group G on a finite-
dimensional vector space V over a field F, and ρF′ is the corresponding rep-
resentation on VF′, where F′ is a field containing F as a subfield, then

χρF′ = χρ.

Proof As seen in section 1.4, ρF′ has exactly the same matrix as ρ, relative
to suitable bases. Hence the characters are the same. QED

One last remark about characters. If ρ1 is a one-dimensional represen-
tation of a group G then, for each x ∈ G, the operator ρ1(x) is simply
multiplication by a scalar, which we will always denote again by ρ1(x). Then
the character of ρ1 is ρ1 itself! In the converse direction, if a character χ of G
is a homomorphism of G into the multiplicative group of invertible elements
in the field then χ provides a one-dimensional representation.

1.9 Unitarity

Let G be a finite group and ρ a representation of G on a finite-dimensional
vector space V over a field F. Remarkably, under some mild conditions on
the field F, every element ρ(x) can be expressed as a diagonal matrix relative
to some basis (depending on x) in V , with the diagonal entries being roots
of unity in F:

ρ(x) =


ζ1(x) 0 0 ... 0

0 ζ2(x) 0 . . . 0
...

...
... · · · ...

0 0 0 · · · ζd(x)


where each ζj(x), when raised to the |G|-th power, gives 1.

An endomorphism in a vector space which has such a matrix relative to
some basis is said to be unitary. (This terminology is generally used when
the field is C.) A representation ρ is said to be unitary if ρ(x) is unitary for
all x in the group. Thus, what we shall show is that, under some minimal
conditions on the field, all representations of finite groups are unitary.

An m-th root of unity in a field F is an element ζ ∈ F for which ζm = 1.
We will often work with fields which contain all the m-th roots of unity, where
m is some fixed positive integer. This means that there exist η1, ..., ηm ∈ F
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such that

Xm − 1 =
m∏
j=1

(X − ηm).

Proposition 1.9.1 Suppose F is a field which contains m distinct m-th roots
of unity, for some m ∈ {1, 2, 3, ..}. If V 6= 0 is a vector space over F and
T : V → V is a linear map for which Tm = I, then there is a basis of V
relative to which the matrix for T is diagonal and each diagonal entry is an
m-th root of unity.

Proof. Let η1, ..., ηm be the distinct elements of F for which the polynomial
Xm − 1 factors as

Xm − 1 = (X − η1)...(X − ηm)

Then
(T − η1I)...(T − ηmI) = Tm − I = 0

and so there is a smallest d ∈ {1, ...,m} such that

(T − ηj1I)...(T − ηjdI) = 0 (1.21)

for distinct j1, ..., jd ∈ {1, ...,m}. Let

Va = ker(T − ηja)

Clearly, each Va is mapped into itself by T . In fact, linear algebra tells us
that V is the direct sum of the subspaces Va, each of which is non-zero:

V =
d⊕
a=1

Va.

But, on Va, the mapping T is simply multiplication by the scalar ηja . Thus,
choosing a basis in each Va, and putting them together into a basis for V , we
see that T has the desired property with respect to this basis. QED

As consequence we have:

Proposition 1.9.2 Suppose G is a group in which xm = e for all x ∈ G,
for some positive integer m. Let F be a field which contains m distinct m-th
roots of unity. Then, for any representation ρ of G on a vector space Vρ 6= 0
over F, for each x ∈ G there is a basis of Vρ with respect to which the matrix
of ρ(x) is diagonal and the diagonal entries are each m-th roots of unity in
F. If Vρ is finite-dimensional then χρ(x) is a sum of m-th roots of unity, for
every x ∈ G.
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There is a way to bootstrap our way up to a stronger form of the preceding
result. Suppose that it is not the field F, but rather an extension, a larger
field F′ ⊃ F which contains m distinct m-th roots of unity; for instance, F
might be the reals R and F′ is the field C. The representation space V can
be dressed up to VF′ = F′ ⊗F V , which is a vector space over F′, and then a
linear map T : V → V yields the linear map

TF′ : VF′ → VF′ : 1⊗ v 7→ 1⊗ Tv.

If B is a basis of V then {1⊗w : w ∈ B} is a basis of VF′ , and the matrix of
TF′ relative to this basis is the same as the matrix of T relative to B, and so

trTF′ = trT.

Consequently, if in Proposition 1.9.2 we require simply that there be an
extension field of F in which there are m distinct m-th roots of unity and ρ
is a finite-dimensional representation over F then the values of the character
χρ are again sums of m-th roots of unity (which, themselves, need not lie in
F).

There is another aspect of unitarity which is very useful. Suppose the
field F has an automorphism, call it conjugation,

F→ F : z 7→ z

which takes each root of unity to its inverse; let us call self-conjugate elements
real. For instance, if F is a subfield of C then the usual complex conjugation
provides such an automorphism. Then, under the hypotheses of Proposition
1.9.2, for each x ∈ G and representation ρ of G on a finite-dimensional vector
space Vρ 6= 0, there is a basis of Vρ relative to which the matrix of ρ(x) is
diagonal with entries along the diagonal being roots of unity; hence, ρ(x−1),
relative to the same basis, has diagonal matrix, with the diagonal entries
being the conjugates of those for ρ(x). Hence

χρ(x
−1) = χρ(x). (1.22)

In particular, if an element of G is conjugate to its inverse, then the value of
any character on such an element is real. In the symmetric group Sn, every
element is conjugate to its own inverse, and so:

the characters of all complex representations of Sn are real-valued.
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This is an amazing, specific result about a familiar concrete group which
falls out immediately from some of the simplest general observations. Later,
with greater effort, it will become clear that the characters of Sn in fact have
integer values!

Exercises

1. Give an example of a representation ρ of a finite group G on a finite-
dimensional vector space V over a field of characteristic 0, such that
there is an element g ∈ G for which ρ(g) is not diagonal in any basis
of V .

2. Prove Proposition 1.8.2.

3. Let n ≥ 2 be a positive integer, F a field in which n1F 6= 0, and consider
the representation R of Sn on Fn given by

R(σ)(v1, ..., vn) = (vσ−1(1), ..., vσ−1(n)) for all (v1, ..., vn) ∈ Fn and σ ∈ Sn.

Let

D = {(v, ..., v) : v ∈ F} ⊂ Fn, and E0 = {(v1, ..., vn) : v1 + · · ·+ vn = 0}.

Consider a non-zero vector w = (w1, ..., wn) ∈ E0.

(i) Show that w /∈ D.

(ii) Show that each vector e1−ej lies in the span of {R(σ)w : σ ∈ Sn},
where e1, ..., en is the standard basis of Fn, with ek having 1 in the
k-th entry and 0 elsewhere.

(iii) Show that the restriction R0 of R to the subspace E0 is an irre-
ducible representation of Sn.

Now examine what happens if n1F = 0.

4. Determine all one-dimensional representations of Sn over any field.

5. Let n ∈ {3, 4, ...}, and n1F 6= 0 in a field F. Denote by R0 be the
restriction of the representation of Sn on Fn to the subspace E0 = {x ∈
Fn : x1 + · · ·+ xn = 0}. Let ε be the one-dimensional representation of
Sn on F given by the signature, i.e., σ ∈ Sn acts by multiplication by



Representations of Algebras and Finite Groups 23

the signature ε(σ) ∈ {+1,−1}. Show that R1 = R0⊗ε is an irreducible
representation of Sn. Then work out the sum∑

σ∈Sn

χR0(σ)χR1(σ
−1).

6. Consider S3, which is generated by the cyclic permutation c = (123)
and the transposition τ = (12), which satisfy the relations

c3 = ι, τ 2 = ι, τcτ−1 = c2.

Let F be a field. The group S3 acts on F3 by permutation of coordinates,
and preserves the subspace E0 = {(x1, x2, x3) : x1 + x2 + x3 = 0};
the restriction of the action to E0 is a 2-dimensional representation
R0 of S3. Work out matrices for R0(τ) and ρ(c) relative to the basis
u1 = (1, 0,−1) and u2 = (0, 1,−1) of E0. Work out the values of the
character χR0 on all the six elements of S3 and then work out∑

σ∈S3

χ0(σ)χ0(σ−1).

7. Consider A4, the group of even permutations on {1, 2, 3, 4}, acting
through permutation of coordinates of F4, where F is a field. This action
preserves the subspace E0 = {(x1, x2, x3, x4) ∈ F4 : x1 +x2 +x3 +x4 =
0}; Work out the values of the character χ of R0 on all elements of A4.

8. Let V 6= 0 be a vector space over Z2, and T : V → V a linear map for
which T 2 = I. Show that T has an eigenvector, i.e. there is nonzero
v ∈ V for which Tv = v. Produce an example of such V and T for
which T is not diagonal relative to any basis of V .

9. Suppose ρ is an irreducible representation of a finite group G on a
vector space V over a field F. If F′ ⊃ F is an extension field of F, is the
representation ρF′ on VF′ irreducible?

10. Let ρ1 and ρ2 be representations of a group G on vector spaces V1

and V2, respectively, over a common field. For x ∈ G, let ρ12(x) :
Hom(V1, V2)→ Hom(V1, V2) be given by

ρ12(x)T = ρ2(x)Tρ1(x)−1.
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Show that ρ12 is a representation of G. Taking V1 and V2 to be finite-
dimensional, show that this representation is equivalent to the tensor
product representation ρ′1 ⊗ ρ2 on V ′1 ⊗ V2.

11. Let ρ be a representation of a group G on a vector space V . Show
that the subspace V ⊗̂2 consisting of symmetric tensors in V ⊗ V is
invariant under the tensor product representation ρ⊗ρ. Assuming that
the ground field is C, work out the character of the representation ρs
which is given by the restriction of ρ⊗ρ to V ⊗̂2. (Hint: Use unitarity.)



Chapter 2

Basic Examples

We will work through some examples in this chapter, looking at represen-
tations, and their characters, of some familiar finite groups. For ease of
reading, and to maintain sanity, we will work with the field C of complex
numbers. Of course, any algebraically closed field of characteristic zero could
be substituted for C.

Recall that the character χρ of a finite-dimensional representation ρ of a
group G is the function on the group specified by

χρ(x) = Tr ρ(x). (2.1)

Clearly, χ(x) remains unchanged if x is replaced by a conjugate yxy−1. Thus,
characters are constant on conjugacy classes.

Let CG be the set of all conjugacy classes in G. If C is a conjugacy class
then we denote by C−1 the conjugacy class consisting of the inverses of the
elements in C. We have seen before (1.22) that

χρ(x
−1) = χρ(x) for all x ∈ G. (2.2)

It will be useful, while going through examples, to keep at hand some
facts about characters that we will prove later in Chapter 6. The most
fundamental facts are: (i) a finite group G has only finitely many inequivalent
irreducible representations and these are all finite-dimensional; and (ii) two
finite-dimensional representations are equivalent if and only if they have the
same character. Moreover, a representation is irreducible if and only if its
character χρ satisfies ∑

C∈CG

|C||χρ(C)|2 = 1 (2.3)

25
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The number of conjugacy classes in G exactly matches the number of in-
equivalent irreducible complex representations. Let RG be a maximal set of
inequivalent irreducible complex representations of G.

In going through the examples in this chapter we will sometimes pause
to use or verify some standard properties of characters, which we prove in
generality later. The properties are summarized in the Schur orthogonality
relations: ∑

y∈G

χρ(xy)χρ′(y
−1) = |G|χρ(x)δρρ′

∑
ρ∈RG

χρ(C
′)χρ(C

−1) =
|G|
|C|

δC′C

(2.4)

where δab is 1 if a = b and is 0 otherwise, the relations above being valid
for all ρ, ρ′ ∈ RG, all conjugacy classes C,C ′ ∈ C, and all elements x ∈ G.
Specializing this to specific assumptions (such as ρ = ρ′, or x = e), we have:∑

ρ∈RG

(dim ρ)2 = |G|∑
ρ∈RG

dim ρχρ(y) = 0 if y 6= e∑
y∈G

χρ(y)χρ′(y
−1) = |G|δρ,ρ′ dim ρ for ρ, ρ′ ∈ RG

(2.5)

2.1 Cyclic Groups

Let us work out all irreducible representations of a cyclic group Cn containing
n elements. Being cyclic, Cn contains a generator c, which is an element such
that Cn consists exactly of the power c, c2, ..., cn, where cn is the identity e
in the group.

Let ρ be a representation of Cn on a complex vector space V 6= 0. By
Proposition 1.9.2, there is a basis of V relative to which the matrix of ρ(c)
is diagonal, with each entry being an n-th root of unity:

matrix of ρ(c) =


η1 0 0 . . . 0
0 η2 0 . . . 0
...

...
... . . .

...
0 0 0 . . . ηd


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Figure 2.1: A picture for the cyclic group C8

Since c generates the full group Cn, the matrix for ρ is diagonal on all the
elements cj in Cn. Thus, V is a direct sum of one-dimensional subspaces,
each of which provides a representation of Cn. Of course, any one-dimensional
representation is automatically irreducible.

Let us summarize our observations:

Theorem 2.1.1 Let Cn be a cyclic group of order n ∈ {1, 2, ...}. Every com-
plex representation of Cn is a direct sum of irreducible representations. Each
irreducible representation of Cn is one-dimensional, specified by the require-
ment that a generator element c ∈ G act through multiplication by an n-th
root of unity. Each n-th root of unity provides an irreducible representation
of Cn, and these representations are mutually inequivalent.

Thus, there are exactly n inequivalent irreducible representations of Cn.

Everything we have done here goes through for representations of Cn over
a field which contains n distinct roots of unity.

Let us now take a look at what happens when the field does not contain
the requisite roots of unity. Consider, for instance, the representations of
C3 over the field R of real numbers. There are three geometrically apparent
representations:

(i) the one-dimensional ρ1 representation associating the identity operator
(multiplication by 1) to every element of C3;

(ii) the two-dimensional representation ρ+
2 on R2 in which c is associated

with rotation by 1200;
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(iii) the two-dimensional representation ρ−2 on R2 in which c is associated
with rotation by −1200.

These are clearly all irreducible. Moreover, any irreducible representation of
C3 on R2 is clearly either (ii) or (iii).

Now consider a general real vector space V on which C3 has a represen-
tation ρ. Choose a basis B in V , and let VC be the complex vector space
with B as basis (put another way, VC is C⊗R V viewed as a complex vector
space). Then ρ gives, naturally, a representation of C3 on VC. Then VC is a
direct sum of complex one-dimensional subspaces, each invariant under the
action of C3. Since a complex one-dimensional vector space is a real two-
dimensional space, and we have already determined all two-dimensional real
representations of C3, we are done with classifying all real representations of
C3. Too fast, you say? Proceed to Exercise 7!

2.2 Dihedral Groups

The dihedral group Dn, for n any positive integer, is a group of 2n elements
generated by two elements c and r, where c has order n, r has order 2, and
conjugation by r turns c into c−1:

cn = e, r2 = e, rcr−1 = c−1 (2.6)

Geometrically, think of c as rotation in the plane by the angle 2π/n and r as
reflection across a fixed line through the origin. The elements of Dn are

c, cr, c2, c2r, ..., cn, cnr,

where, of course, cn is the identity element e.
The geometric view of Dn immediately yields a real two-dimensional rep-

resentation: let c act on R2 through rotation by angle 2π/n and r through
reflection across the x-axis. Complexifying this gives a two-dimensional com-
plex representation ρ1 on C2:

ρ1(c) =

[
η 0
0 η−1

]
, ρ1(r) =

[
0 1
1 0

]
where η is a primitive n-th root of unity, say

η = e2πi/n.
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Figure 2.2: A picture for the dihedral group D4

More generally, we have the representation ρm specified by requiring

ρm(c) =

[
ηm 0
0 η−m

]
, ρm(r) =

[
0 1
1 0

]
form ∈ Z; of course, to avoid repetition, we may focus onm ∈ {1, 2, ..., n−1}.
The values of ρm on all elements of Dn are given by:

ρm(cj) =

[
ηmj 0
0 η−mj

]
, ρm(cjr) =

[
0 ηmj

η−mj 0

]
Having written this, we note that this representation makes sense over any
field F containing n-th roots of unity. However, we stick to the ground field
C, or at least Q with any primitive n-th root of unity adjoined.

Clearly, ρm repeats itself whem m changes by multiples of n. Thus we
need only focus on ρ1, ..., ρn−1.

Is ρm irreducible? Yes if and only if there is a non-zero vector v ∈ F2

fixed by ρm(r) and ρm(c). Being fixed by ρm(r) means that such a vector
must be a multiple of (1, 1) in C2. But C(1, 1) is also invariant under ρm(c)
if and only if ηm is equal to η−m, i.e., if and only if n = 2m.

Thus, ρm, for m ∈ {1, ..., n− 1}, is irreducible if n 6= 2m, and is reducible
if n = 2m.

Are we counting things too many times? Indeed, the representations
ρm are not all inequivalent. Interchanging the two axes, converts ρm into
ρ−m = ρn−m. Thus, we can narrow our focus onto ρm for 1 ≤ m < n/2.

We have now identified n/2 − 1 irreducible two-dimensional representa-
tions if n is even, and (n− 1)/2 irreducible two-dimensional representations
if n is odd.
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The character χm of ρm is obtained by taking the trace of ρm on the
elements of the group Dn:

χm(cj) = ηmj + η−mj, χm(cjr) = 0.

Now consider a one-dimensional representation θ of Dn (over any field).
First, from θ(r)2 = 1, we see that θ(r) = ±1. Applying θ to the relation
that rcr−1 equals c−1 it follows that θ(c) must also be ±1. But then, from
cn = e, it follows that θ(c) can be −1 only if n is even. Thus, we have the
one-dimensional representations specified by:

θ+,±(c) = 1, θ+,±(r) = ±1 if n is even or odd

θ−,±(c) = −1, θ−,±(r) = ±1 if n is even.
(2.7)

This gives us 4 one-dimensional representations if n is even, and 2 if n is odd.
Thus, for n even we have identified a total of 3+n/2 irreducible represen-

tations, and for n odd we have identified (n+3)/2 irreducible representations.
According to results we will prove later, the sum∑

χ

d2
χ

over all distinct complex irreducible characters is the total number of elements
in the group, i.e., in this case the sum should be 2n. Working out the sum
over all the irreducible characters χ we have determined, we obtain:(n

2
− 1
)

22 + 4 = 2n for even n;(
n− 1

2

)
22 + 2 = 2n for odd n.

(2.8)

Thus, our list of irreducible complex representations contains all irreducible
representations, up to equivalence.

Our objective is to work out all characters of Dn. Characters being con-
stant on conjugacy classes, let us first determine the conjugacy classes in
Dn.

Since rcr−1 is c−1, it follows that

r(cjr)r−1 = c−jr = cn−jr.
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This already indicates that the conjugacy class structure is different for n
even and n odd. In fact notice that conjugating cjr by c results in increasing
j by 2:

c(cjr)c−1 = cj+1 rc−1r−1 r = cj+1cr = cj+2r.

If n is even, the conjugacy classes are:

{e}, {c, cn−1}, {c2, cn−2}, ..., {cn/2−1, cn/2+1}, {cn/2},
{r, c2r, ..., cn−2r}, {cr, c3r, ..., cn−1r}

(2.9)

Note that there are 3 + n/2 conjugacy classes, and this exactly matches the
number of inequivalent irreducible representations obtained earlier.

To see how this plays out in practice let us look at D4. Our analysis
shows that there are five conjugacy classes:

{e}, {c, c3}, {c2}, {r, c2r}, {cr, c3r}.

There are four one-dimensional representations θ±,±, and one irreducible two-
dimensional representation ρ1 specified through

ρ1(c) =

[
i 0
0 −i

]
, ρ1(r) =

[
0 1
−1 0

]
In Table 2.1 we list the values of the characters of D4 on the various

conjugacy classes. The latter are displayed in a row (second from top),
each conjugacy class identified by an element which it contains; above each
conjugacy class we have listed the number of elements it contains. Each
row in the main body of the table displays the values of a character on the
conjugacy classes.

The case for odd n proceeds similarly. Take, for instance, n = 3. The
group D3 is generated by elements c and r subject to the relations

c3 = e, r2 = e, rcr−1 = c−1.

The conjugacy classes are:

{e}, {c, c2}, {r, cr, c2r}

The irreducible representations are: θ+,+, θ+,−, ρ1. The character table is
produced in Table 2.2, where the first row displays the number of elements
in the conjugacy classes listed (by choice of an element) in the second row.
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1 2 1 2 2
e c c2 r cr

θ+,+ 1 1 1 1 1

θ+,− 1 1 1 -1 -1

θ−,+ 1 -1 1 1 -1

θ−,− 1 -1 1 -1 1

χ1 2 0 -2 0 0

Table 2.1: Character Table for D4

1 2 3
e c r

θ+,+ 1 1 1

θ+,− 1 1 -1

χ1 2 −1 0

Table 2.2: Character Table for D3

The dimensions of the representations can be read off from the first column
in the main body of the table. Observe that the sum of the squares of the
dimensions of the representations of S3 listed in the table is

11 + 12 + 22 = 6,

which is exactly the number of elements in D3. This verifies the first property
listed earlier in (2.5).

2.3 The symmetric group S4

The symmetric group S3 is isomorphic to the dihedral group D3, and we have
already determined the irreducible representations of D3 over the complex
numbers.

Let us turn now to the symmertic group S4, which is the group of permuta-
tions of {1, 2, 3, 4}. Geometrically, this is the group of rotational symmetries
of a cube.

Two elements of S4 are conjugate if and only if they have the same cycle
structure; thus, for instance, (134) and (213) are conjugate, and these are not
conjugate to (12)(34). The following elements then belong to all the distinct
conjugacy classes:

ι, (12)(34), (123), (1234), (12)(34)
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Number of elements 1 6 8 6 3

Conjugacy class of ι (12) (123) (1234) (12)(34)

Table 2.3: Conjugacy classes in S4

where ι is the identity permutation. The conjugacy classes, each identified
by one element it contains, are listed with the number of elements in each
conjugacy class, in Table 2.3.

There are two one-dimensional representations of S4 we are familiar with:
the trivial one, associating 1 to every element of S4, and the signature rep-
resentation ε whose value is +1 on even permutations and −1 on odd ones.

We also have seen a three-dimensional irreducible representation of S4;
recall the representation R of S4 on C4 given by permutation of coordinates:

(x1, x2, x3, x4) 7→ (xσ−1(1), ..., xσ−1(4))

Equivalently,
R(σ)ej = eσ(j) j ∈ {1, 2, 3, 4}

where e1, ..., e4 are the standard basis vectors of C4. The three-dimensional
subspace

E0 = {(x1, x2, x3, x4) ∈ C4 : x1 + x2 + x3 + x4 = 0}

is mapped into itself by the action of R, and the restriction to E0 gives an
irreducible representation R0 of S4. In fact,

C4 = E0 ⊕ C(1, 1, 1, 1)

decomposes C4 into complementary irreducible representation subspaces, where
the subspace C(1, 1, 1, 1) carries the trivial representation. Examining the ef-
fect of the group elements on the standard basis vectors, we can work out
the character of R. For instance, R((12)) interchanges e1 and e2, and leaves
e3 and e4 fixed, and so its matrix is

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


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Conjugacy class of ι (12) (123) (1234) (12)(34)

χR 4 2 1 0 0

χ0 3 1 0 −1 −1

χ1 3 −1 0 1 −1

Table 2.4: The characters χR and χ0 on conjugacy classes

and the trace is

χR((12)) = 2.

Subtracting off the trivial character, which is 1 on all elements of S4, we
obtain the character χ0 of the representation R0. All this is displayed in the
first three rows of Table 2.4.

We can manufacture another three-dimensional representation R1 by ten-
soring R0 with the signature ε:

R1 = R0 ⊗ ε.

The character χ1 of R1 is then written down by taking products, and is
displayed in the fourth row in Table 2.4.

Since R0 is irreducible and R1 acts by a simple ±1 scaling of R0, it is
clear that R1 is also irreducible. Thus, we now have two one-dimensional
representations and two three-dimensional irreducible representations. The
sum of the squares of the dimensions is

12 + 12 + 32 + 32 = 20.

From the first relation in (2.5) we know that the sum of the squares of the
dimensions of all the inequivalent irreducible representations is |S4| = 24.
Thus, looking at the equation

24 = 12 + 12 + 32 + 32+?2

we see that we are missing a two-dimensional irreducible representation R2.
Leaving the entries for this blank, we have the following character table:
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1 6 8 6 3

ι (12) (123) (1234) (12)(34)
trivial 1 1 1 1 1

ε 1 −1 1 −1 1

χ0 3 1 0 −1 −1

χ1 3 −1 0 1 −1

χ2 2 ? ? ? ?

Table 2.5: Character Table for S4 with missing row

As an illustration of the power of the character method, let us work out
the character χ2 of this ‘missing’ representation R2, without even bothering
to search for the representation itself. Recall from (2.5) the relation∑

ρ

dim ρχρ(σ) = 0, if σ 6= ι,

where the sum runs over a maximal set of inequivalent irreducible complex
representations of S4 and σ is any element of S4. More geometrically, this
means that the vector formed by the first column in the main body of the
table (i.e., the column for the trivial conjugacy class) is orthogonal to the
vectors formed by the columns for the other conjugacy classes. Using this we
can work out the missing entries of the character table. For instance, taking
σ = (12), we have

2χ2((12)) + 3 ∗ (−1)︸︷︷︸
χ1((12))

+3 ∗ 1 + 1 ∗ (−1) + 1 ∗ 1 = 0

which yields
χ2((12)) = 0.

For σ = (123), we have

2χ2((123)) + 3 ∗ 0︸︷︷︸
χ1((123))

+3 ∗ 0 + 1 ∗ 1 + 1 ∗ 1 = 0
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1 6 8 6 3

ι (12) (123) (1234) (12)(34)
trivial 1 1 1 1 1

ε 1 −1 1 −1 1

χ0 3 1 0 −1 −1

χ1 3 −1 0 1 −1

χ2 2 0 −1 0 2

Table 2.6: Character Table for S4

which produces
χ2((123)) = −1.

Filling in the entire last row of the character table in this way produces Table
2.6.

Just to be sure that the indirectly detected character χ2 is irreducible
let us run the check given in (2.3) for irreducible characters: the sum of the
quantities |C||χ2(C)|2 over all the conjugacy classes C should work out to 1.
Indeed, we have∑

C

|C||χ2(C)|2 = 1 ∗ 22 + 6 ∗ 02 + 8 ∗ (−1)2 + 6 ∗ 02 + 3 ∗ 22 = 24 = |S4|,

a pleasant affirmation of the power of the theory and tools promised to be
developed in the chapters ahead.

Exercises

1. Work out the character table of D5.

2. If H is a normal subgroup of a finite group G, and ρ a representation
of the group G/H then let ρG be the representation of G specified by

ρG(x) = ρ(xH) for all x ∈ G.
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Show that ρG is irreducible if and only if ρ is irreducible. Work out the
character of ρG in terms of the character of ρ.

3. Let V4 be the subgroup of S4 consisting of the identity ι along with
the order-2 permutations in the conjugacy class containing (12)(34).
Explicitly, V4 = {ι, (12)(34), (13)(24), (14)(23)}. Being a union of con-
jugacy classes, V4 is invariant under conjugations, i.e., is a normal sub-
group of S4. Now view S3 as a subgroup of S4, consisting of the per-
mutations fixing 4. Thus, V4 ∩ S3 = {ι}. Show that the mapping

S3 → S4/V4 : σ 7→ σV4

is an isomorphism.

4. Obtain an explicit form of a two-dimensional irreducible complex rep-
resentation of S4 for which the character is χ2 as given in Table 2.6.

5. In S3 there is the cyclic group C3 generated by (123), which is a normal
subgroup. The quotient S3/C3 ' S2 is a two-element group. Work out
the one-dimensional representation of S3 which arises from this by the
method of Problem 2 above.

6. The alternating group A4 consists of all even permutations inside S4.
It is generated by the elements

c = (123), x = (12)(34), y = (13)(24), z = (14)(23)

satisfying the relations

cxc−1 = z, cyc−1 = x, cxc−1 = y, c3 = ι, xy = yx = z.

(i) Show that the conjugacy classes are

{ι}, {x, y, z}, {c, cx, cy, cz}, {c2, c2x, cy, cz}.

Note that c and c2 are in different conjugacy classes in A4, even
though in S4 they are conjugate.

(ii) Show that the group A4 generated by all commutators aba−1b−1

is V4 = {ι, x, y, z}.
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1 3 4 4

ι (12)(34) (123) (132)

ψ0 1 1 1 1

ψ1 1 1 ω ω2

ψ2 1 1 ω2 ω

χ1 ? ? ? ?

Table 2.7: Character Table for A4

(iii) Check that there is an isomorphism given by

C3 7→ A4/V4 : c 7→ cV4.

(iv) Obtain 3 one-dimensional representations of A4.

(v) The group A4 ⊂ S4 acts by permutation of coordinates on C4

and preserves the three-dimensional subspace E0 = {(x1, ..., x4) :
x1+· · ·+x4 = 0}. Work out the character χ3 of this representation
of A4.

(vi) Work out the full character table for A4, by filling in the last row
of Table 2.7.

7. Let V be a real vector space and T : V → V a linear mapping with
Tm = I, for some positive integer m. Choose a basis B of V , and let
VC be the complex vector space with basis B. Define the conjugation
map C : VC → VC : v 7→ v to be given by

C(
∑
b∈B

vbb) =
∑
b∈B

vbb

where each vb ∈ C, and on the right we just have the ordinary complex
conjugates vb. Show that x = v + Cv and y = i(v − Cv) are in V for
every v ∈ VC. If v is an eigenvector of T , i.e., Tv = αv for some α ∈ C,
show that T maps the subspace of V spanned by x and y into itself.



Chapter 3

The Group Algebra

All through this chapter G is a finite group, and F a field.
As we will see, representations of G correspond to representations of an

algebra, called the group algebra, formed from F and G. A vast amount of
information about the representations of G will fall out of studying represen-
tations of such algebras.

For us, a ring is always a ring with a unit element 1 6= 0.

3.1 Definition of F[G]

It is extremely useful to introduce the group algebra

F[G].

As a set, this consists of all formal linear combinations

a1x1 + · · ·+ amxm

with any m ∈ {1, 2, ...}, a1, ..., am ∈ F, and x1, ..., xm ∈ G. We add and
multiply these new objects in the only natural way that is sensible. For
example,

(2x1 + 3x2) + (−4x1 + 5x3) = (−2)x1 + 3x2 + 5x3

and

(2x1 − 4x2)(x4 + x3) = 2x1x4 + 2x1x3 − 4x2x4 − 4x2x3.

39
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Officially, F[G] consists of all maps

a : G 7→ F : x 7→ ax

If G is allowed to be infinite, then ax is required to be 0 for all except finitely
many x ∈ G; thus, F[G] is the direct sum copies of the field F, one copy for
each element of G. The function a ∈ F[G] is more conveniently written as

a =
∑
x∈G

axx.

Addition and multiplication, as well as multiplication by elements t ∈ F, are
defined in the obvious way:∑

x∈G

axx+
∑
x∈G

bxx =
∑
x∈G

(ax + bx)x (3.1)

∑
x∈G

axx
∑
x∈G

bxx =
∑
x∈G

(∑
y∈G

ayby−1x

)
x (3.2)

t
∑
x∈G

axx =
∑
x∈G

taxx (3.3)

It is readily checked that F[G] is an algebra over F, i.e. it is a ring and a
F-module, and the multiplication

F[G]× F[G]→ F[G] : (a, b) 7→ ab

is F-bilinear.
Sometimes it is useful to think of G as a subset of F[G], by identifying

x ∈ G with the element 1x ∈ F[G]. The multiplicative unit 1eG in F[G] will
be denoted 1, and in this way F can be viewed as a subset of F[G]:

F→ F[G] : t 7→ teG.

3.2 Representations of G and F[G]

The utility of the algebra F[G] stems from the observation that any repre-
sentation

ρ : G→ EndF(E)
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defines, in a unique way, a representation of F[G] in terms of operators on
E. More specifically, we have, for each element

a =
∑
x

axx ∈ F[G]

an element
ρ(a)

def
=
∑
x

axρ(x) ∈ EndF(E) (3.4)

This induces a left F[G]-module structure on E:(∑
x∈G

axx

)
v =

∑
x∈G

axρ(x)v (3.5)

It is very useful to look at representations in this way.
Put another way, we have an extension of ρ to an algebra-homomorphism

ρ : F[G]→ EndF(E) :
∑
x∈G

axx 7→
∑
x∈G

axρ(x) (3.6)

Thus, a representation of G corresponds to a module over the ring F[G].
A subrepresentation or invariant subspace corresponds to a submodule,

and the notion of direct sum of representations corresponds to direct sums
of modules. A morphism of representations corresponds to a F[G]-linear
map, and an isomorphism of representations is simply an isomorphism of
F[G]-modules.

Conversely, if E is a F[G]-module, then we have a representation of G on
E, by simply restricting multiplication to the elements in F[G] which are in
G.

3.3 The center of F[G]

It is easy to determine the center

Z(F[G])

of the algebra F[G]. An element

a =
∑
x∈G

axx
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belongs to the center if and only if it commutes with every g ∈ G, i.e. if and
only if

gag−1 = a,

i.e. if and only if ∑
x∈G

axgxg
−1 =

∑
x∈G

axx.

This holds if and only if

ag−1xg = ax for every x ∈ G (3.7)

This means that the function a is constant on conjugacy classes in G. Thus,
a is in the center if and only if it can be expressed as a linear combination
of the elements

bC =
∑
x∈C

x, C a (finite) conjugacy class in G. (3.8)

We are primarily interested in finite groups, and then the added qualifier of
finiteness of the conjugacy classes is is not needed.

If C and C ′ are distinct conjugacy classes then bC and bC′ are sums over
disjoint sets of elements of G, and so the collection of all such bC is linearly
independent. Thus, we have a simple but important observation:

Proposition 3.3.1 Suppose G is a finite group. Then the center of F[G] is
a vector space with basis given by the elements bC, with C running over all
conjugacy classes of G. In particular, the dimension of the center of F[G] is
equal to the number of conjugacy classes in G.

3.4 A glimpse of some results

We have seen that representations of G correspond to representations of the
algebra F[G]. A substantial amount of information about representations
of G can be gleaned just by studying the structure of modules over rings,
the ring of interest here being F[G]. Of course, F[G] is not just any ring;
in the cases of interest for us, it has a very special structural property called
semisimplicity, which leads to a great deal of information about modules over
it.
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Decomposing a representation into irreducible components corresponds
to decomposing a F[G]-module into simple submodules (i.e. non-zero sub-
modules which have no proper non-zero submodules). A module which is a
direct sum of simple submodules is a semisimple module.

We will work with a finite group G and a field F in which |G| 6= 0, i.e.
the characteristic of F is not a divisor of the number of elements in G. As we
will see, the key fact is that the ring F[G] itself, viewed as a left module over
itself, is semisimple. Such a ring is called a semisimple ring. For a semisimple
ring A, we will prove the following wonderful facts:

(i) Every module over A is semisimple; applied to F[G] this means that
every representation of G is a direct sum of irreducible representations.

(ii) There are a finite number of simple left ideals L1, ..., Ls in A such
that every simple A-module is isomorphic to exactly one of the Lj;
thus, there are only finitely many isomorphism classes of irreducible
representations of G, and each irreducible representation is isomorphic
to a copy inside F[G]. In particular, every irreducible representation of
G is finite dimensional.

(iii) If Aj is the sum of all left ideals in A isomorphic to Lj (as in (ii))
then Aj is a two-sided ideal. As a ring, A is isomorphic to the product∏s

j=1 Aj. Each Aj can be expressed also as a direct sum of left ideals
isomorphic to Lj. Applied to the algebra F[G], where F is algebraically
closed, the ring Aj is isomorphic, as a F-algebra, to EndF(Lj), and so
has dimension (dimF Lj)

2. Thus, in this case, the dimension of the
F-vector space F[G] is

|G| =
∑
Lj

(
dimF Lj

)2
, (3.9)

where the sum is over all the non-isomorphic irreducible representations
Lj of G.

(iv) The two-sided ideals Aj are of the form

Aj = ujA

where u1, ..., us are idempotents:

u2
j = uj, ujuk = 0 for every j 6= k, (3.10)
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1 = u1 + · · ·+ us, (3.11)

and u1, ..., us form a basis of the vector space Z(A), the center of A. In
applying to the algebra F[G], we note that Proposition 3.3.1 says that
a basis of the center of F[G] is given by all elements of the form

bC =
∑
x∈C

x,

with C running over all conjugacy classes in G. Consequently, the num-
ber of distinct irreducible representations of G is equal to the number
of conjugacy classes in G.

ADD DIVISOR PROPERTY FOR dim(Lj).

3.5 F[G] is semisimple

In this section we will prove a fundamental structural property of the algebra
F[G] which will yield a large trove of results about representations of G. This
property is semisimplicity:

Definition 3.5.1 A module E over a ring is semisimple if for any submodule
F in E there is a complementary submodule F ′, i.e. a submodule F ′ for which
E is the direct sum of F and F ′. A ring is semisimple if it is semisimple as
a left module over itself.

The definition of semisimplicity of a ring here is in terms of viewing itself
as a left module over itself. It will turn out, eventually, that a ring is ‘left
semisimple’ if and only if it is ‘right semisimple’.

Our immediate objective is to prove Maschke’s theorem:

Theorem 3.5.1 Suppose G is a finite group, and F a field of characteristic
not a divisor of |G|, i.e. |G|1F 6= 0. Then every module over the ring F[G]
is semisimple. In particular, F[G] is semisimple.

Proof. Let E be a F[G]-module, and F a F[G]-submodule. We have then the
F-linear inclusion

j : F → E
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and so, since E and F are vector spaces over F, there is a F-linear map

P : E → F

satisfying
Pj = idF . (3.12)

(Choose a basis of F and extend to a basis of E. Then let P be the map
which keeps each of the basis elements of F fixed, but maps all the other
basis elements to zero.)

All we have to do is modify P to make it F[G]-linear. The action of G on
HomF(F,E) given by

(x,A) 7→ xAx−1. (3.13)

keeps the inclusion map j invariant. Consequently,

xPx−1j = idF for all x ∈ G. (3.14)

So we have
P ′j = idF ,

where

P ′ =
1

|G|
∑
x∈G

xPx−1;

here the division makes sense because |G|1F 6= 0 in F. Clearly, P ′ is G-
invariant and hence F[G]-linear. Therefore, E splits as a direct sum of F[G]-
submodules:

E = F ⊕ F ′,

where
F ′ = kerP ′

is also a F[G]-submodule of E.
Thus, every submodule of a F[G]-module has a complementary submod-

ule. In particular, this applies to F[G] itself, and so F[G] is semisimple. QED
The map

F[G]→ F[G] : x 7→ x̂ =
∑
g∈G

x(g)g−1 (3.15)

reverses left and right in the sense that

(̂xy) = ŷx̂
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This makes every right F[G]-module a left F[G]-module by defining the left
module structure through

g · v = vg−1,

and then every sub-right-module is a sub-left-module. Thus, F[G], viewed as
a right module over itself, is also semisimple.

Exercises

1. Let G be a finite group, F a field, and G∗ the set of all non-zero multi-
plicative homomorphisms G→ F. For f ∈ G∗, let

sf =
∑
x∈G

f(x−1)x.

Show that {csf : c ∈ F} is an invariant subspace of F[G].

2. If F is a field of characteristic p > 0, and G a finite group with |G| a
multiple of p, show that F[G] is not semisimple.

3. For g ∈ G, let Tg : F[G]→ F[G] : a 7→ ga. Show that

Tr(Tg) =

{
|G| if g = e;

0 if g 6= e
(3.16)

4. For g, h ∈ G, let T(g,h) : F[G]→ F[G] : a 7→ gah−1. Show that

Tr(T(g,h)) =

{
0 if g and h are not conjugate;
|G|
|C| if g and h belong to the same conjugacy class C.

(3.17)



Chapter 4

Semisimple Modules and Rings:
Structure and Representations

In this chapter we will determine the structure of semisimple modules and
rings. A large number of results on representations of such algebras will
follow easily once the structure theorems have been obtained.

We will be working with modules over a ring A with unit 1 6= 0.

4.1 Schur’s Lemma

Let A be a ring with unit 1 6= 0. Note that A need not be commutative
(indeed, for the purposes of this section and the next, A need not even be
associative).

Definition 4.1.1 A module E over a ring is simple if it is 6= 0 and if its
only submodules are 0 and E.

Suppose
f : E → F

is linear, where E is a simple A-module and F an A-module. The kernel

ker f = f−1(0)

is a submodule of E and hence is either {0} or E itself. If, moreover, F is
also simple then f(E), being a submodule of F , is either {0} or F .

Thus we have the simple, but powerful, Schur’s Lemma:

47
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Proposition 4.1.1 If E and F are simple A-modules then in

HomA(E,F )

every non-zero element is a bijection, i.e. an isomorphism of E onto F .

For a simple A-module E, this implies that

EndA(E)

is a division ring.
We can now specialize to a case of interest, where A is a finite-dimensional

algebra over an algebraically closed field F. We can view F as a subring of
EndA(E):

k ' k1 ⊂ EndA(E),

where 1 is the identity element in EndA(E). The assumption that F is alge-
braically closed implies that F has no proper finite extension, and this leads
to the following consequence:

Proposition 4.1.2 Suppose A is a finite-dimensional algebra over an alge-
braically closed field F. Then for any simple A-module E, which is a finite
dimensional vector space over F,

EndA(E) = F,

upon identifying F with F1 ⊂ EndA(E). Moreover, if E and F are simple
A-modules, then HomA(E,F ) is either {0} or a one-dimensional vector space
over F.

Proof. Let x ∈ EndA(E). Suppose x /∈ F1. Note that x commutes with
all elements of F1. Since EndA(E) ⊂ EndF(E) is a finite-dimensional vector
space over F, there is a smallest natural number n ∈ {1, 2, ...} such that
1, x, ..., xn are linearly dependent over F, i.e. there is a polynomial p(X) ∈
F[X], of lowest degree, with deg p(X) = n ≥ 1, such that

p(x) = 0.

Since F is algebraically closed, p(X) factorizes over F as

p(X) = (X − λ)q(X)
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for some λ ∈ F. Consequently, x− λ1 is not invertible, for otherwise q(x), of
lower degree, would be 0. Thus, by Schur’s lemma, x = λ1 ∈ F1.

Now suppose E and F are simple A-modules, and suppose there is a non-
zero element f ∈ HomA(E,F ). By Proposition 4.1.1, f is an isomorphism. If
g is also an element of HomA(E,F ), then f−1g is in EndA(E,E), and so, by
the first part of this result, is a multiple of the identity element in EndA(E).

Consequently, g is a multiple of f . QED

4.2 Semisimple Modules

Let A be a ring with unit element 1 6= 0, possibly non-commutative. We
have in mind, as always, the example of F[G]. Indeed, we will not need A
to be associative either; A could, for example, be a Lie algebra. One fact we
will, however, need is that for any element x in an A-module M , the subset
Ax is also an A-module.

Recall that a module E is semisimple if every submodule has a comple-
ment, i.e. if F is a submodule of E then there is a submodule F ′ such that
E is the direct sum of F and F ′. Below we shall prove that this is equivalent
to E being a direct sum of simple submodules, but first let us observe:

Proposition 4.2.1 Submodules and quotient modules of semisimple modules
are semisimple.

Proof. Let E be a semisimple module and F a submodule. Let G be a
submodule of F . Then G has a complement G′ in E:

E = G⊕G′.

If f ∈ F then we can write this uniquely as

f = g + g′

with g ∈ G and g′ ∈ G′. Then

g′ = f − g ∈ F

and so, in the decomposition of f ∈ F as g + g′, both g and g′ are in f . We
conclude that

F = G⊕ (G′ ∩ F )
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Thus every submodule of F has a complement inside F . Thus, F is semisim-
ple.

If F ′ is the complementary submodule to F in E, then

E/F ' F ′,

and so E/F , being isomorphic to the submodule F ′, is semisimple. QED
Before turning to the fundamental facts about semisimplicity of modules,

let us recall a simple fact from vector spaces: if T is a linearly independent
subset of a vector space, and S a subset which spans the whole space, then a
basis of the vector space is formed by adjoining to T a maximal subset of S
which respects linear independence. A similar idea will be used in the proof
below for simple modules.

Theorem 4.2.1 The following conditions are equivalent for an A-module E:

(i) E is a sum of simple submodules

(ii) E is a direct sum of simple submodules

(iii) Every submodule F of E has a complement, i.e. there is a submodule
F ′ such that E = F ⊕ F ′.

If E = {0} then the sum is the empty sum.
Proof. Suppose {Ej}j∈J is a family of simple submodules of E, and F a

submodule of E with

F ⊂
∑
j∈J

Ej.

By Zorn’s lemma, there is a maximal subset K of J such that the sum

H = F +
∑
k∈K

Ek

is a direct sum. For any j ∈ J , the intersection Ej ∩ H is either 0 or Ej.
It cannot be 0 by maximality of K. Thus, Ej ⊂ H for all j ∈ J , and so∑

j∈J Ej ⊂ H. Thus,∑
j∈J

Ej = F +
∑
k∈K

Ek, the latter being a direct sum.
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Applying this observation to the case where {Ej}j∈J span all of E, and taking
F = 0, we see that E is a direct sum of some of the simple submodules Ek.
This proves that (i) implies (ii).

Applying the result to a family {Ej}j∈J which gives a direct sum decom-
position of E, and taking F to be any submodule of E, it follows that

E = F ⊕ F ′,

where F ′ is a direct sum of some of the simple submodules Ek. Thus, (ii)
implies (iii).

Now assume (iii). Let F be the sum of a maximal collection of simple
submodules of E. Then E = F ⊕ F ′, by (iii), for a submodule F ′ of E. We
will show that F ′ = 0. Suppose F ′ 6= 0. Then, as we prove below, F ′ has a
simple submodule, and this contradicts the maximality of F . Thus, E is a
sum of simple submodules.

It remains to show that if (iii) holds then every non-zero submodule F
contains a simple submodule. Since F 6= 0, it contains a non-zero element x
which generates a submodule Ax. If Ax is simple then we are done. Suppose
then that Ax is not simple. We will produce a maximal proper submodule
of Ax; its complement inside Ax will then have to be simple. Any increas-
ing chain {Fα} of proper submodules of Ax has union ∪αFα also a proper
submodule of Ax, because x is outside each Fα. Then, by Zorn’s lemma,
Ax has a maximal submodule M . By assumption (iii) and Proposition 4.2.1,
the submodule Ax will also have the property that every submodule has a
complement; in particular, M has a complement F ′ in Ax, which must be
non-zero since M 6= Ax. The submodule F ′ cannot have a proper non-zero
submodule, because that would contradict the maximality of M . Thus, we
have produced a simple submodule inside any given non-zero submodule F
in E. QED

Theorem 4.2.1 leads to a full structure theorem for semisimple modules.
But first let us oberve something about simple modules, which again is anal-
ogous to the situation for vector spaces. Indeed, the proof below is by means
of viewing a module as a vector space.

Proposition 4.2.2 If E is a simple A-module, then E is a vector space over
the division ring EndA(E). If En ' Em as A-modules, then n = m.

Proof. If E is a simple A-module then, by Schur’s lemma,

D
def
= EndA(E)
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is a division ring. Thus, E is a vector space over D. Then En is the product
vector space over D. If dimD E were finite, then we would be done. In the
absence of this, the procedure (which seems like a clever trick) is to look
at EndA(En). This is a vector space over D, because for any λ ∈ D and
A-linear f : En → En, the map λf is also A-linear. In fact, each element of
EndA(En) can be displayed, as usual, as an n× n matrix with entries in D.
Moreover, this effectively provides a basis of the D-vector space EndA(En)

consisting of n2 elements. Thus, En ' Em implies n = m. QED
Now we can turn to the uniqueness of the structure of semisimple modules

of finite type:

Theorem 4.2.2 Suppose a module E over a ring A can be expressed as

E ' Em1
1 ⊕ . . .⊕ Emn

n (4.1)

where E1, ..., En, are non-isomorphic simple modules, and each mi a positive
integer. Suppose also that E can be expressed also as

E ' F j1
1 ⊕ . . .⊕ F jm

m

where F1, ..., Fm, are non-isomorphic simple modules, and each ji a positive
integer. Then m = n, and each Ea is isomorphic to one and only one Fb,
and then ma = jb.

Proof. Let G be any simple module isomorphic to a submodule of E.
Then composing this map G → E with the projection E → Er, we see
that there exists an a for which the composite G→ Ea is not zero and hence
G ' Ea. Similarly, there is a b such that G ' Fb. Thus each Ea is isomorphic
to some Fb. The rest follows by Proposition 4.2.2. QED

It is now clear that the ring EndA(E) can be identified as a ring of ma-
trices:

Theorem 4.2.3 If E is a semisimple module over a ring A, and E is the
direct sum of finitely many simple modules:

E ' Em1
1 ⊕ . . .⊕ Emn

n

then the ring EndA(E) is isomorphic to a product of matrix rings:

EndA(E) '
n∏
i=1

Matrmi(Di) (4.2)
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where Matrmi(Di) is the ring of mi × mi matrices over the division ring
Di = EndA(Ei).

The endomorphisms of the A-module E are those additive mappings E →
E which commute with the action of all the elements of A. Thus, EndA(E)
is the commutant of the ring A acting on E. The preceding result shows
that if E is semisimple as an A-module, and is a sum of finitely many simple
modules, then the commutant is a direct product of matrix rings. We shall
see later that every such ring is semisimple (as a module over itself).

Let us now examine simple modules over semisimple rings.
First consider a left ideal L in A. Then

A = L⊕ L′,

where L′ is also a left ideal. Then we can express the multiplicative unit 1
as

1 = 1L + 1L′ ,

where 1L ∈ L and 1L′ ∈ L′. For any l ∈ L we then have

l = l1 = l1L + l1L′

and l1l′ being then in both L′ and L must be 0. Consequently,

L ⊂ LL.

Of course, L being a left ideal, we also have LL ⊂ L. Thus,

LL = L (4.3)

Using this we will prove the following convenient characterization of modules
isomorphic to a given left ideal.

Lemma 4.2.1 Let A be a semisimple ring, L a simple left ideal in A, and
E a simple A-module. Then exactly one of the following holds:

(i) LE = 0 and L is not isomorphic to E;

(ii) LE = E and L is isomorphic to E.
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Proof. Since LE is a submodule of E, it is either {0} or E. We will show
that LE equals E if and only if L is isomorphic to E.

Assuming LE = E, take a y ∈ E with Ly 6= 0. By simplicity of E, then
Ly = E. The map

L 7→ E = Ly : a 7→ ay

is an A-linear surjection, and it is injective because its kernel, being a sub-
module of the simple module L, is {0}. Thus, if LE = E then L is isomorphic
to E.

Now we will show that, conversely, if L is isomorphic to E then LE = E.
If f : L→ E is A-linear we have then

E = f(L) = f(LL) = Lf(L) = LE

Thus, if f is an isomorphism then E = LE. QED
Let us note that any two isomorphic left ideals are right translates of each

another:

Proposition 4.2.3 If L and M are isomorphic left ideals in a semisimple
ring A then

L = Mx,

for some x ∈ A.

Proof. Suppose F : M → L is an isomorphism. Composing with a projection
pM : A→M , we obtain a map

G = F ◦ pM : A→ L

which is A-linear. Hence,

G(a) = G(a1) = aG(1) = ax,

where
x = G(1) = F (pM(1)).

Restricting the map G to M we see that

G(M) = Mx.

But pM and F are both surjective, and so Mx = L. QED
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4.3 Structure of Semisimple Rings

In this section we will work with a semisimple ring A. Recall that this means
that A is semisimple as a left module over itself.

Recall that, by semisimplicity, A decomposes as a direct sum of simple
submodules. A submodule in A is just a left ideal. Thus, we have a decom-
position

A =
∑
{all simple left ideals of A}

In this section we will see that if we sum up all those ideals which are iso-
morphic to each other and call this submodule Ai, then Ai is a two-sided
ideal and a subring in A, and A is the direct product of these rings.

Let
{Li}i∈R

be a maximal family of non-isomorphic simple left ideals in A. Let

Ai =
∑
{L : L is a left ideal isomorphic to Li}

By (4.2.1), we have

LL′ = 0 if L is not isomorphic to L′.

So
AiAj = 0 if i 6= j (4.4)

Since A is semisimple, it is the sum of all its simple submodules, and so

A =
∑
i∈I

Ai.

Now each Ai is clearly a left ideal. It is also right ideal because

AiA = Ai
∑
j

Aj = AiAi ⊂ Ai.

Thus, A is a sum of two-sided ideals Ai. We will soon see that the index set
R is finite.

The unit element 1 ∈ A decomposes as

1 =
∑
i∈R

ui (4.5)
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where ui ∈ Ai, and the sum is finite, i.e. all but finitely many ui are 0. For
any a ∈ A we can write

a =
∑
i∈R

ai with each ai in Ai.

Then, on using (4.4),
aj = aj1 = ajuj = auj

Thus a determines the ‘components’ aj uniquely, and so

the sum A =
∑

i∈RAi is a direct sum.

If some uj were 0 then all the corresponding aj would be 0, which cannot
be since each Aj is non-zero. Consequently,

the index set R is finite.

Since we also have, for any a ∈ A,

a = 1a =
∑
i

uia,

we have from the fact that the sum A =
∑

iAi is direct,

uia = ai = aui.

Thus Ai is a two-sided ideal. Clearly, ui is the identity in Ai.
We have arrived at the wonderful structure theorem for semisimple rings:

Theorem 4.3.1 Suppose A is a semisimple ring. Then there are finitely
many left ideals L1, ..., Lr in A such that every left ideal of A is isomorphic,
as a left A-module, to exactly one of the Lj. Furthermore,

Ai = sum of all left ideals isomorphic to Li

is a two-sided ideal, with a non-zero unit element ui, and A is the product of
the rings Ai:

A '
r∏
i=1

Ai (4.6)

Any simple left ideal in Ai is isomorphic to Li. Moreover,

1 = u1 + · · ·+ ur (4.7)

Ai = Aui (4.8)

AiAj = 0 for i 6= j (4.9)
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In Theorem 4.3.3 below, we will see that there is a ring isomomorphism

Ai ' EndCi(Li), where Ci = EndA(Li).

Thus, any semisimple ring A can be decomposed as a product of endomor-
phism rings:

A '
r∏
i=1

EndCi(Li) (4.10)

where L1, ..., Lr is a maximal collection of non-isomorphic simple left ideals in
A, and Ci = EndA(Li). An element a ∈ A is mapped, by this isomorphism,
to (ãi)1≤i≤r, where

ãi : Li :→ Li : x 7→ ax. (4.11)

The two-sided ideals Aj are, it turns out, minimal two-sided ideals, and
every two-sided ideal in A is a sum of certain Aj. We will prove this using
some results which we prove later in subsection 4.3.1 below.

Proposition 4.3.1 Each Aj is a minimal two-sided ideal in A, and every
two-sided ideal in A is a sum of some of the Aj.

Proof. Let I be a two-sided ideal in A. Then AI ⊂ I, but also I ⊂ AI
since 1 ∈ A. Hence

I = AI = A1I + · · ·+ ArI

Note that AjI is a two-sided ideal, and AjI ⊂ Aj. The ring Aj has the
special property that every simple left ideal in Aj is isomorphic to the same
simple left ideal, Lj. As we prove in Proposition 4.3.3 below, this implies
that the only two-sided ideals in Aj are 0 and Aj. Thus, AjI is either 0 or
Aj. Consequently,

I =
∑

j:AjI 6=0

Aj. QED

It is useful to summarize the properties of the elements ui:

Proposition 4.3.2 The elements u1, ..., ur are non-zero, and satisfy

u2
i = ui, uiuj = 0 if i 6= j (4.12)

u1 + · · ·+ ur = 1 (4.13)

Multiplication by ui in A is the identity on Ai and is 0 on all Aj for j 6= 1.
If A is a finite dimensional algebra over an algebraically closed field F, then
u1, ..., ur form a vector space basis of Z(A).
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For the last claim above, we use Proposition 4.3.4, which implies that
each Z(Ai) is the field F imbedded in Ai, and so every element in Z(Ai)
is a multiple of the unit element ui. The decomposition A '

∏r
i=1Ai then

implies that the center of A is the linear span of the ui.
We will return to a more detailed examination of idempotents later.

4.3.1 Simple Rings

The subrings Aj are isotypical or simple rings, in that they are sums of simple
left ideals which are all isomorphic to the same left ideal Lj.

Definition 4.3.1 A ring B is simple if it is a sum of simple left ideals which
are all isomorphic to each other as left B-modules.

Since, by Proposition 4.2.3, all isomorphic left ideals are right translates
of one another, a simple ring B is a sum of right translates of any given
simple left ideal L. Consequently,

B = LB if B is a simple ring, and L any simple left ideal. (4.14)

As consequence we have:

Proposition 4.3.3 The only two-sided ideals in a simple ring are 0 and the
whole ring itself.

Proof. Let I be a two-sided ideal in a simple ring B, and suppose I 6= 0.
By simplicity, I is a sum of simple left ideals, and so, in particular, contains
a simple left ideal L. Then by (4.14) we see that LB = B. But LB ⊂ I,

because I is also a right ideal. Thus, I = B. QED
For a ring B, any B-linear map f : B → B is completely specified by the

value f(1), because
f(b) = f(b1) = bf(1)

Moreover, if f, g ∈ EndB(B) then

(fg)(1) = f(g(1)) = g(1)f(1)

and so we have a ring isomorphism

EndB(B)→ Bopp : f 7→ f(1) (4.15)
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where Bopp is the ring B with multiplication in ‘opposite’ order:

(a, b) 7→ ba

We then have

Theorem 4.3.2 If B is a simple ring, isomorphic as a module to Mn, for
some simple left ideal M and positive integer n, then B is isomorphic to the
ring of matrices

B ' Matrn(Dopp), (4.16)

where D is the division ring EndB(M).

Proof. We know that there are ring isomorphisms

Bopp ' EndB(B) = EndB(Mn) ' Matrn(D)

Taking the opposite ring, we obtain an isomorphism of B with Matrn(D)opp.
But now consider the transpose of n× n matrices:

Matrn(D)opp → Matrn(Dopp) : A 7→ At.

Then, working in components of the matrices, and denoting multiplication
in Dopp by ∗:

(A ∗B)tik = (BA)ki =
n∑
j=1

BkjAji =
n∑
j=1

Aji ∗Bkj,

which is the ordinary matrix product AtBt in Matrn(Dopp). Thus, the trans-

pose gives an isomorphism Matrn(D)opp ' Matrn(Dopp). QED
The opposite ring often arises in matrix representations of endomor-

phisms. If M is a 1-dimensional vector space over a division ring D, with
a basis element v, then to each T ∈ EndD(M) we can associate the ‘ma-
trix’ element T̂ ∈ D specified through T (v) = T̂ v. But then, for any
S, T ∈ EndD(M) we have

ŜT = T̂ Ŝ

Thus, EndD(M) is isomorphic to Dopp, via its matrix representation.
There is a more abstract, ‘coordinate free’ version of Theorem 4.3.2. First

let us observe that for a module M over a ring A, the endomorphism ring

A′ = EndA(M)
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is the commutant for A, i.e. all additive maps M →M which commute with
the action of A. Next,

A′′ = EndA′(M)

is the commutant of A′. Since, for any a ∈ A, the multiplication

l(a) : M →M : x 7→ ax (4.17)

commutes with every element of A′, it follows that

l(a) ∈ A′′

Note that

l(ab) = l(a)l(b)

and l maps the identity element in A to that in A′′, and so l is a ring homo-
morphism. The following result is due to Rieffel:

Theorem 4.3.3 Let B be a simple ring, L a non-zero left ideal in B,

B′ = EndB(L), B′′ = EndB′(L)

and

l : B → B′′

the natural ring homomorhism given by (4.17). Then l is an isomorphism.
In particular, every simple ring is isomorphic to the ring of endomorphisms
on a module.

Proof. To avoid confusion, it is useful to keep in mind that elements of B′

and B′′ are all maps Z-linear maps L→ L.
The ring morphism l : B → B′′ is given explicitly by

l(b)x = bx, for all b ∈ B, and x ∈ L.

It maps the unit element in B to the unit element in B′′, and so is not 0. The
kernel of l 6= 0 is a two-sided ideal in a simple ring, and hence is 0. Thus, l
is injective.

We will show that l(B) is B′′. Since 1 ∈ l(B), it will be sufficient to prove
that l(B) is a left ideal in B′′.
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Since LB contains L as a subset, and is thus not {0}, and is clearly a
two-sided ideal in B, it is equal to B:

LB = B.

This key fact implies
l(L)l(B) = l(B)

Thus, it will suffice to prove that l(L) is a left ideal in B′′. We can check this
as follows: if f ∈ B′′ and x, y ∈ L then(

fl(x)
)
(y) = f(xy)

= f(x)y because L→ L : x 7→ xy is in B′ = EndB(L)

= l
(
f(x)

)
(y),

thus showing that
f · l(x) = l

(
f(x)

)
,

and hence l(L) is a left ideal in B′′. QED
Lastly, let us make an observation about the center of a simple ring:

Proposition 4.3.4 If B is a simple ring then its center Z(B) is a field. If
B is a finite-dimensional simple algebra over an algebraically closed field F,
then Z(B) = F1.

Proof. Let z ∈ Z(B), and consider the map

lz : B → B : b 7→ zb.

Because z commutes with all elements of B, this map is B-linear. The kernel
ker lz is a two-sided ideal; it would therefore be {0} if lz 6= 0. Now lz(1) = z,
and so ker lz must be {0} if z is not 0:

ker lz = {0} if z 6= 0.

The image lz(B) is also a two-sided ideal and so:

lz(B) = B if z 6= 0.

Thus, lz is a linear isomorphism if z 6= 0, and

l : Z(B)→ EndB(B) : z 7→ lz
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is a Z-linear injection. Moreover,

lzlw = lzw.

For z 6= 0 in Z(B), writing y = l−1
z (1), we have

yz = zy = lz(y) = 1.

Thus, every non-zero element in Z(B) is invertible. Since Z(B) is commuta-
tive and contains 1 6= 0, we conclude that it is a field.

Suppose now that B is a finite dimensional F-algebra, and F is alge-
braically closed. Then any z ∈ Z(B) not in F would give rise to a proper
finite extension of F and this is impossible. In more detail, since Z(B) is a
finite-dimensional vector space over F, there is a smallest integer n ≥ 1 such
that 1, z,...,zn are linearly dependent, and so there is a polynomial p(X) of
degree n, with coefficients in F, such that p(z) = 0. Since F is algebraically
closed, there is a λ ∈ k, and a polynomial q(X) of degree n − 1 such that
p(X) = (X − λ)q(X), and so z − λ1 is not invertible and therefore z = λ1.

Thus, Z(B) = k1. QED

4.4 Semisimple Algebras as Matrix Algebras

Let us pause to put together some results we have already proved to see that:

(i) every finite dimensional simple algebra over an algebraically closed field
F is isomorphic to the algebra of all d× d matrices over F, for some d;

(ii) every finite dimensional semisimple algebra over an algebraically closed
field F is isomorphic to an algebra of all matrices of block-diagonal form,
the i-th block running over di × di matrices over F;

(iii) every finite dimensional semisimple algebra A over an algebraically
closed field F is isomorphic to its opposite algebra Aopp.

Observation (i) may be stated more completely, as the following conse-
quence of Theorem 4.3.3:

Proposition 4.4.1 If an algebra B over an algebraically closed field F is
simple, and L is any simple left ideal in B, then B is isomorphic as a F-
algebra to EndF(L). In particular, if B is finite dimensional over F then

dimFB = [dimF(L)]2 (4.18)
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Observation (ii) then follows from the fact that every semisimple algebra
is a product of simple algebras.

Observation (iii) follows from (ii), upon noting that the matrix trans-
pose operation produces an isomorphism between the algebra of all square
matrices of a certain degree with its opposite algebra.

4.5 Idempotents

Idempotents play an important role in the structure of semisimple algebras.
When represented on a module, an idempotent is a projection map. The
decomposition of 1 as a sum of idempotents corresponds to a decomposition
of a module into a direct sum of submodules.

Idempotents will be a key tool in constructing representations of Sn in
Chapter 8.

Before proceeding to the results, let us note an example. Consider a finite
group G and let

τ : G→ F

be a one-dimensional representation of G (for example τ(x) = 1 for all x ∈
G). Then consider

uτ =
1

|G|
∑
x∈G

τ(x−1)x ∈ F[G],

assuming that the character of F does not divide |G|. Then it is readily
checked that uτ is an idempotent:

uτ
2 = uτ .

We have used this idempotent already (in the case τ = 1), in proving semisim-
plicity of F[G].

Idempotents generate left ideals, and, conversely, as we see shortly, every
left ideal in a semisimple ring is generated by an idempotent. Consider a left
ideal L in a semisimple ring A. We have then a complementary ideal L′ with

A = L⊕ L′

and so there is an A-linear projection map

pL : A→ L.
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But A-linearity puts a serious restriction on this map. Indeed, we have

pL(a) = p(a · 1) = apL(1) (4.19)

and so pL is simply multiplication on the right by the ‘constant’

uL = pL(1).

The image of p is then
pL(A) = AuL

But pL, being the projection onto L, is surjective! Thus,

L = AuL. (4.20)

Thus, every left ideal is of the form

AuL.

Note that
uL = pL(1) ∈ A

Moreover, since pL is the identity when restricted to L, we have

l = pL(l) = luL, for all l ∈ L (4.21)

In particular, applying this to l = uL, we see that uL is an idempotent:

u2
L = uL. (4.22)

Indeed, this is a reflection of the fundamental property of a projection map:

pL(pL(a)) = pL(a) for all a ∈ A.

Let us summarize our observations:

Proposition 4.5.1 Every left ideal L in a semisimple ring A is of the form
AuL for some uL ∈ L:

L = AuL (4.23)

The element uL is an idempotent, i.e.

u2
L = uL. (4.24)
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Moreover,
yuL = y if and only if y ∈ L. (4.25)

Conversely, if u is an idempotent then Au is a left ideal and the map

A→ Au : x 7→ xu

is an A-linear projection map onto the submodule Au, carrying 1 to the gen-
erating element u.

Now suppose
M ⊂ L

is a left ideal contained in L. We have then a decomposition

L = M ⊕ M̃

which yields a decomposition

A = L⊕ L′ = M ⊕ M̃ ⊕ L′.

Thus, the projection pML of L onto M composes with pL to give pM :

pM = pML ◦ pL. (4.26)

Applying this to the unit element 1, we have:

uM = pML(uL) (4.27)

On the other hand, applying (4.26) to uL gives:

uLuM = pML(uL) (4.28)

Combining these observations, we have

uLuM = uM . (4.29)

Similarly,
uLuM̃ = uM̃ .

Viewing these idempotents all as projections of the unit element 1 onto the
various ideals, we see also that

uL = uM + uM̃ . (4.30)

Consequently,
uM̃uM = 0 = uMuM̃ . (4.31)

We say that uM and uM̃ are orthogonal.
Thus,
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Proposition 4.5.2 If M ⊂ L are left ideals in a semisimple ring A, then
there are idempotents uL, uM and u′ in A, such that

(i) L = AuL,

(ii) M = AuM ,

(iii) uL = uM + u′, and

(iv) uMu
′ = 0 = u′uM .

Thus, L is the direct sum of the ideals M and Au′, which have orthogonal
idempotent generators uM and u′.

Note that it may well be that M and a complementary module M ′ (with
L = M +M ′ as a direct sum) have other non-orthogonal idempotent gener-
ators. (See Exercise 3.3.)

In the converse direction we have:

Proposition 4.5.3 Suppose u decomposes into a finite sum of orthogonal
idempotents vi:

u = v1 + · · ·+ vm, v2
j = vj, vjvk = 0 when j 6= k.

Then u is an idempotent:
u2 = u,

and Au is the internal direct sum of the submodules Avj:

Au =
m∑
j=1

Avj.

Proof. Squaring u gives

u2 =
∑
j

v2
j +

∑
j 6=k

vjvk =
∑
j

vj = u.

Thus, u is an idempotent.
It is clear that

Au ⊂
∑
j

Avj
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For the converse direction, we have

vju = v2
j +

∑
k 6=j

vjvk = v2
j = vj, (4.32)

and so ∑
j

Avj =
∑
j

Avju

⊂ Au.

Next, suppose ∑
j

ajvj = 0,

for some aj ∈ A. Multiplying on the right by vi gives:

0 =
∑
j

ajvjvi = aiv
2
i + 0 = aivi,

and so each aivi is 0. QED
This result suggests that we could start with the unit element 1 ∈ A and

keep splitting it into orthogonal idempotents, as long as possible. Thus we
would aim to write

1 = u1 + · · ·+ ur,

where u1, ..., ur are idempotents, and

uiuj = 0 when i 6= j,

in such a way that this process cannot be continued further. This leads us
to the following natural concept:

Definition 4.5.1 A primitive idempotent in a ring A is an element u ∈ A
which is an idempotent, i.e. satisfies

u2 = u,

and is primitive in the sense that u 6= 0 and if

u = v + w

with v and w being also idempotents, such that

vw = 0 = wv,

then v or w is 0.
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Note that we require that a primitive idempotent be non-zero.
The following result is clear from Propositions 4.5.3 and 4.5.2.

Proposition 4.5.4 A left ideal L = Au, where u is an idempotent, is simple
if and only if u is primitive.

(Note that the definition of primitive idempotent does not involve the
qualifier ‘left’, and so the conclusion holds for the right ideal uA as well.)

The decomposition of a semisimple ring A as a direct sum of simple left
ideals Aej corresponds then to a decomposition of the unit element 1 into a
sum of primitive idempotents:

1 = e1 + · · ·+ eN .

Decomposing each Aek further, we have

A =
∑
j,k

ejAek.

Lemma 4.5.1 Suppose u and u′ are idempotents in a semisimple ring A.
Then every A-linear map Au′ → Au is of the form

fx : Au′ → Au : y 7→ yu′xu = yxu,

for some x ∈ A. The element u′xu, being the image of u′ in Au, depends on
x only through the map fx.

Proof. Let
F : Au′ → Au

be A-linear. Then:

F (au′) = aF (u′) = axu, where x ∈ A is such that F (u′) = xu.

It is convenient to observe that

F (au′) = F (au′u′) = au′F (u′) = au′xu = au′u′xu,

which allows us to write F cleanly as

F (y) = yu′xu for all y ∈ Au′.
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Thus, F = fx. QED
The following result summarizes many of the key features of idempotents

which will be useful in constructing the irreducible representations of Sn
in Chapter 8. In particular, (4.33) gives a condition for deciding when an
idempotent is primitive, and (4.34) decides when two primitive idempotents
generate non-isomorphic left ideals. Some of the results here are reformula-
tions of results we have already proved for simple modules.

Theorem 4.5.1 Suppose u and u′ are non-zero idempotents in a semisimple
algebra A over a field F. Then:

(i) If

uxu is a F-multiple of u for every x ∈ A (4.33)

then the idempotent u is primitive.

(ii) If u is a primitive idempotent, and F is algebraically closed, then (4.33)
holds.

(iii) If u and u′ are primitive idempotents then:

Au is not isomorphic with Au′ if and only if u′xu = 0 for all x ∈ A.
(4.34)

(iv) If u and u′ are primitive idempotents, and F is algebraically closed, and
if Au is isomorphic to Au′ then {u′xu : x ∈ A} is a one dimensional
vector space over F, i.e. u′xu is of the form λxu

′u, for some λx ∈ k,
and u′u 6= 0.

The peculiar condition in (i) for u being primitive doesn’t seem natural,
but it is easy to prove and very powerful. An added bonus is that it doesn’t
require any special conditions at all on the field F.

Proof. (i) Assume that the idempotent u satisfies (4.33). Suppose we
have a decomposition of u into idempotents:

u = v + w,

where v and w are orthogonal idempotents, i.e.

v2 = v, w2 = w, vw = wv = 0.
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Then, taking x = v in (4.33), we see that

uvu = (v + w)v(v + w) = v + 0 = v

and so, by (4.33), it follows that v is a multiple of u:

v = λu for some λ ∈ k.

Since both u and v are idempotents, it follows that

λ2 = λ

and so λ is 0 or 1. Hence, u is primitive. The idea in the argument here is
that one can recover any idempotent ‘subcomponent’ v of an idempotent u
as uvu, i.e. {uxu : x ∈ A} contains all F-multiples of all ‘subcomponents’
of u, and so if {uxu : x ∈ A} is ku then any ‘subcomponent’ of u must be a
multiple of u itself, and hence is either 0 or u.

(ii) For any x ∈ A, we have the A-linear map

fx : Au→ Au : au 7→ auxu

If u is primitive then Au is simple and so, by Schur’s lemma and the as-
sumption that F is algebraically closed, this mapping is a multiple of the
identity mapping. In particular, there is a λ ∈ k, for which fx(u) = λu, i.e.
uxu = λu.

(iii) Assume that u and u′ are primitive idempotents. Consider, for any
x ∈ A, the map

fx : Au′ → Au : y 7→ yxu (4.35)

Since both Au and Au′ are simple left A-modules, this map is either 0 or an
isomorphism. So if Au is not isomorphic to Au′, then fx = 0; applying fx to
the element u′ we see that

u′xu = 0.

Conversely, suppose F : Au′ → Au is an isomorphism. Then we know that
there is an x ∈ A such that

F (u′) = xu

and so
F (u′) = F (u′u′) = u′xu,

and this is not 0, because that would imply that F is 0.
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(iv) Now suppose Au′ ' Au, and assume that A is a finite dimen-
sional algebra over an algebraically closed field F. Then by Schur’s lemma,
HomA(Au′, Au) is a one-dimensional vector space over F. Since u′xu is
uniquely determined by fx, it follows that {u′xu : x ∈ A} is a one-dimensional

vector space over F. QED
Here is yet another point of view on idempotents and primitive idempo-

tents:

Proposition 4.5.5 Let A be a semisimple algebra, {Li}i∈R a maximal col-
lection of non-isomorphic simple left ideals in A, and Ai the sum of all
left ideals isomorphic to Li. Let Ci = EndAi(Li). An element a ∈ A
is an idempotent if and only if its representative block diagonal matrix in∏

i∈R EndCi(Li) is a projection matrix (i.e. an idempotent). It is a primitive
idempotent if and only if the matrix is a projection matrix of rank 1.

Proof. Recall that

A '
∏
i∈R

EndCi(Li) : a 7→ [ai]i∈R

an isomorphism of rings. Thus a ∈ A is an idempotent if and only if each
of its components ai ∈ EndCi(Li) is an idempotent, i.e. a projection map.
If the rank of the block matrix [ai] were not 1, then we could write ai as a
sum of two distinct non-zero projections, and so a would not be primitive.
Conversely, if the rank of [ai]i∈R is 1 then a is clearly primitive. QED

4.6 Modules over Semisimple Rings

We will now see how the decomposition of a semisimple ring A yields a
decomposition of any A-module E.

Let A be a semisimple ring. Recall that there is a finite number of non-
isomorphic simple left ideals

L1, ..., Lr ⊂ A

such that every simple left ideal is isomorphic to one of these. Moreover,

Ai
def
= sum of all left ideals isomorphic to Li
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is a two-sided ideal in A, and A is the direct sum of these ideals as well as
being isomorphic to their product:

A '
r∏
i=1

Ai

Recall that each Ai has a unit element ui, and

u1 + · · ·+ ur = 1.

Every a ∈ A decomposes uniquely as

a =
r∑
i=1

ai,

where
aui = ai = uia ∈ Ai.

Consider now any left A-module E. Any element x ∈ E can then be
decomposed as

x = 1x =
r∑
j=1

ujx

Note that
ujx ∈ Ej

def
= AjE, (4.36)

and Ej is a submodule of E. Observe also that since

Aj = ujA,

we have
Ej = ujE.

Moreover,

Ej = AjE =
∑

left ideal L ' Lj

LE

Before stating our observations formally, note that we have

Lemma 4.6.1 If A is a semisimple ring and E 6= {0} an A-module then E
has a submodule isomorphic to some simple left ideal in A.
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Proof. Observe that E = AE 6= {0}. Now A is the sum of its simple left
ideals. Thus, there is a simple left ideal L in A, and an element v ∈ E, such
that Lv 6= {0}. The map

L→ Lv : x 7→ xv

is surjective and, by simplicity of L, is also injective. Thus, L ' Lv, and Lv
therefore a simple submodule of E. QED

Now we can state the decomposition result for modules over semisimple
rings. To recall the notation briefly: the finite set R labels a maximal set
{Li}i∈R of non-isomorphic simple left ideals in A, and, for each i ∈ R, we
have the two-sided ideal

Ai =
∑
L'Li

L,

the sum running over all left ideals L isomorphic to Li. Recall also that any
simple left A-module is isomorphic to Li for exactly one i ∈ R.

Theorem 4.6.1 Suppose A is a semisimple ring, and E a left A-module.
Then, with notation as above,

E =
⊕
i∈R

Ei,

where
Ei = AiE = uiE

is the sum of all simple submodules of E isomorphic to Lj, this sum being
taken to be {0} when there is no such submodule.

Proof. Let F be a simple submodule of E. We know that it must be
isomorphic to one of the simple ideals Lj in A. Then, since L′F = 0 whenever
L′ is a simple ideal not isomorphic to Lj, we have

F = AF = AjF ⊂ Ej.

Thus, every every submodule isomorphic to Lj is contained in Ej. On the
other hand, Aj is the sum of simple left ideals isomorphic to Lj, and so

Ej = AjE is a sum of simple submodules isomorphic to Lj. QED
Let us look at another perspective on the structure of a module over

a semisimple ring. Suppose E is a left module over a semisimple ring A,



74 Ambar N. Sengupta

Li is a simple left ideal in A, and Di is the division ring EndA(Li). The
elements of Di are A-linear maps Li → Li and so Li is, naturally, a left Di-
module. On the other hand, Di acts naturally on the right on HomA(Li, E) by
taking (f, d) ∈ HomA(Li, E)×Di to the element fd = f ◦ d ∈ HomA(Li, A).
Thus, HomA(Li, E) is a right Di-module. Hence there is a well-defined tensor
product

HomA(Li, E)⊗Di Li
which, for starters, is just a Z-module. However, the left A-module structure
on Li, which commutes with the Di-module structure, induces naturally a
left A-module structure on HomA(Li, E) ⊗Di Li with multiplications on the
second factor. We use this in the following result.

Theorem 4.6.2 If E is a left module over a semisimple ring A, and L1, ..., Lr
a maximal set of non-isomorphic simple left-ideals in A, then there is an iso-
morphism of A-modules:

E '
r⊕
i=1

HomA(Li, E)⊗Di Li (4.37)

Here the tensor product is taken in the sense of left and right Di-modules,
where Di is the division ring HomA(Li, Li); it has an A-module structure
from that on the second factors Li.

Proof. The module E is a direct sum of simple submodules, each isomor-
phic to some Li:

E =
r⊕
i=1

⊕
j∈Ri

Eij

where Eij ' Li, as A-modules, for each i and j ∈ Ri (which might be
∅). In the following we will, as we may, simply assume that Ri 6= ∅, since
HomA(Li, E) is 0 for all other i. Because Li is simple, Schur’s Lemma implies
that HomA(Li, Eij) is a one-dimensional vector space over the division ring
Di, and a basis is given by any fixed non-zero element φij. For any fi ∈
HomA(Li, E) let

fij : Li → Eij

be the composition of fi with the projection onto Eij. Then

fij = φijdij,
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for some dij ∈ Di. Any element of HomA(Li, E)⊗Di Li is of the form∑
j∈Ri

φij ⊗ xij

for some xij ∈ Li. Consider now the A-linear map

J :
r⊕
i=1

HomA(Li, E)⊗Di Li → E

specified by requiring that for each i ∈ {1, ..., r},

J

(
r∑
i=1

∑
j∈Ri

φij ⊗ xij

)
=

r∑
i=1

∑
j∈Ri

φij(xij).

If this value is 0 then each φij(xij) ∈ Eij is 0 and then, since φij is an
isomorphism, xij is 0. Thus, J is injective. The decomposition of E into the

simple submodules Eij shows that J is also surjective. QED

Now consider the case where A is a finite dimensional semisimple algebra
over an algebraically closed field F. If

1 = e1 + · · ·+ en

is a decomposition of 1 into non-zero orthogonal idempotents ej, then e1, ..., en
are linearly independent over F and so n ≤ dimFA. Taking such a decompo-
sition for which n is the largest possible, it follows that each ej is a primitive
idempotent. This shows again that such A can be decomposed as a direct
sum of simple left-ideals. Grouping together those ej with isomorphic Aej,
produces the decomposition

1 = u1 + · · ·+ ur, (4.38)

where u1, ..., ur are idempotents forming a basis of Z(A) over F.
Let us decompose each ui into a sum of primitive idempotents as:

ui = ui1 + · · ·+ uini (4.39)

Any element x ∈ A decomposes as

x =
r∑
i=1

xui =
r∑
i=1

uixui =
r∑
i=1

∑
1≤α,β≤ni

uiαxuiβ (4.40)
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and so x corresponds to a block diagonal matrix, with the i-th block being
the matrix

[uiαxuiβ]1≤α,β≤ni

which may be viewed as an ni × ni matrix with the αβ entry in

HomA(Auiα, Auiβ) ' k.

Exercises

1. Let τ : G→ F be a homomorphism of the finite group G into the group
of invertible elements of the field F, and assume that the characteristic
of F is not a divisor of |G|. Let

uτ =
1

|G|
∑
g∈G

τ(g−1)g

Show that uτ is a primitive idempotent.

2. Let A be a finite-dimensional semisimple algebra over a field F, and
define χreg : A→ F by

χreg(a) = Tr
(
ρreg(a)

)
, where ρreg(a) : A→ A : x 7→ ax. (4.41)

Let L1, ..., Ls be a maximal collection of non-isomorphic simple left
ideals in A, so that A '

∏s
i=1Ai, where Ai is the two-sided ideal

formed by the sum of all left ideals isomorphic to Li. As usual, let 1 =
u1 + · · ·+us be the decomposition of 1 into idempotents ui ∈ Ai = Aui.
Viewing Li as a vector space over F, define

χreg
i(a) = Tr(ρreg(a)|Li) (4.42)

Note that since Li is a left ideal, ρreg(a)(Li) ⊂ Li. Show that:

(i) χreg =
∑s

i=1 diχ
reg

i, where di is the integer for which Ai ' diLi.

(ii) χreg
i(uj) = δij dimF Li

(iii) Assume that the character of F does not divide any of the numbers
dimF Li. Use (ii) to show that the functions χreg

1, ..., χ
reg

s are
linearly independent over F.
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(iv) Let E be a left A-module, and define χE : A→ k by

χE(a) = Tr
(
ρE(a)

)
, where ρE(a) : E → E : x 7→ ax. (4.43)

Show that χE is a linear combination of the functions χreg
i with

non-negative integer coefficients:

χE =
s∑
i=1

niχ
reg

i

where ni is the number of copies of Li in a decomposition of E
into simple A-modules.

(v) Under the assumption made in (iii), show that if E and F are left
A-modules with χE = χF then E ' F .

3. Let B = Matrn(F) be the algebra of n× n matrices over the field F.

(a) Show that for each j ∈ {1, ..., n}, the set Lj of all matrices in B
which have all entries 0 except possibly those in column j is a
simple left ideal.

(b) Show that if L is a simple left ideal in B then there is a basis
b1, ..., bn of Fn such that L consists exactly of those matrices M
for which Mbi = 0 whenever i 6= 1.

(c) With notation as in (a), produce orthogonal idempotent genera-
tors in L1, ..., Ln.

(d) Show that L1 and L2 also have idempotent generators which are
not orthogonal to each other.

4. Show that if u and v are primitive idempotents in a F-algebra A, where
F is algebraically closed, then uv is either 0, or has square equal to 0,
or is a F-multiple of a primitive idempotent. What can be said if u and
v are commuting primitive idempotents? [Solution: If u and v belong
to different Ai then uv = 0. Suppose then that u and v both belong
to the same Ai. Then we may as well assume that they are di × di
matrices over F, where di = dimF(Li). Since u2 = u, and u has rank 1,
we can choose a basis in which u has entry 1 at the top left corner and
has all other entries equal to 0. Then, for any matrix v, the product



78 Ambar N. Sengupta

uv has all entries 0 except those in the top row. Let λ be the top left
entry of the matrix uv. Then

(uv)n = λn−1uv

If λ = 0 then (uv)2 = 0. If λ 6= 0 then λ−1uv has 1 as top left entry and
all rows below the top one are 0; hence, λ−1uv is a rank 1 projection,
i.e. a primitive idempotent. Thus, uv is a multiple of a primitive
idempotent. If u and v commute and uv 6= 0 then (uv)2 = u2v2 =
uv 6= 0, and so λ−1uv is a primitive idempotent for some λ ∈ k, and
then λ−2 = λ−1 and so λ = 1, i.e. uv is a primitive idempotent. ]

5. Prove that if M is a semisimple module over a ring A, and EndA(M)
is abelian, then M is the direct sum of simple submodules, no two of
which are isomorphic to each other.

6. Prove that if a moduleN over a ring is the direct sum of simple submod-
ules, no two of which are isomorphic to each other then every simple
submodule of N is one of these submodules.

7. Sanity check exercises:

(a) Is Z a semisimple ring?

(b) Is Q a semisimple ring?

(c) Is a subring of a semisimple ring also semisimple?

(d) Show that an abelian simple ring is a field.



Chapter 5

The Regular Representation

We return to the study of representations of a finite group G. In this chapter
we essentially restate the conclusions about F[G] that follow from the results
of the previous chapter.

We will work with a field F, and a finite group G. As we have seen, a key
role is played by the group algebra

F[G]

This is a finite dimensional vector space over F, with

dimF F[G] = |G|,

with the elements of G giving a basis of F[G].
The representation ρreg of G on F[G] given by left multiplication is the

regular representation.
We will make the standing assumption that the character of F is not a

divisor of |G|. This is needed for semisimplicity of F[G].

5.1 Structure of the Regular Representation

The algebra F[G] is semisimple, and contains non-isomorphic simple left mod-
ules

L1, ..., Ls

and F[G] splits as a product of two-sided ideals F[G]j:

F[G] '
s∏
j=1

F[G]j, (5.1)

79
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where F[G]j is the sum of all simple left ideals isomorphic to Lj; it can also
be expressed as a direct sum of some of these simple left ideals.

The regular representation ρreg decomposes into the irreducible subrep-
resentations ρreg

r on Lr, for r ∈ {1, ..., s}. Viewing Lr as a left F[G]-module,
we have, for each a ∈ F[G], a F-linear map

ρreg
r (a) : Lr → Lr : w 7→ aw (5.2)

The unit element
1

def
= 1e

of F[G] can be expressed as a sum

1 = u1 + · · ·+ us (5.3)

and then

F[G] =
s∑
r=1

urF[G] (5.4)

The elements u1, ..., us form a basis of the center Z (F[G]), and satisfy the
relations

u2
i = ui, uiuj = 0 if i 6= j (5.5)

Let
Dr = EndF[G](Lr) (5.6)

By Schur’s lemma, this is a division ring. Note that F ' F1 is contained in
Dr. The important case is

Dr = F if F is algebraically closed. (5.7)

The representation ρreg
r produces an isomorphism of algebras when restricted

to F[G]r:
ρreg
r |F[G]r → EndDr(Lr) (5.8)

Thus, in terms of ρreg, each element of F[G] may be viewed as a block diagonal
matrix, with the r-th diagonal block being an element of EndDr(Lr).

Note that the two-sided ideal F[G]r and EndDr(Lr) carry both left and
right representations of G. The fact that

ρreg
r (xay) = ρreg

r (x)ρreg
r (a)ρreg

r (y) for all a ∈ F[G]r, and x, y ∈ G (5.9)

shows that ρreg
r intertwines with both of these representations.
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Comparing dimensions of F[G]i and EndDr(Lr), we have

dimDr F[G]i = (dimDr Lr)
2 (5.10)

Thus, writing

di = dimDi Li (5.11)

we see that F[G]i is the direct sum of di copies of Li. Thus, the regular
representation splits up as a direct sum

F[G] '
s∑
i=1

diLi (5.12)

Note again that

di = dimF(Li) if F is algebraically closed.

If E is a finite dimensional representation of G then E decomposes into a
direct sum

E =
s⊕
i=1

uiE, (5.13)

and uiE is the direct sum of all subspaces of E isomorphic to the represen-
tation on Li.

Note that s is the number of distinct isomorphy classes of F[G] modules.

The center of F[G] has u1, ..., us as a vector space basis. On the other
hand, the center of F[G] clearly has the following basis: for each conjugacy
class C in G take the element

bC =
∑
g∈C

g (5.14)

(See Proposition 3.3.1.) Thus:

Theorem 5.1.1 The number of distinct isomorphism classes of irreducible
representations of G equals the number of conjugacy classes in G.
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5.2 Representations of abelian groups

Let us look at a finite abelian group H, and assume that the field F is
algebraically closed and has characteristic not a divisor of |H|. Then the
group algebra F[H] is also abelian (i.e. multiplication is commutative), and
so each endomorphism algebra EndF(Li) is abelian. This can only be if each
Li is one-dimensional.

The formula

|G| =
s∑
i=1

[dimF(Li)]
2,

where L1, ..., Ls is a maximal collection of non-isomorphic simple left ideals
in F[G], shows that each Li is one-dimensional if and only if the number s of
distinct irreducible representations of G equals |G|. Thus, each irreducible
representation of G is one dimensional if and only if the number of conjugacy
classes in G equals |G|, i.e. if each conjugacy class contains just one element.
But this means that G is abelian. Thus,

Theorem 5.2.1 Assume the ground field F has characteristic 0 and is al-
gebraically closed. All irreducible representations of a finite abelian group
are one-dimensional. Conversely, if all irreducible representations of a finite
group are one dimensional then the group is abelian.

Exercises

1. Let G be a cyclic group, and F algebraically closed. Decompose F[G]
as a direct sum of one-dimensional representations of G.



Chapter 6

Characters of Finite Groups

In this chapter we work only with finite dimensional representations of a
finite group G over a field F which has 0 characteristic. Mostly, we will also
need to assume that F is algebraically closed. In the later part of the chapter
we take F = C.

6.1 Definition and Basic Properties

If ρ is a representation of a finite group on a finite dimensional F-vector space
E then the function

χρ : G→ F : g 7→ tr
(
ρ(g)

)
(6.1)

is called the character of the representation ρ.
Note that

χρ(e) = dim ρ (6.2)

and that the character is a central function, i.e. invariant under conjugation:

χρ(ghg
−1) = χρ(h) (6.3)

for all g, h ∈ G.
We also have

χρ = χρ′

whenever ρ and ρ′ are equivalent representations.
Sometimes it is notationally convenient to write

χE

83



84 Ambar N. Sengupta

instead of χρ.
It is readily seen that

χE⊕F = χE + χF (6.4)

χE⊗F = χEχF (6.5)

Thus, if E decomposes as

E =
m⊕
i=1

niEi,

where Ei are representations, then

χE =
s∑
i=1

niχEi (6.6)

Note that each character function χ extends naturally to a linear function

χ : F[G]→ F

which is central in the sense that

χ(ab) = χ(ba) for all a, b ∈ F[G]. (6.7)

6.2 Character of the Regular Representation

We examine the character of the regular representation of G:

χreg def
= character of the regular representation (6.8)

As usual, we may view this as a function on F[G]. Then,

χreg(a) = trace of the linear map F[G]→ F[G] : x 7→ ax (6.9)

Consider an element
b =

∑
x∈G

bxx ∈ F[G]

Then
by =

∑
x∈G

bxxy = bey +
∑

z∈G,z 6=y

bzy−1z
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and so, in terms of the basis of F[G] given by the elements of G, left multi-
plication by b has a matrix with be running down the main diagonal. Hence

χreg(b) = |G|be (6.10)

Put another way,
1

|G|
Tr (ρreg(b)) = be (6.11)

Recall that the group algebra F[G] contains simple left ideals L1, ..., Ls,
where s is the number of conjugacy classes in G, each irreducible represen-
tation of G is isomorphic to some Li, and the algebra F[G] is isomorphic to
the product of two-sided ideals F[G]i, where F[G]i is the sum of all left ideals
isomorphic to Li. Furthermore,

F[G]iF[G]j = 0 if i 6= j

Moreover,
F[G]i ' EndF(Li)

Let
χi = character of the representation on Li. (6.12)

Thus, every character χ of G is a linear combination of the form

χ =
s∑
i=1

niχi, (6.13)

where ni is the number of copies of Li in a direct sum decomposition of the
representation for χ into irreducible representations.

In particular, for the character χreg, we have

χreg =
s∑
i=1

diχi, (6.14)

is the number of copies of Li in a direct sum decomposition of F[G] into
simple left ideals. We know that

di = dimDi Li,

where Di is the division ring

Di = EndF[G]iLi
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When F is algebraically closed, di equals dimF Li.
Recalling (6.9), and noting that

ajF[G]i = 0 if aj ∈ F[G]j and j 6= i,

we have
χi(aj) = 0 if aj ∈ F[G]j and j 6= i (6.15)

Thus,

χi

∣∣∣F[G]j = 0 if j 6= i (6.16)

Equivalently,
χi(uj) = 0 if j 6= i (6.17)

where, as usual, uj is the generating idempotent for F[G]j. On the other
hand,

χi(ui) = dimF Li (6.18)

because the central element ui acts as the idenitity on Li ⊂ Ai. In fact, this
also implies that

χreg(yui) = diχi(y) for all y ∈ G (6.19)

Because of (6.17) and (6.18) it follows that if∑
i

ciχi = 0

where c1, ..., cs ∈ k, then, on applying this to aj,

cj dimF Li = 0.

Thus, if F has characteristic 0, then the irreducible characters are linearly
independent over F.

There is one very fundamental consequence of linear independence of
irreducible characters, which justifies the name ‘character’:

Theorem 6.2.1 If two representations have the same character then they
are equivalent.

Proof. Let E1, ..., Es be a maximal collection of inequivalent irreducible rep-
resentations of G. If E is a representation of G then E is isomorphic to a
direct sum

E '
s⊕
i=1

niEi (6.20)
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where niEi is a direct sum of ni copies of Ei. Then

χE =
s∑
i=1

niχi

The coefficients ni are uniquely determined by χE, and hence so is the de-
composition (6.20) up to isomorphism. QED

6.3 Fourier Expansion

We assume, as usual, that the character of F does not divide |G|.
Let

b =
∑
x∈G

bxx ∈ k[G]

Recall that, technically, b is a function G→ k.
Then

χreg(bx−1) = |G|bx, for any x ∈ G.

and so

bx =
1

|G|

s∑
i=1

diχi(bx
−1) (6.21)

Thus,

b =
∑
x∈G

(
s∑
i=1

di
|G|

χi(bx
−1)

)
x (6.22)

Choose a F-basis in each Li, and let ρi(x)lm be the matrix entries of

ρi(x) : Li → Li : y 7→ xy.

Then

χi(bx
−1) =

∑
l,m

ρi(b)
m
l ρi(x

−1)lm

So we can rewrite (6.22) as:

b =
1

|G|

s∑
i=1

di
∑
l,m

ρi(b)
m
l

(∑
x∈G

ρi(x
−1)lmx

)
(6.23)
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In the case where G is a cyclic group with generator z, the irreducible repre-
sentations are all one dimensional and ρ(zk) has the form ei

2πk
n . Then (6.22)

is a Fourier expansion of the function b.
This shows that the ‘matrix elements’∑

x∈G

ρi(x
−1)lmx (6.24)

span F[G]. Here 1 ≤ l,m ≤ dimF Li. When F is algebraically closed, the
total number of these elements is

s∑
i=1

(dimF Li)
2 = |G| = dimF k[G],

and so the matrix elements form a basis of F[G]. We will return to a more
detailed account of this in section 6.4.

Let us look at the expansion of the idempotents ui ∈ k[G]i which form a
basis of the center of F[G]. Setting b = ui in (6.22) gives:

ui =
∑
x∈G

di
|G|

χi(uix
−1)x+ 0 =

di
|G|

∑
x∈G

χi(x
−1)x =

1

|G|
∑
x∈G

χreg(uix
−1)

where we have used the fact that χi(ujy) = 0 for all j 6= i, and

diχi(y) = diχi(uiy) = χreg(uiy)

for all y ∈ G, and di is the multiplicity of Li in F[G], equal to dimF Li in case
F is algebraically closed.

This lets us express the basis elements ui for the center of F[G] in terms
of the basis elements

bC =
∑
x∈C

x, C running over the set C of all conjugacy classes in G.

(6.25)
The central idempotent corresponding to the character χi is:

ui =
di
|G|

∑
x∈G

χi(x
−1)x =

di
|G|

∑
C∈C

χi(C
−1)bC , (6.26)

where χi(C) is the constant value of χi on the conjugacy class C.
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Note an immediate consequence:

The multiplicities di are not divisible by the character of F. (6.27)

(NEED MORE DETAILS HERE: More conclusions can be drawn: for
example, that each di is a divisor of |G|. Thus, when F is algebraically
closed, the dimension of any irreducible representation is a divisor of |G|.)

Recall that, technically, an element f ∈ k[G] is a function f : x 7→ f(x)
on G with values in F. The usual pointwise product on the algebra F[G] is
thus given by

fh =
∑
s∈G

fss
∑
t∈G

htt =
∑
x∈G

(∑
y∈G

fyhy−1x

)
x

Keeping this in mind, let us define the normalized convolution of functions
on G:

f ∗ h(x)
def
=

1

|G|
∑
y∈G

f(y)h(y−1x) (6.28)

The property
uiuj = δijui

then translates into

didj
|G|

∑
x∈G

(χi ∗ χj)(x−1)x = δij
di
|G|

∑
x∈G

χi(x
−1)x,

which implies

χi ∗ χj = δij
1
di
χi. (6.29)

In particular,

1

|G|
∑
x∈G

χi(x)χi(x
−1) = 1, if F is algebraically closed. (6.30)

The idempotent ui corresponds to a submodule F[G]i of F[G] containing
di copies of the irreducible representation whose character is χi. For a general
idempotent u, the relation between u and the corresponding character χu for
the submodule F[G]u is worked out in the exercises. The result is∑

x∈G

χu(x
−1)x =

∑
g∈G

gug−1 (6.31)
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6.4 Orthogonality Relations

Recall the notion of a matrix element for a representation of G on a vector
space E. It is a function on G of the form

G→ F : g 7→ f ∗(gu)

where f ∗ ∈ E∗ and u ∈ E.
It is visually convenient to write an element u ∈ E as a ‘ket’:

|u〉

and an element w in the dual space E∗ as a ‘bra’

〈w |

The evaluation of w on u is then given by the ‘bra-ket’

〈w |u〉

Thus, a matrix element for a representation ρ is the function given by

g 7→ 〈w | ρ(g) |u〉

for some bra 〈w| and ket |u〉.
If {ei}i∈I is a basis of E then the elements of the dual basis {ei}i∈I may

be written as

〈ei | def
= ei. (6.32)

Consider two irreducible representations E and F of the finite group G.
By Schur’s lemma,

HomG(E,F ) = 0 if E and F are not equivalent

and (with the field F being algebraically closed),

dimF HomG(E,F ) = 1 if E and F are equivalent.

Consider any F-linear map

T : E → F.
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If we symmetrize it with respect to the action of G we obtain

T ′ =
∑
g∈G

gTg−1

The symmetrized element T ′ can be understood this way: there is a natural
action of G on HomF(E,F ) and HomG(E,F ) is the subspace on which G
acts trivially; T ′ is |G| times the projection of T onto this subspace as in
Theorem 3.5.1.

If E and F are inequivalent then, of course, T ′ must be 0. Consider for
T the operator

T = |f〉〈e| : E → F : |v〉 7→ 〈e|v〉|f〉
(Such operators, of course, span HomF(E,F ).) Then∑

g∈G

g|f〉〈e|g−1 = T ′ = 0.

We conclude then:

Theorem 6.4.1 If ρE and ρF are inequivalent irreducible representations of
a finite group G on vector spaces E and F , respectively, then the matrix
elements of ρ and ρ′ are orthogonal in the sense that∑

g∈G

〈f ′|ρF (g)|f〉〈e′|ρE(g−1)|e〉 = 0 (6.33)

for all 〈f ′| ∈ F ∗, 〈e′| ∈ E∗ and all |e〉 ∈ E, |f〉 ∈ F . In particular,∑
g∈G

χE(g)χF (g−1) = 0. (6.34)

Equation (6.34) follows from (6.33) on letting e and f run over basis elements
of E and F , respectively, and e′ and f ′ over corresponding dual bases, and
then summing over e and f .

Now assume that F is algebraically closed and has characteristic 0. Let
E be a fixed irreducible representation of G. Then Schur’s lemma implies
that for any T ∈ EndF(E) the symmetrized operator T ′ is a multiple of the
identity. The value of this multiplier is easily obtained by comparing traces:∑

g∈G

gTg−1 = T ′ =
|G|

dimFE
tr(T )I, (6.35)
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noting that both sides have trace equal to |G|tr(T ).
Working with a basis {ei}i∈I of E, we then have

〈ej|T ′|ei〉 =
|G|

dimFE
tr(T )δji for all i, j ∈ I. (6.36)

Taking for T the particular operator

T = ρ(h)|em〉〈es|,

we obtain:

Theorem 6.4.2 If F is algebraically closed and has characteristic 0, and ρE
is an irreducible representation of the finite group G on a vector space E over
F then, for any h ∈ G,

1

|G|
∑
g∈G

〈es|ρE(g−1)|ei〉〈ej|ρE(gh)|em〉 =
1

dimFE
ρE(h)smδ

j
i for i, j, s,m ∈ I.

(6.37)
for any basis {|ei〉}i∈I of E. In particular,

1

|G|
∑
g∈G

〈es|ρE(g−1)|ei〉〈ej|ρE(g)|em〉 =
1

dimFE
δsmδ

j
i for all i, j, s,m ∈ I.

(6.38)
For the character χE we have:

1

|G|
∑
g∈G

χE(g)χE(g−1h) =
1

dimFE
χE(h), (6.39)

and
1

|G|
∑
g∈G

χE(g)χE(g−1) = 1, (6.40)

6.5 The Invariant Inner Product

In this section, k = C, the field of complex numbers.
On the finite group G we have the normalized Haar measure µ:

µ(S) =
1

|G|
|S|, for all S ⊂ G
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Now consider any representation ρ of G on a vector space E. Take any
inner-product 〈·, ·〉′ on E, and define:

〈u, v〉 =
1

|G|
∑
x∈G

〈ρ(x)u, ρ(x)v〉′ for u, v ∈ E (6.41)

This is readily checked to be an inner-product. Furthermore, we have the
invariance

〈ρ(x)u, ρ(x)v〉 = 〈u, v〉 for all x ∈ G, and u, v ∈ E

This property is also described as unitarity of the representation of G on
E relative to the inner product 〈·, ·〉, because each ρ(x) is then a unitary
operator on E.

Unitarity leads to the following fact:

〈u, x−1v〉 = 〈xu, v〉 = 〈v, xu〉 (6.42)

Writing ρ for the representation, this property of unitarity of ρ can also be
expressed as

ρ(x−1) = ρ(x)∗ (6.43)

Thus, the representation ρ is unitary if and only if each ρ(x) is unitary.

6.6 The Invariant Inner Product on Function

Spaces

The group algebra
F[G]

is, as a set and as a vector space, the space of all functions

G→ F.

The distinction between F[G] and the function space lies in the multiplicative
structure: the product of f, h ∈ F[G] is given in the function space by the
convolution:

fh =
∑
s∈G

fss
∑
t∈G

htt =
∑
x∈G

(∑
y∈G

fyhy−1x

)
x =

∑
x∈G

(f ∗′ h)(x)x
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where the convolution f ∗′ h is given by

f ∗′ h(x)
def
=
∑
y∈G

f(y)h(y−1x) (6.44)

The general relation
χρ(ab) = Tr(ρ(a)ρ(b))

specializes to

χreg(fh) = Tr (ρreg(f)ρreg(h)) =
∑
x∈G

f(x)h(x−1) (6.45)

This specifies a bilinear pairing on F[G].
We will now specialize to the case

F = C.

Let
L2(G) = {all functions G→ C}

This is a complex vector space with an inner-product:

〈f, h〉 =
1

|G|
∑
x∈G

f(x)h(x), for all F,H ∈ L2(G) (6.46)

Recalling that every element of C[G] is a function on G:∑
y∈G

ayy = a : G→ C

we see that
L2(G) = C[G] (6.47)

as complex vector spaces.
The product on the algebra C[G] is given in the function notation by

fh =
∑
s∈G

fss
∑
t∈G

htt =
∑
x∈G

(∑
y∈G

fyhy−1x

)
x

Thus, the product corresponds to |G| times the normalized convolution of
functions on G:

f ∗ h(x)
def
=

1

|G|
∑
y∈G

f(y)h(y−1x) (6.48)
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Multiplication on the left by f on C[G] is given by the operator Mf :

Mfh = |G|f ∗ h (6.49)

The left regular representation ρreg of G on C[G], corresponds in the
function notation to

ρreg
x f(y) = f(x−1y) for all f ∈ L2(G) and x, y ∈ G

This representation is unitary:

〈ρreg
x f, ρreg

x h〉 = 〈f, h〉 for all f, h ∈ L2(G) and x ∈ G (6.50)

The results of Theorem 6.4.1 and Theorem 6.4.2 of the preceding section
can be summarized thus:

Theorem 6.6.1 For irreducible complex representations of a finite group G,
the following hold:

(i) matrix elements for inequivalent irreducible representations are orthog-
onal;

(ii) if ρ is an irreducible representation of G on a complex vector space E
then, considering the matrices ρ(x) relative to a basis in E which is
orthonormal relative to some invariant inner product, different matrix
elements are orthogonal and each matrix element ρij has norm squared
given by

||ρij||2L2 =
1

dimE
(6.51)

(iii) the convolution of matrix elements relative to an orthonormal basis of
an irreducible representation is a multiple of a matrix element for the
same representation, the multiplier being 0 or 1/ dimE;

(iv) if χE is the character of an irreducible representation of G on a vector
space E, then

χE ∗ χE =
1

dimE
χE (6.52)

(v) characters of inequivalent irreducible representations are orthogonal;
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(vi) if χE is an irreducible representation of G then

||χE||L2 = 1 (6.53)

Note that we derived the convolution property part (iv) earlier (6.29)
using idempotents.

The matrix elements for irreducible representations form not only an or-
thogonal system of functions, they form a basis of L2(G):

Theorem 6.6.2 For a finite group G, let E1, ..., Es be a maximal set of
non-isomorphic irreducible representations of G. Choose an invariant in-
ner product on each Er, and an orthonormal basis. Then the scaled matrix
elements

(dimEr)
−1/2(ρEr)

i
j (6.54)

form an orthonormal basis of L2(G).
The characters χ1, ..., χs form an orthonormal basis of the space of central

functions on G.

Proof. We have seen that the functions in (6.54) are orthonormal in L2(G).
The total number of these functions is

s∑
r=1

(dimEr)
2.

But this is precisely the number of elements in G, i.e. it is equal to dimL2(G).
Thus, the functions (6.54) do form a basis of L2(G). For the characters,
observe again that they are orthonormal, and there are s of them; but s is
the number of conjugacy classes in G, and so is the dimension of the space
of central functions on G. QED

We can show that the matrix entries span L2(G) by using the Fourier
expansion (6.22):

b =
∑
x∈G

(
s∑
r=1

dr
|G|

χr(bx
−1)

)
x

For f ∈ L2(G), let Mf be the operator

L2(G)→ L2(G) : h 7→Mfh
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which corresponds to multiplication in C[G]. Let L1, ..., Lr be a maximal set
of non-isomorphic simple left ideals in C[G]. Let M r

f be the restriction of Mf

to Lr ⊂ C[G] = L2(G). Then

f(x) =
s∑
r=1

dr
|G|

Tr
(
M r

fρr(x
−1)
)

(6.55)

=
s∑
r=1

dr
|G|

∑
1≤i,j≤dr

(M r
f )jiρr(x

−1)ij (6.56)

Let us note the following result which is useful in proving irreducibility
sometimes:

Proposition 6.6.1 A character χ is irreducible if and only if ||χ||L2 = 1.

Proof. Suppose χ decomposes as

χ =
s∑
i=1

niχi,

where χ1, ..., χs are the irreducible characters. Then

||χ||2L2(G) =
s∑
i=1

n2
i ,

and so the norm of χ is 1 if and only if all ni are zero except for one which
equals 1. QED

Here is an immediate application of these considerations. Consider the
product group Gn. Let χi be the character of the irreducible representation
Ei. The tensor products of the character functions produce the functions

χi1 ⊗ · · · ⊗ χin : Gn → C : (x1, ..., xn) 7→ χi1(x1) . . . χin(xn)

which are characters of the representations of Gn on Ei1 ⊗ · · · ⊗ Ein , they
orthonormal in L2(Gn), and sn in number. Note that sn is the number of
conjugacy classes in Gn. Thus, Ei1 ⊗ · · · ⊗ Ein run over all the irreducible
representations of Gn.
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6.7 Orthogonality Revisited

As usual, χ1, ..., χs denote all the distinct complex irreducible characters of
G.

Recall the orthogonality relations:∑
g∈G

χi(g)χj(g
−1) = δij|G| (6.57)

Since a character is constant on each conjugacy class, we can rewrite this as:∑
C∈C

|C|χi(C)χj(C) =
∑
C∈C

|C|χi(C)χj(C
−1) = δij|G| (6.58)

where
C = the set of all conjugacy classes in G, (6.59)

and χ(C) denotes the constant value of χ on the conjugacy class C.
The values of the irreducible characters form an s× s matrix

[χr(C)]r∈R,C∈C

where now we use the convenient notation

R = the set of all irreducible representations of G. (6.60)

The entry
χr(C)

is viewed as lying on ‘row’ r and column C. Note that we do have a square
matrix, since

|C| = |R| = s.

The matrix has rows which are orthogonal, when each column C is weighted
with (|C|/|G|)1/2. Consequently, the columns of this weighted matrix are
also orthogonal, which we may state as:

Theorem 6.7.1 With notation as established,∑
r∈R

χr(Ci)χr(C
−1
j ) = δij

|G|
|Ci|1/2|Cj|1/2

=
|G|
|Ci|

δij (6.61)

for any conjugacy classes Ci and Cj.
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There is another, direct way, to see this identity (from Zagier [10]): let
(g, h) ∈ G×G and consider the map

T(g,h)(a) = gah−1 for a ∈ F[G] and g, h ∈ G.

Computing the trace of T(g,h) using the basis of of F[G] given by the elements
of G we see readily that

Trace(T(g,h)) =

{
0 if g and h are not in the same conjugacy class;
|G|
|C| if g and h both belong to the same conjugacy class C.

(6.62)
We can also compute the trace of T(g,h) from the decomposition of F[G] into
the two-sided ideals F[G]r:

Trace(T(g,h)) =
∑
r∈R

Tr
(
T(g,h)|F[G]r

)
(6.63)

The trace on the right may be worked out by using the isomorphism

ρreg
r : F[G]r → EndF(Lr)

Thus:
Tr
(
T(g,h)|F[G]r

)
= Tr

(
ρreg
r ◦ T(g,h)

∣∣∣F[G]r ◦
(
ρreg
r

)−1
)

(See (5.9) in this context.) The trace on the right is best computed via the
identification

EndF(Lr) ' Lr ⊗ L∗r
which leads to

Tr
(
T(g,h)|F[G]r

)
= Tr (ρreg

r (g)) Tr
(
ρreg
r (h−1)

)
= χr(g)χr(h

−1)

Combining this with (6.63) and (6.62) yields the desired orthogonality rela-
tion (6.61).

Exercises

1. Let u =
∑

h∈G u(h)h be an idempotent in A = F[G], and let χu be the
character of the regular representation of G restricted to Au:

χu(x) = Trace of Au→ Au : y 7→ xy.
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(i) Show that, for any x ∈ G,

χu(x) = Trace of A→ A : y 7→ xyu.

(ii) Check that for x, g ∈ G,

xgu =
∑
h∈G

u(g−1x−1h)h

(iii) Conclude that:

χu(x) =
∑
g∈G

u(g−1x−1g), for all x ∈ G. (6.64)

Equivalently, ∑
x∈G

χu(x
−1)x =

∑
g∈G

gug−1 (6.65)

(iv) Show that the dimension of the representation on Au is

du = |G|u(1G)

where 1G is the unit element in G.

2. Let y =
∑

x∈G y(x)x ∈ Z[G], and suppose that y2 is a multiple of y and
y(1G) = 1.

(i) Show that there is a positive integer γ which is a divisor of |G|,
and for which γ−1y is an idempotent.

(ii) Show that the dimension of the representation space for the idem-
potent γ−1y is a divisor of |G|.
[Sol: Let A = Q[G], and let A′ be a complementary subspace to
Ay, i.e. A = Ay ⊕ A′. Suppose y2 = γy. The trace of Ty : A →
A : x 7→ xy is, on one hand, |G|y(1G) = |G|, and it is also equal
to 0 + γ dimQ(Ay), because Ty maps A′ into the complementary
space Ay, and on Ay it acts as multiplication by γ.]

3. Suppose a group G is represented irreducibly on a finite-dimensional
vector space V over an algebraically closed field F. Let B be a non-zero
bilinear form on V , i.e. a bilinear function V × V → k, which is G-
invariant in the sense that B(gv, gw) = B(v, w) for all vectors v, w ∈ V
and g ∈ G. Show that
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(i) B is non-degenerate. [Hint: View B as a linear map V → V ∗ and
use Schur’s lemma.]

(ii) if B′ is also a G-invariant bilinear form on V then B′ = cB for
some c ∈ B.

(iii) If G is a finite group, and k = C, then either B or −B is positive-
definite, i.e. B(v, v) > 0 for all non-zero v ∈ V .
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Chapter 7

Some Arithmetic

In this chapter F will be a field, G a finite group, with |G| 6= 0 in F.

7.1 Characters as Algebraic Integers

Recall the unitarity result of Proposition 1.9.1: if ρ is a representation of a
finite group G over a field F in which |G| 6= 0 then for each x ∈ G there
is a basis of the representation space relative to which the matrix of ρ(x)
is diagonal and the diagonal entries are all |G|-th roots of unity. As an
immediate consequence we have:

Proposition 7.1.1 Suppose G is a finite group, F a field, and |G| 6= 0 in F.
Assume also that F contains all |G|th-roots of 1. Then, for any representation
ρ of G on a finite-dimensional vector space Vρ 6= 0 over F, the character value
χρ(x) is a sum of |G|-th roots of 1, for all x ∈ G.

For much more on arithmetic properties of characters and representations
see Serre’s book [18].

7.2 Dimension of Irreducible Representations

7.3 Rationality

103
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Chapter 8

Representations of Sn

We denote by Sn the group of permutations on {1, ..., n}.
The theory of groups arose from the study of symmetry properties of

polynomial functions of roots of polynomial equations. This is essentially
the study of representations of the symmetric group on spaces of polynomi-
als P (X1, ..., Xn). Young’s paper [20] introduced a method of constructing
polynomials with certain symmetry properties using tableaux which we de-
scribe below. Frobenius used these tableaux and much more to work out all
the irreducible representations of Sn and their characters. A crucial part of
the exposition in this chapter is the proof that certain elements of the group
algebra F[Sn], generated from Young tableaux, are primitive idempotents;
the proofs here are due to John von Neumann who communicated them to
in a letter to Hermann Weyl [19].

We have seen that the irreducible representations of a finite group G over
a field F, whose characteristic does not divide |G|, correspond to left ideals
in F[G] generated by primitive idempotents. Moreover, if F is algebraically
closed then the number of non-isomorphic irreducible representations of G
equals the number of conjugacy classes in G. We will apply this to the case
G = Sn.

We will work out, for each conjugacy class in Sn, a primitive idempotent
in F[Sn] and show that these generate all the irreducible representations of
Sn. In more detail, for each partition of n as

n = λ1 + · · ·+ λn,

into positive integers λi, displayed in the form of a tableau T (as explained
later), we will construct a primitive idempotent yT . The simple left ideals

105
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F[Sn]yT , formed from all the distinct partitions of n, will be shown to be
inequivalent, and their sum is a direct sum. Now we have seen that, for F al-
gebraically closed, the number of non-isomorphic irreducible representations
of G equals the number of conjugacy classes in G. The latter are, as we
will see, in one-to-one correspondence with the partitions of n. Thus, every
irreducible representation of Sn is isomorphic to exactly one of the simple
left ideals F[Sn]yT .

8.1 Conjugacy Classes and Young Tableaux

Recall that any element in Sn can be expressed in a unique way as a product
of disjoint cycles:

(a11, ..., a1λ1) . . . (am1, ..., amλm)

where the aij are distinct and run over {1, ..., n}. This permutation thus
specifies a partition

(λ1, ..., λm)

of n into positive integers λ1, ..., λm:

λ1 + · · ·+ λm = n.

By convention, we require that

λ1 ≥ λ2 ≥ . . . ≥ λm.

Two permutations are conjugate if and only if they have the same cycle
structure, i.e. the partition of n is the same for the permutations.

Thus, the conjugacy classes of Sn correspond one to one to partitions of
n.

A Young tableau is a matrix of the form

a11 ... ... ... ... a1λ1

a21 ... ... a2λ2

...
...

...
am1 . . . amλm

(8.1)

We will take the entries all distinct and drawn from {1, ..., n}. If the numbers
are in their natural order reading ‘book style’, we call it a standard tableau.
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Thus, each tableau is associated to a partition of n, and for each partition
there is a unique standard tableau.

Thus, the standard tableaux correspond one to one to the conjugacy
classes in Sn.

Clearly the group Sn acts on the set of tableaux corresponding to each
partition of n.

For a tableau T , Young introduced two subgroups of Sn: those which
preserve each row and those which preserve each column. Let

RT = the subgroup of all p ∈ Sn which preserve each row of T (8.2)

CT = the subgroup of all q ∈ Sn which preserve each column of T(8.3)

Young’s symmetrizer for the tableau is the element

yT
def
= cT rT =

∑
q∈CT ,p∈RT

(−1)qqp ∈ Z[Sn], (8.4)

where

cT =
∑
q∈CT

(−1)qq (8.5)

rT =
∑
p∈RT

p (8.6)

We have used the notation

(−1)q = sgn(q).

Observe that

RT ∩ CT = {identity permutation}

Consequently, each element in the set

CTRT = {qp : q ∈ CT , p ∈ RT}

can be expressed in the form qp for a unique q ∈ CT and a unique p ∈ RT .
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8.2 Construction of Irreducible Representa-

tions of Sn

If F is any field, there is the natural ring homomorphism

Z→ F : m 7→ mF
def
= m1F,

which is injective if F has characteristic 0, and which induces an injection
of Zp = Z/pZ onto the image of Z in F if the characteristic of F is p 6= 0.
To avoid too much notational distraction, we shall often sacrifice precision
and denote m1F as simply m instead of mF, bearing in mind that this might
be the 0 element in F. An element of F of the form m1F, with m ∈ Z, will
simply be called an integer in F.

Passing to the group algebras, there is naturally induced a ring homo-
morphism

Z[Sn]→ F[Sn] : a 7→ ak,

for any n ∈ {1, 2, ...}. Again, this homomorphism is an injection, with image
also denoted Z[Sn], if F has characteristic 0; on the other hand, if F has
characteristic p 6= 0 then there is induced an injective ring homomorphism
Zp[Sn] → F[Sn], and in this case we denote the image of Z[Sn] in F[Sn] by
Zp[Sn]. Again, we will often simply write a instead of ak. For instance, the
image of the Young symmetrizer yT ∈ Z[Sn] in F[Sn] is denoted simply by
yT in the statement of the following result.

Theorem 8.2.1 Let n ∈ {2, 3, ...} and F a field in which n! 6= 0. Let T be a
Young tableau for n. Then there is a positive integer γT , dividing n!, such that
the element eT = 1

γT
yT is a primitive idempotent in F[Sn]. The corresponding

representation space F[Sn]yT has dimension dk,T which satisfies

γTdk,T = n! in F. (8.7)

There are elements v1, ..., vdk,T ∈ Z[Sn]yT whose images in F[Sn] form a F-
basis of F[Sn]yT . If F has characteristic 0 then

dT = dk,T =
n!

γT
(8.8)

does not depend on the field F, and the elements v1, ..., vdT form a Q-basis of
Q[Sn]yT .
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Proof. The primitivity criterion in Theorem 4.5.1(i) will be our key tool.
Fix g ∈ Sn, and let

z = ygy. (8.9)

Our first objective is to prove that z is an integer multiple of y.
Observe that

qy = (−1)qy, for all q ∈ CT (8.10)

yp = y for all p ∈ RT . (8.11)

Consequently,

qzp = (−1)qz for all p ∈ RT and q ∈ CT . (8.12)

Note that, of course, this holds also for y:

qyp = (−1)qy for all p ∈ RT and q ∈ CT . (8.13)

In fact we will now show that the property (8.12) forces z to be an integer
multiple of y.

Writing z as

z =
∑
s∈Sn

z(s)s,

(note that each z(s) is an integer) we see then that, for q ∈ CT and p ∈ PT ,

z(qp) = coeff of 1 in q−1zp−1 = (−1)qz(1)

and so
z = z(1)y +

∑
s/∈CTRT

z(s)s. (8.14)

Next we show that the second term on the right is 0. Here we shall use a
crucial fact (proved below in Proposition 8.3.2) about Young tableaux which
makes the whole argument work:

If s /∈ CTRT then there are transpositions σ ∈ RT and τ ∈ CT such that

τsσ = s, (8.15)

Then

τzσ = −z by (8.12), but also

τzσ = −z(1)y +
∑

s/∈CTRT

z(s)s, by (8.14) and (8.15).
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It follows that ∑
s/∈CTRT

z(s)s = 0

and so
z = z(1)y, (8.16)

i.e. ygy is an integer multiple of y.
Consequently, yxy is a F-multiple of y for every x ∈ F[Sn].
As a special case, on taking g to be the identity element in z = ygy, i.e.

with z = y2, we have
yy = γy, (8.17)

where
γ = (y2)(1) (8.18)

is the coefficient in y2 ∈ Z[Sn] of the identity element in Sn. In particular,
the multiplier γ is an integer.

If γ 6= 0 in F, then
e = γ−1y

is clearly an idempotent in F[Sn]. We will show shortly that γ is a positive
integer and is indeed not 0 in the field F. Then e is an idempotent in F[Sn]
and, moreover, exe is a F-multiple of e for all x ∈ F[Sn], and hence by the
primitivity criterion in Theorem 4.5.1(i), e is a primitive idempotent.

Consider the right multiplication map

Ty : F[Sn]→ F[Sn] : a 7→ ay

This is F-linear, on the subspace Ay it equals multiplication by the constant
γ and maps any complementary subspace into F[Sn]y, and so has trace equal
to γ dimk

(
k[Sn]y

)
. On the other hand, in terms of the standard basis of k[Sn]

given by the elements of Sn, the trace of Ty is

Trace(Ty) = n!y(1) = n!,

since, from the definition of y it is clear that

y(1) = 1.

Thus,
γ dimF

(
F[Sn]y

)
= n! (8.19)
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in F. By assumption, n! 6= 0 in F, and so γ 6= 0 in F. For the special case
k = Q, the relation (8.19) shows that γ is a positive integer divisor of n!.

Since the F-linear span of Z[Sn]yT is F[Sn]yT , there is a F-basis v1, ..., vdk,T
of F[Sn]yT inside Z[Sn]yT . Let us check that v1, ..., vdk,T ∈ Z[Sn]yT are linearly
independent over Q. For notational simplicity let us write d for dk,T . If
a non-trivial rational linear combination of the vj’s is 0 then, by clearing
denominators and common factors, there are integers a1, ..., ad ∈ Z, not all
zero, with greatest common divisor 1, such that

a1v1 + · · ·+ advd = 0. (8.20)

If F has characteristic 0 then F effectively contains Z and so the F-linear
independence of the vj rules out (8.20); if F has finite characteristic p then
k ⊃ Z/pZ, and then reducing (8.20) mod p and bearing in mind that p is
not a factor of some aj, the relationship (8.20) is again impossible by linear
independence over F. Hence, v1, ..., vd ∈ Z[Sn]yT are linearly independent

over Q. QED
From the preceding result we can draw a remarkable conclusion: for any

Young tableau T , the representation ρT of Sn in characteristic 0, there is
a basis in the representation space relative to which the matrix for ρT (x)
has rational entries for all x ∈ Sn. Indeed, the following result gives a more
refined formulation of this observation.

Theorem 8.2.2 Let ρT : Sn → EndF(ET ) be the irreducible representation
of Sn on a vector space ET over a field F of characteristic 0, where n ∈
{2, 3, ...}, associated to a Young tableau T . Then there is a basis of E relative
to which for each x ∈ Sn the matrix of ρT (x) has entries of the form r/s where
r, s ∈ Z and s is coprime to 1, 2, ..., n.

Proof We will use notation and observations from the proof of Theorem 8.2.1.
Recall, for instance, that there are elements v1, ..., vd ∈ Z[Sn]yT which form
a F-basis of F[Sn]yT and a Q-basis of Q[Sn]yT .

Left-multiplication by x ∈ Sn on Q[Sn]yT has matrix, relative to the basis
v1, ..., vd, with rational entries:

xvj = ρT (x)vj =
d∑

m=1

ρT (x)jmvm, (8.21)

where ρT (x)jm is rational for each j,m ∈ {1, ..., d}. Since the characteristic
of F is 0, Q is contained inside F, and so this establishes the claim that the
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matrix of ρT (x), relative to the basis v1, ..., vd of F[Sn]yT , has rational entries.
For fixed x ∈ Sn, let us write

ρT (x)jm =
rjm
sjm

(8.22)

where rjm, sjm ∈ Z are coprime integers (in particular, we take sjm = 1 if
rjm = 0). Let p be a prime divisor of n!. We will show that none of the sjm
is divisible by p. Let a be the largest integer pa is a divisor of sjm for some
m ∈ {1, ..., d}, and suppose a ≥ 1; then multiplying both sides in (8.21) by
pa produces, in the field F, the relation

0 = paxvj =
d∑

m=1

parjm
sjm

vm (8.23)

where, on the right, at least one of the coefficients is not 0 in F. But this
contradicts the linear independence of v1, ..., vd over the field F. Hence, the
matrix entries ρT (x)jm can be expressed as

rjm
sjm

, with rjm, sjm coprime and

sjm not divisible by p. QED

IS THERE CANONICAL/CONVENIENT BASIS FOR Q[Sn]yT ?

WHAT IS THE STRUCTURE OF THE Z-module Z[Sn]yT ?

8.3 Some properties of Young tableaux

In this section we will prove the combinatorial fact used in establishing that
Young symmetrizers are primitive idempotents. We will also prove a result
that will lead to the fact that the Young symmetrizers for different partitions
of n provide inequivalent irreducible representations of Sn.

Consider partitions λ and λ′ of n. If λ′ 6= λ then there is a smallest j for
which λ′j 6= λj. If, for this j, λ′j > λj then we say that λ′ > λ in lexicographic
order. This is an order relation on the partitions of n. The largest element
is

(n)

and the smallest element is (1, 1, ..., 1).

Note also that permutations act on tableaux. If g ∈ Sn, and T is a
tableau, with entries Tjk, then gT is a tableaux whose jk entry is g(Tjk).



Representations of Algebras and Finite Groups 113

Proposition 8.3.1 Let T and T ′ be Young tableaux, and λ and λ′ the cor-
responding partitions of n. If λ′ > λ in the lexicographic order, then there
are two entries in the same row of T ′ which are in the same column of T .
Consequently, there exists a transposition σ lying in RT ′ ∩ CT .

Proof. If λ′1 > λ1 then there must exist two entries in the first row of T ′ which
lie in the same column of T . If λ′1 = λ1, and all elements of the first row of
T ′ lie in different columns of T , we can move these elements ‘vertically’ in T
all to the first row, obtaining a tableau T1 whose first row is a permutation
of the first row of T ′. Note that T1 = q1T , for some q1 ∈ CT . Next we
compare the second row of T ′ with that of T1. Again, if the rows are of equal
length then there is a vertical move in T1 (which is therefore also a vertical
move in T , because Cq1T = CT ) which produces a tableau T2 = q2q1T , with
q2 ∈ CT , whose first row is the same as that of T1, and whose second row is
a permutation of the second row of T ′. Proceeding this way, we reach the
first j for which the j-th row of T ′ has more elements that the j-th row of T .
Then each of the first j − 1 rows of T ′ is a permutation of the corresponding
row of Tj−1; focusing on the tableaux made up of the remaining rows, we
see that there are two elements in the j-th row of T ′ which lie in the same
column in Tj−1. Since the columns of Tj−1 are, as sets, identical to those of

T , we are done. QED
Now we turn to rearrangement arguments for tableaux associated to the

same partition.

Proposition 8.3.2 Let T and T ′ be Young tableaux associated to a common
partition λ. Let s be the element of Sn for which T ′ = sT . Then s /∈ CTRT if
and only if there are two elements which are in the same row of T ′ and also
in the column of T . Thus, s /∈ CTRT if and only if there is a transposition
σ ∈ RT and a transposition τ ∈ CT , for which

τsσ = s. (8.24)

Proof. Suppose that s = qp, with q ∈ CT and p ∈ RT . Consider two elements
s(i) and s(j), with i 6= j, lying in the same row of T ′:

T ′ab = s(i), T ′ac = s(j).

Thus, i, j lie in the same row of T :

Tab = i, Tac = j.
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The images p(i) and p(j) are also from the same row of T (hence different
columns) and then qp(i) and qp(j) would be in different columns of T . Thus
the entries s(i) and s(j), lying in the same row in T ′, lie in different columns
of T .

Conversely, suppose that if two elements lie in the same row of T ′ then
they lie in different columns of T . We will show that the permutation s ∈ Sn
for which T ′ = sT has to be in CTRT . Bear in mind that the sequence of
row lengths (i.e. the partition of n) for T ′ is the same as for T . Consider the
elements of the first row of T ′. They are distributed over distinct columns
of T . Therefore, by moving these elements ‘vertically’ we can bring them
all to the first row. This means that there is an element q1 ∈ CT such that
T1 = q1T and T ′ have the same set of elements for their first rows. Next, the
elements of the second row of T ′ are distributed over distinct columns in T ,
and hence also in T1 = q1T . Hence there is a vertical move

q2 ∈ Cq1T = CT ,

for which T2 = q2T1 and T ′ have the same set of first row elements and also
the same set of second row elements.

Proceeding in this way, we obtain a q ∈ CT such that each row of T ′ is
equal, as a set, to the corresponding row of qT :

{T ′ab : 1 ≤ b ≤ λa} = {q(Tab) : 1 ≤ b ≤ λa}, for each a.

But then we can permute horizontally, i.e. permute, for each fixed a, the
numbers Tab so that the q(Tab) match the Tab. Thus, there is a p ∈ RT , such
that

T ′ = qp(T ).

Thus,
s = qp ∈ CTRT .

Finally, suppose s /∈ CTRT . Then there is a row a, and two entries i = Tab
and j = Tac, whose images s(i) and s(j) lie in a common column of T . Let
σ = (i, j) and τ =

(
s(i), s(j)

)
. Then σ ∈ RT , τ ∈ CT , and

τsσ = s,

which is readily checked on i and j.
Conversely, suppose τsσ = s, where σ = (i j) ∈ RT . Then i and j are

in the same row of T , and so s(i) and s(j) are in the same row in T ′. Now
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s(i) = τ(s(j)) and s(j) = τ(s(i)). Since τ ∈ CT it follows that s(i) and s(j)

are in the same column of T . QED
A Young tableau is said to be a standard tableau if the entries in each

row are in increasing order (left to right) and the numbers in each column
are also in increasing order (top to bottom). For example:

1 2 6

3 4

5

Such a tableau must, of necessity, start with 1 at the top left box, and each
new row begins with the smallest number not already listed in any of the
preceding rows.

It is useful to note that all numbers lying directly ‘south’, directly ‘east’,
and southeast of a given entry are larger than this entry, and those to the
north, west, and northwest are lower.

In general, the boxes of a tableau are ordered in ‘book order’, i.e. we read
the boxes left to right along a row an then move down to the next row.

The standard tableaux, for a given partition, can be linearly ordered: if
T and T ′ are standard tableaux, we declare that

T < T ′

if the first entry Tab of T which is different from the corresponding entry
T ′ab of T ′ satisfies Tab < T ′ab. The tableaux for a given partition can then be
written in increasing order.

With this ordering we have:

Proposition 8.3.3 If T and T ′ are tableaux with a common partition, and
T < T ′, then there are two entries in some row of T ′ which lie in one column
of T . Consequently, there exists a transposition σ lying in RT ∩ CT ′.

Proof. Let x = Tab be the first entry of T which is less than the corresponding
entry y = T ′ab. The entry x appears somewhere in the tableau T ′. Because
ab is the first location where T differs from T ′, and Tab = x, we see that x
cannot appear prior to the location T ′ab. But x being < y = T ′ab, it can also
not appear directly south, east, or southeast of T ′ab. Thus, x must appear in
T ′ in a row below the a-th row and in a column c < b. Thus, the numbers
Tac (which equals T ′ac) and Tab = x, appearing in the a-th row of T , appear

in the c-th column of T ′. QED



116 Ambar N. Sengupta

8.4 Orthogonality of Young symmetrizers

Consider Young tableaux T and T ′, associated with distinct partitions λ and
λ′ of n. We will show that the corresponding irreducible representations are
not isomorphic.

Theorem 8.4.1 If T and T ′ are Young tableaux associated to different par-
titions λ and λ′, respectively, then

yT ′yT = 0 if λ′ > λ in lexicographic order. (8.25)

If T1, ..., Tm are Young tableaux associated to distinct partitions, then the sum∑m
j=1 F[Sn]yTj is a direct sum, if the characteristic of F does not divide n!.

Proof. Suppose that the partition associated to T ′ is greater, in lexicographic
order, than the one associated to T . Then, by Proposition 8.3.1, there is a
transposition σ ∈ RT ′ ∩ CT . Then

yT ′yT = yT ′σσyT = (yT ′)(−yT ) = −yT ′yT

Thus, yT ′yT is 0.
Order the Tj, so that their associated partitions are in decreasing order

lexicographically. Suppose
∑m

j=1 F[Sn]yTj is not a direct sum. Let r be
the smallest element of {1, ..., n} for which there exist xj ∈ F[Sn]yTj , for
j ∈ {1, ..., r}, with xr 6= 0, are such that

r∑
j=1

xj = 0.

Multiplying on the right by yTr , produces

γTrxr = 0

Now γTr is a divisor of n!, and so the characteristic of F does not divide γTr ,
and so

xr = 0.

This contradiction proves that
∑m

j=1 F[Sn]yTj is a direct sum. QED
Moreover, we have
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Theorem 8.4.2 If T and T ′ are Young tableaux corresponding to different
partitions of n, then the irreducible representations F[Sn]yT and F[Sn]yT ′ are
inequivalent.

Proof. Recall the relationship (6.65) between an idempotent u and the
character χu of the representation F[Sn]u:∑

x∈Sn

χu(x
−1)x =

∑
s∈Sn

sus−1 (8.26)

We will use this to show that χyT cannot be equal to χyT ′ .
The row and column Young subgroups behave as follows under the action

of Sn on tableaux:

RsT = sRT s
−1, and CsT = sCT s

−1. (8.27)

Consequently,
ysT = syT s

−1. (8.28)

The primitive idempotents corresponding to yT and ysT are obtained by
scaling by a common term γ which is a divisor of n! = |G|, where G = Sn.
Therefore,

1

|G|
∑
x∈Sn

χyT (x−1)x =
1

|G|γ
∑
s∈Sn

ysT (8.29)

and
1

|G|
∑
w∈Sn

χyT ′ (w
−1)w =

1

|G|γ
∑
t∈Sn

ytT ′ (8.30)

(Note that since each yT is in Z[Sn], this implies that every character value
χi(x) is rational !) Multiplying, we obtain:

1

|G|
∑
x∈Sn

χyT ′ ∗ χyT (x−1)x =
1

|G|2
∑
s,t∈Sn

ytT ′ysT (8.31)

We may assume that the partition of n corresponding to T ′ is greater, lex-
icographically, than the partition for T . Then the same is true for tT ′ and
sT , for any t, s ∈ Sn, and so each term in the sum on the right side of (8.31)
is 0. Consequently,

1

|G|
∑
x∈Sn

χyT ′ ∗ χyT (x−1)x = 0. (8.32)
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Now if the representations for yT and yT ′ were equivalent then

χyT ′ = χyT

and then

χyT ′ ∗ χyT =
1

d̃T
χyT ,

where d̃T is the multiplicity of F[Sn]yT in the regular representation. Conse-
quently, we would have

χyT = 0

But, evaluating the character at the identity, this would imply:

n! = 0 in F,

which, by the hypothesis on the characteristic of F, is false. This proves that
yT and yT ′ generate inequivalent irreducible representations. QED

As a corollary of the proof, we have the observation:

Proposition 8.4.1 The characters of Sn (for any field of characteristic not
dividing n!) take integer values.

Proof. We have seen that each character is a (real) rational number; in
fact, every non-zero representation of Sn, for fields with characteristic not
dividing n!, is realizable by matrices with rational entries. But we also know
that characters are sums of roots of unity and so are algebraic integers.
Therefore, each character is actually an integer. QED

Now turning to tableaux for a fixed partition, we have the following re-
sult whose proof is virtually identical to that of Theorem 8.4.1 (but uses
Proposition 8.3.3):

Theorem 8.4.3 If T and T ′ are standard Young tableaux associated to a
common partition, then

yTyT ′ = 0 if T < T ′. (8.33)

If T1, ..., Tm are all the standard Young tableaux associated to a common
partition, then the sum

∑m
j=1 F[Sn]yTj is a direct sum, if the characteristic of

F does not divide n!.

We do not prove this here, but the two-sided ideal containing the minimal
left ideal F[Sn]yT1 is the direct sum

∑m
j=1 F[Sn]yTj , with notation as in the

preceding theorem.



Chapter 9

Commutants

The commutant C of a set S of operators is the set of all operators which
commute with all operators in S. The double commutant of S is the commu-
tant of C. The relationship between the original collection S and its double
commutant is the subject of several results in algebra and analysis. In this
chapter we will recall, in the light of commutants, results we have proven
before.

9.1 The Commutant

Consider a module E over a ring A (with unit element 1). An endomorphism

f ∈ EndA(E)

is, by definition, a map f : E → E which is additive

f(u+ v) = f(u) + f(v) for all u, v ∈ E, (9.1)

and commutes with the action of A:

f(au) = af(u) for all a ∈ A, and u ∈ E. (9.2)

The case of most interest to us is A = F[G], where G is a finite group and
F a field, and E is a finite dimensional vector space over F, with a given
representation of G on E. In this case, the conditions (9.1) and (9.2) are
equivalent to f ∈ EndF(E) commuting with all the elements of G represented
on E. Thus, EndF[G](E) is the commutant for the representation of G on E.

119
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Sometimes the notation
EndG(E)

is used instead of EndF[G](E). To be more technically precise, we don’t need
the field F to define EndG(E). If E is a module over a ring R (say the integers
or, at the other extreme, a field F) then EndG(E) is the set of all elements
of EndR(E) which commute with the action of G.

Let us recall a consequence of Schur’s Lemma 4.1.2:

Proposition 9.1.1 Let G be a finite group represented on a finite dimen-
sional vector space E over an algebraically closed field F. Then the commu-
tant of this representation consists of multiples of the identity operator on E
if and only if the representation is irreducible.

Suppose now that, with notation as above, the finite-dimensional repre-
sentation E is reducible:

E = En1
1 ⊕ . . .⊕ Enr

r (9.3)

where each Ei is irreducible, each ni ∈ {1, 2, 3, ...}, and Ei 6' Ej as G-
representations when i 6= j. By Schur’s lemma, the only G-linear map Ei →
Ej, for i 6= j, is 0. Consequently, any element in the commutant EndG(E)
can be displayed as a block-diagonal matrix

C1 0 0 . . . 0
0 C2 0 . . . 0
...

...
... . . . 0

0 0 0 . . . Cr

 (9.4)

where each Ci is in EndG(Eni
i ). Moreover, any element of

EndG(Eni
i )

is itself an ni × ni matrix, with entries from

Di = EndG(Ei),

which, by Schur’s lemma, is a division ring (equal to the field F if the latter is
algebraically closed). Conversely, any such matrix clearly specifies an element
of EndG(Eni

i ).
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Thus, we have completely analyzed the structure of the commutant alge-
bra EndG(E). It is the algebra of block diagonal matrices (9.4), where each
Ci is any arbitrary ni × ni matrix with entries from Di:

EndG(E) '
r∏
i=1

Matrni×ni(Di) (9.5)

Indeed, this is a special case of Theorem 4.2.3, because EndG(E) is the
commutant of the image of the semisimple algebra F[G] in EndF(E) and so
is also semisimple.

9.2 The Double Commutant

Recall that a ring B is simple if any two simple left ideals in B are isomorphic
as left B-modules. In this case B is the internal direct sum of a finite number
of simple left ideals, all isomorphic to each other.

Consider a left ideal L in a simple ring B, viewed as a B-module. The
commutant of the action of B on L is the ring

C = EndB(L).

The double commutant is
D = EndC(L).

Every element b ∈ B gives a multiplication map

l(b) : L→ L : a 7→ ba,

which, of course, commutes with every f ∈ EndB(L). Thus, each l(b) is in
EndC(L). We can now recall Rieffel’s Theorem 4.3.3 in this language:

Theorem 9.2.1 Let B be a simple ring, L a non-zero left ideal in B, and

C = EndB(L), D = EndC(L),

the relevant commutant and double commutant. Then the double commutant
D is essentially the original ring B, in the sense that the natural map l :
B → D, specified by

l(b) : L→ L : a 7→ ba, for all a ∈ L and b ∈ B,

is an isomorphism.
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Let E be a semisimple module over a ring A, and C the commutant
EndA(E). Then A is mapped into the double commutant D = EndC(E) by
the map

l : A→ D : a 7→ l(a), where l(a) : E → E : x 7→ ax.

The Jacobson density theorem explains how big l(A) is inside D:

Theorem 9.2.2 Let E be a semisimple module over a ring A, and let C
be the commutant EndA(E). Then for any f ∈ D = EndC(E), and any
x1, ..., xn ∈ E, there exists an a ∈ A such that

f(xi) = axi, for i = 1, ..., n.

In particular, if A is an algebra over a field F, and E is finite dimensional
as a vector space over F, then D = l(A), i.e. every element of D is given by
multiplication by an element of A.

Proof. Let E ′ = En. Then any element of

C ′
def
= EndA(E ′)

is given by an n×n matrix with entries in C. Note that E ′ is a module over
the ring C ′. The map

f ′ : E ′ → E ′ : (y1, ..., yn) 7→
(
f(y1), ..., f(yn)

)
.

is C ′-linear, i.e.
f ′ ∈ EndC′(E

′).

Now E ′, being semisimple, can be split as

E ′ = Ax
⊕

F,

where x = (x1, ..., xn) is any element of E ′, and F is an A-submodule of E ′.
Let

p : E ′ → Ax ⊂ E ′

be the corresponding projection. This is, of course, A-linear and can be
viewed as an element of C ′. Consequently, f ′p = pf ′, and so

f ′
(
p(x)

)
= p
(
f ′(x)

)
∈ Ax.

Since p(x) = x, this implies the desired result. QED
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Exercises

1. SupposeE is a right-module over a semisimple ringA. Then HomA(E,A)
is a left A-module in the natural way via the left-multiplication in A.
Show that the map

E → HomA (HomA(E,A), A) : x 7→ x̂

where x̂(f) = f(x) for all f ∈ HomA(E,A), is injective.

2. Prove Burnside’s theorem: If G is a group of endomorphisms of a finite
dimensional vector space E over a field F, and E is simple as a G-
module, then F[G], the linear span of G inside EndF(E), is equal to the
whole of EndF(E).

3. Prove Wedderburn’s theorem: Let E be a simple module over a ring
A, and suppose that it is faithful in the sense that if a is non-zero in
A then the map l(a) : E → E : x 7→ ax is also non-zero. If E is finite
dimensional over the division ring C = EndA(E) then l : A→ EndC(E)
is an isomorphism.
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Chapter 10

Decomposing a Module using
the Commutant

Consider a module E over a semisimple ring A. Let C be the commutant of
the action of A on E:

C = EndA(E).

If E 6= 0 then this is a ring with 1 6= 0, and E is a left C-module.
In this chapter we will see how the simple ideals in a semisimple algebra

A specify a decomposition of an A-module when the latter is viewed as a
module over the commutant C. This method is the foundation of Schur-
Weyl duality, which we will explore in Chapter 11.

We will go over essentially the same set of ideas and results in three
distinct ways, beginning with a quick, but abstract, approach. The second
aproach is a more concrete one, in terms of matrices and bases. The third
approach considers, again, the general setting of modules over semisimple
rings, but focuses more on the relationship between simple left ideals in A
and simple C-submodules of an A-module.

10.1 Joint Decomposition

Consider a semisimple ring A and a left A-module E. We have seen before
in Theorem 4.6.2 that E decomposes as a direct sum

E '
r⊕
i=1

Li ⊗Di HomA(Li, E) (10.1)

125
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where L1, ..., Lr is a maximal collection of non-isomorphic simple left ideals
in A, and Di is the division ring HomA(Li, Li). The isomorphism is given by

r⊕
i=1

Li ⊗ HomA(Li, E)→ E :
r∑
i=1

xi ⊗ fi 7→
r∑
i=1

fi(xi) (10.2)

The tensor product on the right in (10.1) is over Di but then it becomes a
left A-module through the left A-module structure on Li.

Even though HomA(Li, E) is not, naturally, an A-module, it is a left
C-module, where

C = HomA(E,E)

is the commutant of the action of A on E: if c ∈ C and f ∈ HomA(Li, E)
then

cf = c ◦ f

is also in HomA(Li, E). This makes HomA(Li, E) a left C-module.
Thus, the right side in (10.1) is a C-module in a natural way. It is clear

that the isomorphism (10.1) is also C-linear. Thus,

(10.1)is an isomorphism when both sides are viewed as modules
over the product ring A× C.

A striking feature now emerges:

Theorem 10.1.1 Let E be a left module over a semisimple ring A, and let
C be the ring HomA(E,E), the commutant of A acting on E. Let L be a
simple left ideal in A, and assume that HomA(L,E) 6= 0, i.e. that E contains
some submodule isomorphic to L. Then the C-module HomA(L,E) is simple.

Proof. Let f, h ∈ HomA(L,E), with h 6= 0. We will show that f = ch, for
some c ∈ C. Consequently, any non-zero C-submodule of HomA(L,E) is all
of HomA(L,E).

If u is any non-zero element in L then L = Au, and so it will suffice to
show that f(u) = ch(u).

We decompose E as the internal direct sum

E = F ⊕
⊕
i∈S

Ei,
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where each Ei is a submodule isomorphic with L, and F is a submodule
containing no submodule isomorphic to L. For each i ∈ S the projection
E → Ei, composed with the inclusion Ei ⊂ E, then gives an element

pi ∈ C.

Since h 6= 0, there is some j ∈ S such that pjh(u) 6= 0. Then pjh : L → Ej
is an isomorphism. Moreover, for any i ∈ S, the map

Ej → Ei : pjh(au) 7→ pif(au) for all a ∈ A,

is well-defined, and extends to an A-linear map

ci : E → E

which is 0 on F and on EF for k 6= j. Note that there are only finitely many
i for which pi

(
f(u)

)
is not 0, and so there are only finitely many i for which

ci is not 0. Let S ′ = {i ∈ S : ci 6= 0}. Then, piecing together f from its
components pif = cipjh, we have∑

i∈S′
cipjh = f.

Thus
c =

∑
i∈S′

cipj

is an element of EndA(E) for which f = ch. QED

We may observe one more fact about HomA(L,E), for a simple left ideal
L in A:

Proposition 10.1.1 If L = Ay is a simple left ideal in a semisimple ring
A, with y an idempotent, and E is a left A-module, then the map

J : HomA(L,E)→ yE : f 7→ f(y)

is an isomorphism of C-modules, where C = HomA(E).

Proof. Note that yE is a left C-module.
By semisimplicity of A, there is a projection map p : A→ L, i.e. p is an A-

linear surjection and p|L is the identity map. Then for any f ∈ HomA(L,E)
we have

f(y) = fp(y1) = yf(p(1)) ∈ yE.
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The map
J : HomA(L,E)→ yE : f 7→ f(y)

is trivially C-linear.
The kernel of J is clearly 0.
To prove that J is surjective, consider any v ∈ yE; define a map

f ′ : L→ yE : x 7→ xv.

This is clearly A-linear, and J(f ′) = yv = v, because v ∈ yE and y2 = y.

Thus, J is surjective. QED
Putting everything together we have the isomorphism of A× C-modules

E '
r⊕
i=1

Li ⊗ yiE (10.3)

where Li = yiA, with yi idempotent, runs over a maximal collection of non-
isomorphic simple left ideals in A.

10.2 Decomposition by the Commutant

In this section F is an algebraically closed field. We work with a finite
dimensional vector space V over F, and A a subalgebra of EndF(V ). Thus,
V is an A-module. Let C be the commutant:

C = EndA(V ).

Our objective is to establish Schur’s decomposition of V into simple C-
modules eijV :

Theorem 10.2.1 Let A be a subalgebra of EndF(V ), where V 6= 0 is a finite-
dimensional vector space over an algebraically closed field F. Let

C = EndA(V )

be the commutant of A. Then there exist primitive idempotents {eij : 1 ≤
i ≤ r, 1 ≤ j ≤ ni} in A which generate a decomposition of A into simple left
ideals:

A =
⊕

1≤i≤r,1≤j≤ni

Aeij, (10.4)



Representations of Algebras and Finite Groups 129

and also decompose V , viewed as a C-module, into a direct sum

V =
⊕

1≤i≤r,1≤j≤ni

eijV, (10.5)

where each non-zero eijV is a simple C-submodule of V .

Before proceeding to the proof of the theorem, let us make one observa-
tion. Because A is semisimple we can decompose it as a direct sum of simple
left ideals Aej:

A =
N⊕
j=1

Aej

where the ej are primitive idempotents with

e1 + · · ·+ eN = 1, and eiej = 0 for all i 6= j.

Then V decomposes as a direct sum

V = e1V ⊕ . . .⊕ eNV.

The commutant C maps each subspace ejV into itself. Thus, the ejV give a
decomposition of V as a direct sum of C-submodules. What is, however, not
clear is that each non-zero ejV is a simple C-module; the hard part of The-
orem 10.2.1 provides the simplicity of the submodules in the decomposition
(10.5).

Most of the remainder of this section is devoted to proving this result.
We will follow Dieudonné and Carrell [4] in examining the detailed matrix
structure of A, to generate the decomposition of V .

We decompose V into a direct sum

V =
r⊕
i=1

V i, with V i = Vi1 ⊕ . . .⊕ Vini (10.6)

where Vi1, ..., Vini are isomorphic simple A-submodules of V , and Viα is not
isomorphic to Vjβ when i 6= j. By Schur’s lemma, elements of C map each
V i into itself. To simplify the notation greatly, we can then just work within
a particular V i. Thus let us take for now

V =
n⊕
j=1

Vj,
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where each Vj is a simple A-module and the Vj are isomorphic to each other
as A-modules. Let

m = dimF Vj

Fix a basis
u11, ..., u1m

of the F-vector space V1 and, using fixed A-linear isomorphisms V1 → Vi,
construct a basis

ui1, ..., uim

in each Vi. Then the matrices of elements in A are block diagonal, with n
blocks, each block being an arbitrary m × m matrix T with entries in the
field F: 

T 0
0 T

· · ·
0 T

 (10.7)

Thus, the algebra A is isomorphic to the matrix algebra Matrm×m(F) by

T 7→


T 0
0 T

· · ·
0 T

 (10.8)

The typical matrix in C = EndA(V ) then has the form
s11I s12I s1nI
s21I s22I ·
· · ·

sn1I snnI

 (10.9)

where I is the m×m identity matrix. Reordering the basis in V as

u11, u21, ..., un1, u12, u22, ..., un2, ..., u1m, ..., unm,

displays the matrix (10.9) as the block diagonal matrix
[sij] 0 · 0

0 [sij] ·
· · ·
0 [sij]

 (10.10)
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where sij are arbitrary elements of the field F. Thus C is isomorphic to
the algebra of n × n matrices [sij] over F. Now the algebra Matrn×n(F) is
decomposed into a sum of n simple ideals, each consisting of the matrices
which have all entries zero except possibly those in one particular column.
Thus,

each simple left ideal in C is n-dimensional over F.

Let M i
jh be the matrix for the linear map V → V which takes uih to uij

and is 0 on all the other basis vectors. Then, from (10.7), the matrices

Mjh = M1
jh + · · ·+Mn

jh (10.11)

form a basis of A, as a vector space over F. Let

ej = Mjj,

for 1 ≤ j ≤ m. This corresponds, in Matrm×m(F), to the matrix with 1 at
the jj entry and 0 elsewhere. Then A is the direct sum of the simple left
ideals Aej.

The subspace ejV has the vectors

u1j, u2j, ..., unj

as a basis, and so ejV is n-dimensional. Moreover, ejV is mapped into itself
by C:

C(ejV ) = ejCV ⊂ ejV.

Consequently, ejV is a C-module. Since it has the same dimension as any
simple C-module, it follows that ejV cannot have a non-zero proper C-
submodule, i.e. ejV is a simple C-module.

We have completed the proof of Theorem 10.2.1.
Finally, let us note:

Proposition 10.2.1 If u, u′ are idempotents in a ring A which generate the
same left ideal, and if E is an A-module, then uE and u′E are isomorphic
C-submodules of E, where C = EndA(E).

Proof. Since Au = Au′, we have then

u = bu′, u′ = b′u, for some b, b′ ∈ A.
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Note that
u = bb′u, and u′ = b′bu′.

Then the maps

f : uE → u′E : y 7→ b′y, and f ′ : u′E → uE : w 7→ bw

are inverses to each other and are C-linear. QED

10.3 Submodules relative to the Commutant

In this section we will go over the decomposition of a module by the com-
mutant again, using a different approach, somewhat along the lines of Weyl
[19].

For this section we will work with a right A-module E, which is auto-
matically also a C-module, where C is the commutant EndA(E), and set
up a one-to-one correspondence between the simple C-submodules of E and
simple left ideals in A.

Consider first a finite group G represented on a finite-dimensional F-
vector space E. It will be convenient to view E as a right F[G]-module by
the action:

v · g = g−1v, for v ∈ E and g ∈ G.

More generally, we work with a semisimple ring A and a right A-module E.
Let

Ê = HomA(E,A) (10.12)

consisting of all additive maps φ̂ : E → A satisfying

φ̂(xa) = φ̂(x)a for all x ∈ E and a ∈ A. (10.13)

Then Ê is a left A-module:

if φ̂ ∈ Ê and a ∈ A then aφ̂ ∈ Ê.

The map
Ê × E → A : (φ̂, x) 7→ φ̂(x) (10.14)

is bilinear when all modules involved are viewed as Z-linear, and so induces
a linear map on the tensor product specified through

I : Ê ⊗Z E → A : φ̂⊗ x 7→ φ̂(x) (10.15)
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Note that

aI(φ̂⊗ x) = I(aφ̂⊗ x) for all a ∈ A, φ̂ ∈ Ê, and x ∈ E. (10.16)

For any additive subgroup W ⊂ E define

W#
def
= I(Ê ⊗W ) ⊂ A (10.17)

The simple fact (10.16) has the following immediate consequence:

Lemma 10.3.1 W# is a left ideal in A.

Before proceeding further let us look1 at the case of interest for our pur-
poses of studying representations of a finite group G. Let E then be a
finite-dimensional vector space over the field F, on which G is represented.
Then E is a right F[G]-module by the action:

E × F[G]→ E : (v, x) 7→ x̂v,

where
x̂ =

∑
g∈G

x(g)g−1.

An element of φ̂ of Ê, expressed as

φ̂(v) =
∑
g∈G

φ̂g(v)g for all v ∈ E

is completely specified by the coefficient φ̂e : E → k, because

φ̂e(v) = φ̂e(vg
−1) = φ̂e(gv) for all g ∈ G and v ∈ E.

Conversely, as is readily checked, every φ in the dual E∗ = Hom(E, k) spec-
ifies an element φ̂ ∈ Ê:

φ̂(v) =
∑
g∈G

φ(gv)g for all v ∈ E.

Now we can see quite concretely how a subspace W ⊂ E gives rise to a left
ideal W# in F[G]. Evaluating φ̂ ∈ Ê arising from φ ∈ E∗, on a general
element w of W we have

φ̂(w) =
∑
g∈G

〈φ, gw〉g

1We follow Weyl [19].
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The set of all such elements is W#:

W# =

{∑
g∈G

〈φ, gw〉g : φ ∈ E∗, w ∈ W

}
(10.18)

It is clear that this is a left ideal:

h
∑
g∈G

〈φ, gw〉g =
∑
g∈G

〈(h−1)∗φ, gw〉g

The explicit form of W# given in (10.18) helps moor our discussions to a
concrete base.

We return now to the general setting, with E being a right A-module,
where A is a semisimple ring.

We are interested primarily in W ⊂ E of the form

Ea

for a ∈ A. The principal fact about such W is that

Ea is a C-submodule of E,

where

C = EndA(E) (10.19)

is the commutant of the action of A on E.
We note that

(Ea)# = E#a, for all a ∈ A. (10.20)

(From the definition of I we can see that E# is the sum of all the simple
right ideals in A isomorphic to the simple submodules of E.)

Before proceeding to the next observation we need an auxilliary result:

Lemma 10.3.2 Let x ∈ E, and φ̂ ∈ Ê. Then the map

L : E → E : y 7→ xφ̂(y)

is in the commutant C = EndA(E). In particular, if W is a C-submodule of
E then xφ̂(w) ∈ W for all w ∈ W .
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Proof. For any a ∈ A and y ∈ E we have

L(ya) = xφ̂(ya) = xφ̂(y)a = L(y)a,

which shows that L ∈ EndA(E). QED
Now we can prove:

Proposition 10.3.1 Suppose W is a C-submodule of E. Let u be any idem-
potent generator of the left ideal W#, i.e. W# = Au and u2 = u. Then

W = Eu.

Thus, every C-submodule of E is of the form Eu where u is an idempotent
in A.

Proof. Since u ∈ W#, we can write u as a sum of terms of the form φ̂(w)

with φ̂ ∈ Ê and w ∈ W . Then, for any x ∈ E, we see that xu is a sum of
terms of the form xφ̂(w). The latter are all in W (by Lemma 10.3.2), and so
xu ∈ W . Thus

Eu ⊂ W.

Now we will show that W ⊂ Eu, by using the idempotent nature of u. Let
w ∈ W ; we will show that wu equals w, and so then w would be in Eu. Now
for any φ ∈ Ê we have

φ̂(wu) = φ̂(w)u = φ̂(w), because φ̂(w) ∈ W# = Au.

Consequently, the element x = wu − u ∈ E is annihilated by all elements
of HomA(E,A). Decompose E as a direct sum of simple A-submodules Ei,
and let xi be the component of x in Ei. Now Ei is isomorphic as an A-
module to a simple right ideal in A, and this isomorphism yields an element
of HomA(E,A). Thus, xi is 0 for each i, and so wu = u. QED

Going in the reverse direction we have:

Proposition 10.3.2 Suppose W and W ′ are C-submodules of E with W ′
# ⊂

W#. Then W ′ ⊂ W . In particular, if W# = W ′
# then W = W ′.

Proof. We can writeW ′
# = Au′ andW# = Au, where u, u′ ∈ A are generating

idempotents for these left ideals. If W ′
# ⊂ W# then u′ ∈ Au, and so u′ = au,

for some a ∈ A, which then implies that W ′ = Eu′ ⊂ Eu = W . QED
We have the following useful consequence:
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Proposition 10.3.3 A C-submodule W of E is simple if the left ideal W#

is simple. Assuming that E# = A, the converse also holds: if W is a simple
C-submodule of E then the left ideal W# is simple. In particular, in the latter
case, if u is a primitive idempotent in A then Eu is a simple C-submodule
of E.

Proof. Suppose W# is a simple left ideal in A. Let W ′ ⊂ W be a C-
submodule of W . Then W ′

# ⊂ W#, and so W ′
# is 0 or W#. If W ′

# = {0}
then W ′ = {0} (by the argument used in the proof of Proposition 10.3.1).
If W ′

# = W# then, by the preceding proposition, W = W ′. Thus, W is a
simple C-submodule of E.

Conversely, suppose W is a simple C-submodule of E. Suppose J is a left
ideal inside W#. Then J = Au′ and W# = Au, for some u′ ∈ J and u ∈ W#.
Then u′ ∈ Au and so

Eu′ ⊂ Eu = W.

Thus Eu′ = 0 or Eu′ = Eu. Applying # we see that E#u
′ = 0 or E#u

′ =

E#u. Thus, if E# = A then J is 0 or W#. Thus, W# is simple. QED
Thus there is an almost one-to-one correspondence between ideals in A

and C-submodules of E, with simple submodules arising from simple ideals.
However, some care needs to be exercised; with notation as above, we have:

Proposition 10.3.4 If u is a primitive idempotent in A and if the ideal Au
is inside E#, then Eu is a simple C-module.

Proof. If Au ⊂ E# then

Au = Auu ⊂ E#u ⊂ Au,

and so
Au = E#u = (Eu)#, by (10.20).

Since u is assumed to be a primitive idempotent, we see that (Eu)# is simple

and so Eu is a simple C-module. QED

Exercises

1. Let A be a semisimple ring. Consider a right A-module E, an element
~e ∈ E, and let N be the annihilator of ~e:

N = {n ∈ A : ~e n = 0}
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Then N is a right ideal in A. Let A = N ⊕N⊥ be a decomposition of
A into complementary right ideals, and let P⊥ be the projection map
onto N⊥. Show that for any left ideal L in A:

(i) P⊥(L) ⊂ L [Hint: If 1 ∈ A decomposes as 1 = u+u⊥, with u ∈ N
and u⊥ ∈ N⊥, then P⊥x = u⊥x for all x ∈ A.]

(ii) the map
F : ~eL→ P⊥(L) : ~e x 7→ P⊥x

is well-defined;

(iii) the map
H : P⊥(L)→ ~eL : x 7→ ~ex

is the inverse of F .

2. Let G be a finite group, represented on a finite-dimensional vector space
E over a field F of characteristic 0. View E as a right F[G]-module, by
defining

vx = x̂v for all v ∈ E and x ∈ F[G]

where
x̂ =

∑
g∈G

x(g)g−1.

Suppose ~e ∈ E is such that the set G~e is a basis of E. Denote by H the
isotropy subgroup {h ∈ G : h~e = ~e}, and N = {n ∈ F[G] : ~e n = 0}.

(i) Show that
F[G] = N ⊕ F[G/H],

where k[G/H] is the right ideal in F[G] consisting of all x for which
hx = x for every h ∈ H, and that the projection map on F[G/H]
is given by

x 7→ 1

|H|
∑
h∈H

hx

(ii) Show, using Problem 1, that for any left ideal L in F[G],

dimF(~eL) =
1

|H|
∑
h∈H

χL(h),

where χL(a) is the trace of the map L→ L : y 7→ ay.
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Chapter 11

Schur-Weyl Duality

We turn now to a specific implementation of the dual decomposition theory
developed in the preceding chapter. Consider the permutation group Sn rep-
resented on a finite-dimensional vector space V over an algebraically closed
field F. Then Sn also acts by permutations of tensor components on the
tensor power V ⊗n. This is then a module over the ring A = F[Sn]. As we
shall see, the commutant turns out to be spanned by the operators T⊗n on
V ⊗n with T running over the group GLF(V ) of all invertible linear endomor-
phisms of V . This then leads to an elegant relationship between characters
of Sn and characters of GLF(V ).

We begin with the identification of the commutant of the action of Sn
on V ⊗n. Then we will go through a fast proof of the Weyl duality formula
connecting characters of Sn and that of GLF(V ), using the more abstract
approach to duality developed in section 10.1. In the last section we will
prove this duality formula again, but by more explicit computation.

11.1 The Commutant for Sn acting on V ⊗n

In this section, V is a finite dimensional vector space over a field with an
infinite number of elements (thus no non-zero polynomial vanishes at all
elements of the field).

The permutation group Sn has a natural left action on V ⊗n:

σ · (v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n)

Our objective in this section is to prove the following central result from
Weyl [19]:

139
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Theorem 11.1.1 The commutant of the action of Sn on V ⊗n is the linear
span of all endomorphisms T⊗n : V ⊗n → V ⊗n, with T running over all
invertible endomorphisms on V .

Proof. Fix a basis e1, ..., eN of V , and let e1, .., eN be the dual basis in V ∗:

〈ei, ej〉 = δij.

For a linear mapping
X : V ⊗n → V ⊗n

let
Xi1j1;...,injn =

〈
ei1 ⊗ . . .⊗ ein , X

(
ej1 ⊗ . . .⊗ ejn

)〉
(11.1)

Then X commutes with the action of Sn if and only if (11.1) remains invariant
when i and j are replaced by i ◦ σ and j ◦ σ, for any σ ∈ Sn.

Relabel the m = N2 pairs ij with numbers from 1, ...,m.
We will show that if F ∈ End(V ⊗n) satisfies∑
a1,...,an∈{1,...,m}

Fa1...an(T⊗n)a1...an = 0 for all invertible T ∈ EndV

then ∑
a

Fa1...anXa1...an = 0 (11.2)

for all X in the commutant of Sn. This will imply the desired result.
Consider the polynomial in the m = N2 indeterminates Ta given by

p(T ) =

 ∑
a1,...,an∈{1,...,m}

Fa1...anTa1 ...Tan

 det[Tij]

The hypothesis says that this polynomial is equal to 0 for all choices of values
of Ta in the field F. This implies that the polynomial p(T ) is 0. Since the
polynomial det[Tij] is certainly not 0, it follows that∑

a

Fa1...anTa1 ...Tan = 0

as a polynomial. This means that each Fa1....an is 0, and hence we have the

desired equality (11.2). QED
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The representations of Sn and GLF(V ) (the group of invertible elements in
EndF(V )) on V ⊗n clearly commute with each other. The preceding theorem
says that they are in fact dual to each other, in the sense that the subalgebras
of End(V ⊗n) they generate are each other’s commutants.

As consequence of these observations we conclude that the representation
of GLF(V ) on V ⊗n decomposes into a direct sum of irreducible representa-
tions, each being a subspace of the form yV ⊗n, with y a primitive idempotent
in F[Sn].

11.2 Schur-Weyl Character Duality I

Let E 6= 0 be a left module over semisimple ring A, and

C = EndA(E)

the commutant. Let L1, ..., Lr be a maximal set of simple left ideals in A.
Then HomA(Li, E) is a left C-module, and the tensor product

Li ⊗ HomA(Li, E)

is a left A-module from the structure on Li and a left C-module from the
structure on HomA(Li, E). Thus, it is a left module over the ring A× C.

We have seen in section 10.1 that:

• each HomA(Li, E) is a simple C-module,

• if yi ∈ Li is non-zero idempotent in Li then the map

HomA(Li, E) 7→ yiE : f 7→ f(yi)

is an isomorphism of C-modules, and

• the map

J :
r⊕
i=1

Li ⊗ HomA(Li, E)→ E :
r∑
i=1

xi ⊗ fi 7→
r∑
i=1

fi(xi)

is an isomorphism which is both A-linear and C-linear.
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Consider now any a ∈ A and c ∈ C. Then (a, c) ∈ A × C, acting on
Li ⊗ HomA(Li, E) goes over, via J , to the map

E → E : v 7→ acv.

Now we assume that A is an algebra over a field F, and E is finite-dimensional
as a vector space over F. Then the trace of ac ∈ EndF(E) can be computed
using the isomorphism J :

Tr(ac) =
r∑
i=1

Tr(a|Li)Tr(c|yiE), (11.3)

where a|Li is the element in EndF(Li) given by x 7→ ax.
We specialize now to

A = F[Sn]

acting on V ⊗n, where V is a finite-dimensional vector space over an infinite
field F. Then, as we know, C is spanned by elements of the form B⊗n, with
B running over GLF(V ). The distinct simple left ideals in A correspond
to inequivalent irreducible representations of Sn. Let the set R label these
representations; thus there is a maximal set of non-isomorphic simple left
ideals Lα, with α running over R. Then we have, for any σ ∈ Sn and any
B ∈ GLF(V ), the Schur-Weyl duality formula

Tr(B⊗n · σ) =
∑

α∈R χα(σ)χα(B) (11.4)

where χα is the characteristic of the representation of Sn on Lα = yαA, and
χα that of GLF(V ) on yαV

⊗n.
Recall the Schur orthogonality relation

1

n!

∑
σ∈Sn

χα(σ)χβ(σ−1) = δαβ for all α, β ∈ R.

Using this with (11.4), we have

χα(B) =
1

n!

∑
σ∈Sn

χα(σ)sσ(B)

where
sσ(B) = Tr(B⊗n · σ). (11.5)
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Note that sσ depends only on the conjugacy class of σ, rather than on the
specific choice of σ. Denoting by K a typical conjugacy class, we then have

χα(B) =
∑

K∈C
|K|
n!
χα(K)sK(B) (11.6)

where C is the set of all conjugacy classes in Sn, χα(K) is the value of χα on
any element in K, and sK is sσ for any σ ∈ K.

In the following section we will prove the character duality formulas (11.4)
and (11.6) again, by a more explicit method.

11.3 Schur-Weyl Character Duality II

We will now work through a proof of the Schur-Weyl duality formulas by more
explicit computations. This section is entirely independent of the preceding.

The results and proofs of this section work over any algebraically closed
field of zero characteristic, but it will be notationally convenient to simply
work with the complex field C.

Let V = CN , on which the group GL(N,C) acts in the natural way. Let

e1, ..., eN

be the standard basis of V = CN .

We know that V ⊗n decomposes as a direct sum of submodules of the form

yαV
⊗n,

with yα running over a set of primitive idempotents in C[Sn], such that the
left ideals C[Sn]ŷα form a decomposition of C[Sn] into simple left submodules.

Let

χα

be the characteristic of the irreducible representation ρα of GL(N,C) on the
subspace yαV

⊗n, and

χα

be the characteristic of the representation of Sn on C[Sn]yα.

Our goal is to establish the relation between these two characters.
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If a matrix g ∈ GL(N,C) has all eigenvalues distinct, then the corre-
sponding eigenvectors are linearly independent and hence form a basis of V .
Changing basis, g is conjugate to a diagonal matrix

D(~λ) = D(λ1, ..., λN) =


λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
0 0 λ3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 λN


Then χα(g) equals χα

(
D(~λ)

)
. We will evaluate the latter.

The action of D(~λ) on the vector

yα(ei1 ⊗ . . .⊗ ein)

is simply multiplication by
λi1 ...λin .

Fix a partition of n given by

~f = (f1, ..., fN) ∈ ZN
≥0

with
|~f | = f1 + · · ·+ fN = n,

and let

~λ
~f =

N∏
j=1

λ
fj
j

and
V (~f ) = {v ∈ V ⊗n : D(~λ)v = ~λ

~fv for all ~λ ∈ U(1)N }

Thus every eigenvalue of D(~λ) is of the form ~λ
~f .

Consequently,

χα
(
D(~λ)

)
=
∑
~f∈ZN≥0

~λ
~f dim

(
yαV (~f )

)
(11.7)

The space V (~f ) has a basis given by the set

{σ · e⊗f11 ⊗ · · · ⊗ e⊗fNN : σ ∈ Sn}
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Note that
~e⊗

~f = e⊗f11 ⊗ · · · ⊗ e⊗fNN

is indeed in V ⊗n, because |~f | = n.

Then, by Exercise 8.2(ii), the dimension of yαV (~f ) is

dim
(
yαV (~f )

)
=

1

f1!...fN !

∑
σ∈Sn(~f)

χα(σ) (11.8)

where
Sn(~f)

is the subgroup of Sn consisting of elements which preserve the sets

{1, ..., f1}, {f1 + 1, ..., f2}, ..., {fN−1 + 1, ..., fN}

and we have used the fact (Exercise 9.1) that χα equals the characteristic of
the representation of Sn on C[Sn]ŷα.

Thus,

χα
(
D(~λ)

)
=
∑
~f∈ZN≥0

~λ
~f 1

f1!...fN !

∑
σ∈Sn(~f)

χα(σ) (11.9)

The character χα is constant on conjugacy classes. So the second sum on
the right here should be reduced to a sum over conjugacy classes. Note that,
with obvious notation,

Sn(~f) ' Sf1 × . . .× SfN

The conjugacy class of a permutation is completely determined by its
cycle structure: i1 1-cycles, i2 2-cycles,... . For a given sequence

~i = (i1, i2, ..., im) ∈ Zm
≥0

the number of such permutations in Sm is

m!

(i1!1i1)(i2!2i2)(i3!3i3)...(im!mim)
(11.10)

because, in distributing 1, ...,m among such cycles, the ik F-cycles can be
arranged in ik! ways and each such F-cycle can be expressed in F ways.
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Alternatively, the denominator in (11.10) is the size of the isotropy group of
any element of the conjugacy class.

The cycle structure of an element of

(σ1, ..., σN) ∈ Sf1 × · · · × SfN

is described by a sequence

[~i1, ...,~iN ] = (i11, i12, ..., i1f1︸ ︷︷ ︸
~i1

, ..., iN1, ..., iNfN︸ ︷︷ ︸
~iN

)

with ijk being the number of F-cycles in the permutation σj. Let us denote
by

χα([~i1, ...,~iN ])

the value of χα on the corresponding conjugacy class in Sn. Then

∑
σ∈Sn(~f)

χα(σ) =
∑

[~i1,...,~iN ]∈[~f ]

χα([~i1, ...,~iN ])
N∏
j=1

fj!

(ij1!1ij1)(ij2!2ij2) . . .

Here the sum is over the set [~f ] of all [~i1, ...,~iN ] for which

ij1 + 2ij2 + · · ·+ nijn = fj for all j ∈ {1, ..., N}

(Of course, ijn is 0 when n > fj.)
Returning to the expression for χα in (11.9) we have:

χα
(
D(~λ)

)
=
∑
~f∈ZN≥0

~λ
~f

∑
[~i1,...,~iN ]∈[~f ]

χα([~i1, ...,~iN ])
N∏
j=1

1

(ij1!1ij1)(ij2!2ij2) . . . (ijn!nijn)

=
∑
~f∈ZN≥0

~λ
~f

∑
[~i1,...,~iN ]∈[~f ]

χα([~i1, ...,~iN ])
∏

1≤j≤N, 1≤k≤n

1

ijk! kijk

Now χα is constant on conjugacy classes in Sn. The conjugacy class in
Sf1 × · · · × SfN specified by the cycle structure

[~i1, ...,~iN ]
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corresponds to the conjugacy class in Sn specified by the cycle structure

~i = (i1, ..., in)

with
N∑
j=1

ijk = ik for all k ∈ {1, ..., n} (11.11)

Recall again that
n∑
k=1

kijk = fj (11.12)

Note that then

~λ
~f =

n∏
k=1

(λki1k1 . . . λkiNkN )

Combining these observations we have

χα
(
D(~λ)

)
=
∑
~i∈ZN≥0

χα(~i)
1

1i12i2 ...nin

∑
ijk

n∏
k=1

λki1k1 ...λkiNkN

i1k!i2k!...iNk!
(11.13)

where the inner sum on the right is over all [~i1, ...,~iN ] corresponding to the
cycle structure ~i = (i1, ..., in) in Sn, i.e. satisfying (11.11). We observe now
that this sum simplifies:∑

ijk

n∏
k=1

λki1k1 ...λkiNkN

i1k!i2k!...iNk!
=

1

i1!...in!

n∏
k=1

(λk1 + · · ·+ λkN)ik (11.14)

This produces

χα
(
D(~λ)

)
=
∑

~i∈ZN≥0
χα(~i) 1

(i1!1i1 )(i2!2i2 )...(in!nin )

∏n
k=1 sk(

~λ)ik (11.15)

where s1, ..., sn are the symmetric polynomials given by

sm(X1, ..., Xn) = Xm
1 + · · ·+Xm

n (11.16)

We can also conveniently define

sm(B) = Tr(Bm) (11.17)
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Then

χα(B) =
∑

~i∈ZN≥0
χα(~i) 1

(i1!1i1 )(i2!2i2 )...(in!nin )

∏n
m=1 sm(B)im (11.18)

for all B ∈ GL(N,C) with distinct eigenvalues, and hence for all B ∈
GL(N,C).

The sum on the right in (11.18) is over all conjugacy classes in Sn, each
labelled by its cycle structure

~i = (i1, ..., in).

Note that the number of elements in this conjugacy class is exactly n! divided
by the denominator which appears on the right inside the sum. Thus, we
can also write the Schur-Weyl duality formula as

χα(B) =
∑

K∈C
|K|
n!
χα(K)sK(B) (11.19)

where C is the set of all conjugacy classes in Sn, and

sK
def
=

n∏
m=1

simm (11.20)

if K has the cycle structure ~i = (i1, ..., in).

Note that up to this point we have not needed to assume that α labels
an irreducible representation of Sn. We have merely used the character χα
corresponding to some left ideal C[Sn]yα in C[Sn], and the corresponding
GL(n,C)-module ŷαV

⊗n.

We will now assume that χα indeed labels the irreducible characters of
Sn. Then we have the Schur orthogonality relations

1

n!

∑
σ∈Sn

χα(σ)χβ(σ−1) = δαβ

These can be rewritten as∑
K∈C

χα(K)
|K|
n!
χβ(K−1) = δαβ (11.21)
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Thus, the |C| × |C| square matrix [χα(K−1)] has the inverse 1
n!

[|K|χα(K)].
Thus, also: ∑

α∈R

χα(K−1)
|K ′|
n!

χα(K ′) = δKK′ , (11.22)

where R labels a maximal set of inequivalent irreducible representations of
Sn. Consequently, multiplying (11.19) by χα(K−1) and summing over α, we
obtain: ∑

α∈R χ
α(B)χα(K) = sK(B) (11.23)

for every conjugacy class K in Sn, where we used the fact that K−1 = K.
Observe that

sK(B) = Tr(B⊗n · σ) (11.24)

where σ, any element of the conjugacy class K, appears on the right here
by its representation as an endomorphism of V ⊗n. The identity (11.24) is
readily checked if σ is the cycle (12 ... n), and then the general case follows
by observing that

Tr(B⊗j ⊗B⊗l · σθ) = Tr(B⊗j)Tr(B⊗l)

if σ and θ are the disjoint cycles (12 ... j) and (j + 1 ... n).
Thus the duality formula (11.23) coincides exactly with the formula (11.4)

we proved in the previous section.

Exercises

1. Let A = F[G], where G is a finite group and F a field. There is, as
usual, the map

A→ A : x 7→ x̂ =
∑
g∈G

x(g−1)g,

which is an isomorphism of the algebra A onto the opposite algebra
Aopp. Let y be a non-zero idempotent in A. Consider the mapping

P : Aŷ × Ay → k : (a, b) 7→ χreg(ab̂) = Tr
(
ρreg(ab̂)

)
(11.25)

where on the right we have the left-regular representation ρreg(x) : A→
A : v 7→ xv, and it character given by

χreg(x) = Tr
(
ρreg(x)

)
.
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(i) Show that if a ∈ A is such that

χreg(ab) = 0

for all b ∈ A, then a = 0.

(ii) Let (Ay)′ be the dual vector space HomF(Ay, k). Show that the
map

J : Aŷ → (Ay)′ : v 7→ P (v, ·)

is an isomorphism. [Hint: Check that Tr
(
ρreg(vâ)

)
= P (v, ay) for

all a ∈ A and v ∈ Aŷ. Use this to show that J is injective.]

(iii) Show that for any x ∈ A and v ∈ Aŷ,

J(xv) = J(v)ρreg(x̂)

Thus the left regular representation on the left ideal Aŷ is isomor-
phic to the representation x 7→ ρreg(x̂)∗ on (Ay)′.

(iv) For any idempotent y ∈ A, let ρu be the representation of G on
Ay given by ρu(g)v = gv, for all v ∈ Ay (i.e. it is the left-regular
representation restricted to Ay). Show that

Jρŷ(g)J−1 = ρy(g
−1)∗,

for all g ∈ G, and on the right we have the adjoint of ρy(g
−1) :

Ay → Ay.

(v) Show that in the case G = Sn, for any idempotent y ∈ A[G], the
characters of the representations ρŷ and ρy are equal.

(vi) Check that if y is a primitive idempotent then so is ŷ.



Chapter 12

Representations of Unitary
Groups

In this chapter we will study the irreducible representations and characters
of the group U(N) of N ×N complex unitary matrices. Needless to say, this
is no finite group! However, because of the special link between represen-
tations of the symmetric group and representations of U(N), it is worth an
examination.

The unitary group U(N) consists of all N×N complex matrices U which
are unitary, i.e.

U∗U = I

It is indeed a group under matrix multiplication. Being a subset of the
linear space of all N ×N complex matrices, it is a topological space as well.
Multiplication of matrices is, of course, continuous. Moreover, the inversion
map U 7→ U−1 = U∗ is also continuous.

By a representation ρ of U(N) we will mean a continuous mapping

ρ : U(N)→ EndC(V ),

for some finite dimensional complex vector space V . Thus, U(N) acts on V ;
for each U ∈ U(N) there is a linear map

ρ(U) : V → V

The character of ρ is the function

χρ : U(N)→ C : U 7→ tr (ρ(U))

151
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As before, the representation ρ is irreducible if V 6= 0, and the only subspaces
of V invariant under the action of U(N) are 0 and V .

12.1 The Haar Integral and Orthogonality of

Characters

We shall take for granted a few facts. On the space of complex-valued con-
tinuous functions on U(N) there is a linear functional, the Haar integral

f 7→ 〈f〉 =

∫
U(N)

f(U) dU

such that
〈f〉 ≥ 0 if f ≥ 0,

and 〈f〉 is 0 if and only if f equals 0. Moreover, the Haar integral is invariant
under left and right translations in the sense that∫

U(N)

f(xUy) dU =

∫
U(N)

f(U) dU for all x, y ∈ U(N)

and all continuous functions f on U(N). Finally, the integral is normalized:

〈1〉 = 1.

Let T denote the subgroup of U(N) consisting of all diagonal matrices.
Thus, T consists of all matrices

D(λ1, ..., λN)
def
=


λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
0 0 λ3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 λN


with λ1, ...λN are complex numbers of unit modulus.

Thus T is the torus, the product of N copies of the circle group U(1) of
unit modulus complex numbers:

T ' U(1)N
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There is a natural Haar integral for continuous functions over T ; for any
continuous function h on T :∫

T

h(t) dt = (2π)−N
∫ 2π

0

...

∫ 2π

0

h
(
D(eiθ1 , ..., eiθN )

)
dθ1...dθN (12.1)

12.1.1 The Weyl Integration Formula

Recall that a function f on a group is said to be central if

f(xyx−1) = f(y)

for all elements x and y of the group.
For every continuous central function f on U(N) the following integration

formula (due to Weyl [19, Section 17]) holds:∫
U(N)

f(U) dU = 1
N !

∫
T
f(t)|∆(t)|2 dt (12.2)

where

∆
(
D(λ1, ..., λN)

)
= det


λN−1

1 λN−1
2 · · · λN−1

N−1 λN−1
N

λN−2
1 λN−2

2 · · · λN−2
N−1 λN−2

N
...

...
...
...
...

...
...

λ1 λ2 · · · λN−1 λN
1 1 · · · 1 1

 (12.3)

=
∏

1≤j<k≤N

(λj − λk), (12.4)

a well-known identity. This Vandermonde determinant, written out as an
alternating sum,is:

∆
(
D(λ1, ..., λN)

)
=
∑
σ∈SN

sgn(σ)λ
N−σ(1)
1 ...λ

N−σ(N)
N (12.5)

It will be useful to note that diagonal term

λN−1
1 λN−2

2 . . . λ1
N−1λ

0
N

involves the highest power for each λj among all terms.
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12.1.2 Schur Orthogonality

Representations ρ1 and ρ2 of U(N), on vector space V and W , respectively,
are said to be equivalent if there is a linear isomorphism

T : V1 → V2

such that
Tρ1(U)T−1 = ρ2(U) for all U ∈ U(N).

If there is no such T then the representations are inequivalent.
Note that if ρ1 and ρ2 are equivalent then they have the same character.
As with finite groups, every representation is a direct sum of irreducible

representations. Hence every character is a sum of irreducible representation
characters with positive integer coefficients.

Just as for finite groups, the Schur orthogonality relations hold for repre-
sentations of U(N): If ρ and ρ′ are inequivalent irreducible representations
of U(N) then ∫

U(N)

χρ(U)χρ′(U
−1) dU = 0 (12.6)

and ∫
U(N)

χρ(U)χρ(U
−1) dU = 1 (12.7)

Analogously to the case of finite groups, each ρ(U) is diagonal in some
basis, with diagonal entries being of unit modulus. (If Un is I for some
positive integer n then the diagonal entries for a diagonal-matrix form of
ρ(U) are roots of unity, and hence of unit modulus; a general element of
U(N) is a limit of such U .)

It follows then that
χρ(U

−1) = χρ(U) (12.8)

The Haar integral specifies a hermitian inner-product on the space of
continuous functions on U(N) by

〈f, h〉 =

∫
U(N)

f(U)h(U) dU (12.9)

In terms of this inner-product the Schur orthogonality relations say that
the characters χρ of irreducible representations form an orthonormal set of
functions on U(N).
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If ρ is a representation of U(N) on a finite-dimensional complex vector
space V then, as with finite groups, there is a Hermitian inner-product on V
such that ρ(U) is unitary for every U ∈ U(N) (an analogous statement holds
for real vector spaces with orthogonal matrices). Using this it is, of course,
clear that each ρ(U) is diagonal in some basis with diagonal entries being
unit-modulus complex numbers.

12.2 Characters of Irreducible Representations

We will work out Weyl’s explicit formula for the irreducible characters of
U(N), as well as their dimensions. Amazingly, everything falls out of Schur
orthogonality of characters applied to characters evaluated on diagonal ma-
trices.

12.2.1 Weights

Consider now an irreducible representation ρ of U(N) on a vector space V .
The linear maps

ρ(t) : V → V

with t running over the abelian subgroup T , commute with each other:

ρ(t)ρ(t′) = ρ(tt′) = ρ(t′t) = ρ(t′)ρ(t)

and so there is a basis {vj}1≤j≤dV of V with respect to which the matrices of
ρ(t), for all t ∈ T , are diagonal:

ρ(t) =


ρ1(t) 0 · · · 0

0 ρ2(t) · · · 0
...

...
... 0

0 0 · · · ρD(t)


where

ρr : T → U(1)

are continuous homomorphisms. Thus,

ρr
(
D(λ1, ..., λN)

)
= ρr1(λ1)...ρrN(λN)
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where ρrk(λ) is ρr evaluated on the diagonal matrix which has λ at the F-
th diagonal entry and all other diagonal entries are 1. Since each ρrk is a
continuous homomorphism

U(1)→ U(1)

it necessarily has the form
ρrk(λ) = λwrk

for some integer wrk. We will refer to

~wr = (wr1, ..., wrN) ∈ ZN

as a weight for the representation ρ.

12.2.2 The Weyl Character Formula

Continuing with the framework as above, we have

ρr
(
D(λ1, ..., λN)

)
= λwr11 ...λwrNN .

Thus,

χρ
(
D(λ1, ..., λN)

)
=

dV∑
r=1

λwr11 ...λwrNN

It will be convenient to write

~λ = (λ1, ..., λN)

and analogously for ~w.
Two diagonal matrices in U(N) whose diagonal entries are permutations

of each other are conjugate within U(N) (permutation of the basis vectors
implements the conjugation transformation). Consequently, a character will
have the same value on two such diagonal matrices. Thus,

χρ
(
D(λ1, ..., λN)

)
is invariant under permutations of the λj.

Then, by gathering similar terms, we can rewrite the character as a sum of
symmetric sums ∑

σ∈SN

λw1

σ(1)...λ
wN
σ(N)

with ~w = (w1, ..., wN) running over a certain set of elements in ZN .
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Thus we can express each character as a Fourier sum (with only finitely
many non-zero terms)

χρ
(
D(~λ)

)
=
∑
~w∈ZN↓

c~ws~w(~λ)

where each coefficient c~w is a non-negative integer, and s~w is the symmetric
function given by:

s~w(~λ) =
∑
σ∈SN

N∏
j=1

λ
wj
σ(j).

The subscript ↓ in ZN
↓ signifies that it consists of integer strings

w1 ≥ w2 ≥ . . . ≥ wN .

Now ρ is irreducible if and only if∫
U(N)

|χρ(U)|2 dU = 1.

Using the Weyl integration formula, and our expression for χρ, this is equiv-
alent to ∫

U(1)N

∣∣∣χρ(~λ)∆(~λ)
∣∣∣2 dλ1...dλN = N ! (12.10)

Now the product
χρ(~λ)∆(~λ)

is skew-symmetric in λ1, ..., λN , and is an integer linear combination of terms
of the form

λm1
1 ...λmNN .

So, collecting together appropriate terms, χρ(~λ)∆(~λ) can be expressed as an
integer linear combination of the elementary skew-symmetric sums

a~f (
~λ) =

∑
σ∈SN

sgn(σ)λf1σ(1)...λ
fN
σ(N) =

∑
σ∈SN

sgn(σ)λ
fσ(1)

1 ...λ
fσ(N)

N

= det


λf11 λf12 . . . λf1N
λf21 λf22 . . . λf2N
...

...
...

...

λfN1 λfN2 . . . λfNN

 (12.11)
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Thus, ∫
U(1)N

∣∣∣χρ(~λ)∆(~λ)
∣∣∣2 dλ1...dλN

is an integer linear combination of inner-products∫
U(1)N

a~f (
~λ)a~f ′(

~λ) dλ1 . . . dλN .

Now we use the simple, yet crucial, fact that on U(1) there is the orthogo-
nality relation ∫

U(1)

λnλm dλ = δnm.

Consequently, distinct monomials such as λa1
1 ...λ

aN
N , with ~a ∈ ZN , are or-

thonormal. Hence, if f1 > f2 > · · · > fN , then the first two expressions in
(12.11) for a~f (

~λ) are sums of orthogonal terms, each of norm 1.

If ~f and ~f ′ are distinct elements of ZN
↓ , each a strictly decreasing sequence,

then no permutation of the entries of ~w could be equal to ~w′, and so∫
U(1)N

a~f (
~λ)a~f ′(

~λ) dλ1 . . . dλN = 0 (12.12)

On the other hand, ∫
U(1)N

a~f (
~λ)a~f (

~λ) dλ1 . . . dλN = N ! (12.13)

because a~f (
~λ) is a sum of N ! orthogonal terms each of norm 1.

Putting all these observations, especially the norms (12.10) and (12.13),

together we see that an expression of χρ(~λ)∆(~λ) as an integer linear com-
bination of the elementary skew-symmetric functions a~f will involve exactly
one of the latter, and with coefficient ±1:

χρ(~λ)∆(~λ) = ±a~h(~λ)

for some ~h ∈ ZN
↓ . To determine the sign here, it is useful to use the lexi-

cographic ordering on ZN , with v ∈ ZN being > than v′ ∈ ZN if the first
non-zero entry in v − v′ is positive. With this ordering, let ~w be the highest
of the weights.
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Then the ‘highest’ term in χρ(~λ) is

λw1
1 ...λwNN

appearing with some positive integer coefficient, and the ‘highest’ term in
∆(~λ) is the diagonal term

λN−1
1 ...λ0

N

Thus, the highest term in the product χρ(~λ)∆(~λ) is

λw1+N−1
1 ...λ

wN−1+1
N−1 λwNN

appearing with coefficient +1.
We conclude that

χρ(~λ)∆(~λ) = a(w1+N−1,..,wN−1+1,wN )(~λ) (12.14)

and also that the highest weight term

λw1
1 ...λwNN

appears with coefficient 1 in the expression for χρ
(
D(~λ)

)
. This gives a re-

markable consequence:

Theorem 12.2.1 In the decomposition of the representation of T given by ρ
on V , the representation corresponding to the highest weight appears exactly
once.

The orthogonality relations (12.12) imply that∫
U(1)N

χρ(~λ)χρ′(~λ)|∆(~λ)|2 dλ1...dλN = 0 (12.15)

for irreducible representations ρ and ρ′ corresponding to distinct highest
weights ~w and ~w′.

Thus:

Theorem 12.2.2 Representations corresponding to different highest weights
are inequivalent.

Finally, we also have an explicit expression, Weyl’s formula [19, Eq (16.9)],
for the character χρ of an irreducible representation ρ, as a ratio of determi-
nants:

χρ
(
D(~λ)

)
=

a(w1+N−1,..,wN−1+1,wN )(~λ)

a(N−1,..,1,0)(~λ)
(12.16)

where the denominator is ∆(~λ). The division on the right should be under-
stood as division of polynomials in the indeterminates λ±1

j .
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12.2.3 Weyl dimensional formula

The dimension of the representation ρ is equal to χρ(I), but (12.16) reads

0/0 on putting ~λ = (1, 1, ..., 1) into numerator and denominator. L’Hôpital’s
rule may be applied, but it is simplified by a trick used by Weyl. Take an
indeterminate t, and evaluate the ratio in (12.16) at

~λ = (tN−1, tN−2, ..., t, 1)

Then a~h(
~λ) becomes a Vandermonde determinant

a(h1,...,hN )(t
N−1, ..., t, 1) = det


th1(N−1) th1(N−2) . . . th1 1
th2(N−1) th2(N−2) . . . th2 1

...
...

...
...

...
thN (N−1) thN (N−2) . . . thN 1


=

∏
1≤j<k≤N

(
thj − thk

)
Consequently,

a(h1,...,hN )(t
N−1, ..., t, 1)

a(h′1,...,h
′
N )(tN−1, ..., t, 1)

=
∏

1≤j<k≤N

thj − thk

th
′
j − th′k

Evaluation of the polynomial in t on the right at t = 1 yields

∏
1≤j<k≤N

hj − hk
h′j − h′k

=
V D(h1, ..., hN)

V D(h′1, ..., h
′
N)
,

where V D denotes the Vandermonde determinant.

Applying this to the Weyl character formula yields the wonderful Weyl
dimension formula

dim(ρ) =
∏

1≤j<k≤N
wj−wk+k−j

k−j (12.17)

for the irreducible representation ρ with highest weight (w1, ..., wN).
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12.2.4 Representations with given weights

It remains to show that every ~w ∈ ZN
↓ does correspond to an irreducible

representation of U(N). We will produce such a representation inside a
tensor product of exterior powers of CN .

It will be convenient to work first with a vector ~f ∈ ZN
↓ all of whose

components are ≥ 0. We can take ~f to be simply ~w, in case all wj are
non-negative. If, on the other hand, wj < 0 then we set

fj = wj − wN for all j ∈ {1, ..., N}

Now consider a tableau of boxes:

. . . . . . . . . ← f1 boxes

. . . . . . ← f2 boxes
...

...
... . . .

...
. . . ← fN boxes

The first row has f1 boxes, and is followed beneath by a row of f2 boxes,
and so on, with the N -th row containing fN boxes. (We ignore the trivial
case where all fj are 0.) Let f ′1 be the number of boxes in column 1, i.e.
the largest i for which fi ≥ 1. In this way, let f ′j be the number of boxes in
column j (i.e. the largest i for which fi ≥ j). Now consider

Vf =
∧f ′1 CN ⊗

∧f ′2 CN ⊗ . . .⊗
∧f ′N CN

where the 0-th exterior power is, by definition, just C, i.e. effectively dropped.
The group U(N) acts on this in the obvious way through tensor powers,

and we have thus a representation ρ of U(N). The appropriate tensor prod-
ucts of the standard basis vectors e1, ..., eN of CN form an a basis of Vf , and
these basis vectors are eigenvectors of the diagonal matrix

D(~λ) ∈ T,

acting on Vf . Indeed, a basis is formed by the vectors

ea =
N⊗
j=1

(ea1,j
∧ . . . ∧ eaf ′

j
,j

),

with each string ai,1, ..., ai,f ′i being strictly increasing and drawn from {1, ..., N}.
We can visualize ea as being obtained by placing the number ai,j in the box
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in the i-th row at the j-th column, and then taking the wedge-product of the
vectors eai,j along each column and then taking the tensor product over all
the columns:

ea1,1 ea1,2 ea1,3 . . . . . . . . . ea1,f1

ea2,1 . . . . . .
...

...
... . . .

...
eaf ′1,1

. . .

We have
ρ
(
D(~λ)

)
ea =

(∏
i,j

λai,j
)
ea

The highest weight term corresponds to precisely ea∗ , where a∗ has the entry
1 in all boxes in row 1, then the entry 2 in all boxes in row 2, and so on. The
eigenvalue corresponding to ea∗ is

λf11 ...λ
fN
N

Note that the corresponding subspace inside Vf is one-dimensional, spanned
by ea∗ . Decomposing Vf into a direct sum of irreducible subspaces under
the representation ρ, it follows that ea∗ lies inside (exactly) one of these
subspaces. This subspace V~f must then be the irreducible representation of

U(N) corresponding to the highest weight ~f .

We took ~f = ~w if wN ≥ 0, and so we are done with that case. No suppose
wN < 0.

We have to make an adjustment to Vf to produce an irreducible repre-
sentation corresponding to the original highest weight ~w ∈ ZN

↓ .
Consider then

V~w = Vf ⊗
(∧−N(CN)

)⊗|wN |
where a negative exterior power is defined through∧−m V = (

∧m V )∗ for m ≥ 1.

The representation of U(N) on
∧−N(CN) is given by

U · φ = (detU)−1φ for all U ∈ U(N) and φ ∈
∧−N(CN)

This is a one-dimensional representation with weight (−1, ...,−1), because

the diagonal matrix D(~λ) acts by multiplication by λ−1...λ−1
N .
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For the representation of U(N) on V~w, we have a basis of V~w consisting

of eigenvectors of ρ
(
D(~λ)

)
; the highest weight is

~f + (−wN)(−1, ...,−1) = (f1 + wN , ..., fN + wN) = (w1, ..., wN).

Thus, V~w contains an irreducible representation with highest weight ~w. But

dimV~w = dimV~f ,

and, on using Weyl’s dimension formula, this is equal to the dimension of
the irreducible representation of highest weight ~w. Thus, V~w is the desired
irreducible representation with highest weight ~w.

12.3 Characters of Sn from characters of U(N)

We will now see how Schur-Weyl duality leads to a way of determining the
characters of Sn from the characters of U(N). As with most of the ideas we
have discussed this is due to Weyl [19].

Let N, n ≥ 1, and consider the vector space (CN)⊗n. The permutation
group Sn acts on this by

σ · (v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n)

and the group GL(N,C) of invertible linear maps on CN also acts on (CN)⊗n

in the natural way:

B · (v1 ⊗ . . .⊗ vn) = B⊗n(v1 ⊗ . . .⊗ vn) = Bv1 ⊗ . . .⊗Bvn.

As we have seen in Chapter 11, these actions are dual in the sense that
the commutant of the action of C[Sn] on (CN)⊗n is the linear span of the
operators B⊗n with B running over GL(N,C).

Since the Lie algebra of GL(N,C), i.e. all N × N complex matrices, is
spanned over the complex field by the Lie algebra of U(N), it follows that
the action of Sn and that of U(N) are also dual on V ⊗n.

From the Schur-Weyl duality formula it follows that:

Tr(B⊗n · σ) =
∑
α∈R

χα(σ)χα(B) (12.18)
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where, on the left, σ represents the action of σ ∈ Sn on (CN)⊗n, and B ∈
U(N), and, on the right, R is a maximal set of inequivalent representations of
Sn. For the representation α of Sn given by the left regular representation on
a simple left ideal Lα in C[Sn], χα is the characteristic of the representation
of U(N) on

yα(CN)⊗n,

where yα is a non-zero idempotent in Lα.
Now the simple left ideals in C[Sn] correspond to

~f = (f1, ..., fn) ∈ Zn
≥0,↓

(the subscript ↓ signifying that f1 ≥ . . . ≥ fn) which are partitions of n:

f1 + f2 + . . .+ fn = n.

Recall that associated to this partition we have a Young tableau T~f of the
numbers 1, ..., n in rows of boxes:

1 2 3 . . . . . . . . . f1

f1 + 1 f1 + 2 f1 + 3 . . . . . . f1 + f2

...
...

... . . .
...∑

j<n fj . . . n

and associated to this we have an idempotent

y~f =
∑

q∈CT~f ,p∈RT~f

(−1)sgn (q)qp

where CT~f is the subgroup of Sn which, acting on the tableau T~f , maps the
entries of each column into the same column, and RT~f

preserves rows. Let

aij ∈ {1, ..., n}

be the entry in row i column j in the tableau T~f . For example,

a21 = f1 + 2

Let e1, ..., eN be the standard basis of CN , as usual. Place e1 in each of
the boxes in the first row, then e2 in each of the boxes in the second row,
and so on. Let

e⊗
~f = e⊗f11 ⊗ . . .⊗ e⊗fn
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be the tensor product of these vectors. Then

y~fe
⊗~f

is a multiple of ∑
q∈CT~f

(−1)sgn (q)qe⊗
~f

Let θ be the permutation that rearranges the entries in the tableau such that
as one reads the new tableau book-style (row 1 left to right, then second row
left to right, and so on) the numbers are as in T~f read down column 1 first,
then down column 2, and so on:

θ : aij 7→ aji

Then y~fe
⊗~f is a multiple of θ applied to

⊗j≥1 ∧i≥1 eaij

Thus
y~f (C

N)⊗n 6= 0

provided the columns in the tableau T~f have at most N entries each.
Under the action of a diagonal matrix

D(~λ) ∈ U(N)

with diagonal entries given by

~λ = (λ1, ..., λN),

on (CN)⊗n, the vector y~fe
⊗~f is an eigenvector with eigenvalue

λf1 ...λfNN

Clearly, the highest weight for the representation on y~f (C
N)⊗n is ~f .

Returning to the Schur-Weyl character duality formula and using in it
the character formula for U(N) we have

Tr
(
D(~λ)⊗n · σ

)
=
∑
~w

χ~w(σ)
a(w1+N−1,..,wN−1+1,wN )(~λ)

a(N−1,..,1,0)(~λ)
(12.19)
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where the sum is over all ~w ∈ ZN
≥0,↓ partitioning n, i.e. with |~w| = n.

Multiplying through in (12.19) by the Vandermonde determinant in the
denominator on the right, we have

Tr
(
D(~λ)⊗n · σ

)
a(N−1,..,1,0)(~λ) =

∑
~w∈ZN≥0,↓,|~w|=n

χ~w(σ)a(w1+N−1,..,wN−1+1,wN )(~λ)

(12.20)
To obtain the character value χ~w(σ) we consider

Tr
(
D(~λ)⊗n · σ

)
a(N−1,..,1,0)(~λ)

as a polynomial in λ1, ..., λN . Examining the right side in (12.20), we see
that

w1 +N − 1 > w2 +N − 2 > . . . > wN−1 + 1 > wN

and the coefficient of
λw1+N−1

1 ...λwN1

is precisely χ~w(σ).



Chapter 13

Frobenius Induction

In this chapter we examine Frobenius’ method of constructing a representa-
tion of a larger group G from a given representation of a subgroup H.

13.1 Construction of the Induced Represen-

tation

Consider a finite group G, with a subgroup H acting on G by multiplication
on the right. We have then the quotient

G/H = {xH : x ∈ G}

of all left cosets of H in G. The quotient map is

G x
πH ↓

G/H xH

The group H acts on G on the right:

G×H → G : (g, h) 7→ Rhg
def
= gh (13.1)

and maps each fiber π−1
H (xH) bijectively onto itself.

The left and right multiplication actions of G on itself induce actions on
the space of functions on G with values in any set E. For any f : G → E
and y, x ∈ G we have

Lyf : g 7→ f(y−1g), Ryf : g 7→ f(gy) (13.2)

167
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They are both left actions and clearly commute with each other:

LhRk = RkLh.

Assume now that E is a vector space, and ρ a representation of H on
G. We have then the set Eρ of all ‘fields’ on G of symmetry type ρ, i.e. all
functions

f : G→ E

satisfying the equivariance property

Rhf(g) = f(gh) = ρ(h−1)f(g) for all g ∈ G and h ∈ H. (13.3)

Then Eρ is a vector space. Moreover, since Lx commutes with both Rh and
ρ(h−1), we obtain a representation Lρ of G on Eρ:

Lρ(x) : Eρ → Eρ : f 7→ Lρ(x)f
def
= Lxf (13.4)

Thus, beginning with a representation ρ of the subgroup H, we have obtained
a representation Lρ of the larger group G. This representation is called the
representation induced from the representation ρ of the subgroup H.

13.2 Universality of the Induced Representa-

tion

The induced representation has a certain universal property, which we shall
describe first in categorical language and then in more detail, and prove this
property.

Consider, as before, a subgroup H of a finite group G, and a representa-
tion ρ of H on a vector space E. As explained in the previous section, there
is then a vector space Eρ and a representation Lρ of G on Eρ. Consider now
a category whose objects are H-linear maps

j : E → E

where E is a vector space on which G is represented. A morphism from
j : E → E to j′ : E → E ′ is a G-linear map

a : E → E ′



Representations of Algebras and Finite Groups 169

such that
a ◦ j = j′

In this section we will construct an object i : E → Eρ in this category which
is an initial element in the sense that there is a unique morphism from this
object to any object in this category.

For each vector v ∈ E let i(v) be the function on G with value v at e and
0 off the subgroup H:

i(v) : y 7→

{
ρ(y−1)v if y ∈ H;

0
(13.5)

Then i(v) belongs to Eρ and
i : E → Eρ

is a linear injection.
It is readily checked that i is H-linear.
Let E0 be the image of i in Eρ:

E0 = i(E) ⊂ Eρ

Now consider any decomposition of G as a union of disjoint cosets:

G = x1H ∪ . . . ∪ xrH

If f ∈ Eρ then cutting it off to 0 outside any xiH yields again an element of
Eρ:

1xiHf ∈ Eρ
Thus, we can decompose f as

f = 1x1Hf + · · ·+ 1xrHf ∈ Eρ

where each 1xiH is supported on the coset xiH in the sense that it is zero off
this coset. Thus any f ∈ Eρ can be expressed as

f = Lx1f1 + · · ·+ Lxrfr

where f1, ..., fr ∈ E0, with fi being Lx−1
i

(1xiHf). This gives a direct sum
decomposition

Eρ = x1E0 ⊕ . . .⊕ xrE0
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where
xiE0 = LxiE0.

Now consider any G-module F and an H-linear map

i′ : E → F

Define
φ : Eρ → F

by requiring that on E0, φ is given by

φ(f) = i′
(
f(e)

)
for all f ∈ E1,

and that φ is G-linear, i.e.

φ(Lxf) = xφ
(
f(e)

)
for all x ∈ G.

It is readily checked that φ is well-defined. Moreover, φ is the only map with
these properties.

Thus we have proved the universal property:

Theorem 13.2.1 If H is a subgroup of a finite group G, and ρ : H →
EndF(E) is a representation of H, then there is a representation G→ EndF(Eρ)
of G and an H-linear map

i : E → Eρ
such that for any H-linear map i′ : E → E ′, where G → EndF(E ′) is a
representation of G, there is a unique G-linear map

φ : Eρ → E ′

such that φ ◦ i = i′.

13.3 Character of the Induced Representa-

tion

We continue with the notation and hypotheses of the preceding section.
Let

G = x1H ∪ . . . ∪ xrH
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be a decomposition of G into disjoint cosets. For any g ∈ G the map

Lg : Eρ → Eρ

carries the subspace xiE0 bijectively onto gxiE0, which is the subspace of
functions vanishing outside the coset gxiH. Thus, gxiE0 equals xiE0 if and
only if x−1

i gxi is in H. So the map Lg has zero trace if g is not conjugate to
any element in H. If g is conjugate to an element h of H then

Tr(Lg) = ngTr(Lh|E0) = ngχE(h),

where ng is the number of i for which x−1
i gxi is in H.

We can summarize these observations in:

Theorem 13.3.1 The characteristic of the induced representation is given
by

χEρ(g) =
1

|H|
∑
x∈G

χ0
E(x−1gx) (13.6)

where χ0
E is equal to the characteristic of the representation ρ (of H on E)

on H ⊂ G and is 0 outside H.

The division by |H| in (13.6) is needed because each xi for which x−1
i gxi

is in H is counted |Hxi| (i.e. |H|) times in the sum on the right (13.6).
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Chapter 14

Representations of Clifford
Algebras

In this chapter we will apply the results on representations of semisimple
algebras we studied in Chapter 4 to an important special algebra called a
Clifford algebra. This algebra arises in the study of rotation groups, but for
our purposes we will focus just on the algebra itself. Since we are primarily
interested in representations on vector spaces over algebraically closed fields,
we will define the Clifford algebra also simply in the case of fields which allow
square-roots of −1.

We will work with a fixed integer d ≥ 1, and a field F which is of charac-
teristic 6= 2, and contains contains i =

√
−1. We use the notation

[d] = {1, ..., d}.

14.1 Clifford Algebra

The Clifford algebra with d generators e1, ..., ed over a field F is the associa-
tive algebra, with unit element generated by these elements, subject to the
relations

{er, es}
def
= eres + eser = 2δrs1 for all r, s ∈ {1, ..., d}. (14.1)

A basis of the algebra is given by all products of the form

es1 ...esm ,

173



174 Ambar N. Sengupta

where m ≥ 0, and 1 ≤ s1 < s2 < · · · ≤ d. Writing S for such a set
{s1, ..., sm} ⊂ {1, ..., d}, with the elements si always in increasing order, we
see that the algebra has a basis consisting of one element eS for each subset
S of {1, ..., d}. This leads to the formal construction of the algebra discussed
below in subsection 14.1.1. Notice also that the condition (14.1) implies that
every time a term eset, with s > t, is replaced by etes, one picks up a minus
sign:

etes = −eset if s 6= t.

Keeping in mind also the condition e2
s = 1 for all s ∈ [d], we have

eSeT = εST eS∆T , (14.2)

where S∆T is the symmetric difference of the sets S and T , and

εST =
∏

s∈S,t∈T

εst,

εst =


+1 if s < t;

+1 if s = t;

−1 if s > t,

(14.3)

that the empty product (which occurs if S or T is ∅) is taken to be 1.

14.1.1 Formal Construction

Now we can construct the algebra Cd officially. We take Cd to be the free
vector space, with scalars in F, over the set of all subsets of [d]. Denote the
basis element of Cd corresponding to S ⊂ [d] by eS. Thus, every x ∈ Cd is
expressed uniquely as a linear combination

x =
∑
S⊂[d]

xSeS with all xS in F.

Define a bilinear multiplication operation on Cd by (14.2):

eSeT = εST eS∆T , (14.4)

Clearly, the product is symmetric. It is also associative, as is seen from

eS(eT eR) = εST εTRεSReS∆T∆R = (eSeT )eR (14.5)
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Note that the dimension of Cd is the number of subsets of {1, ..., d}, i.e.

dim Cd = 2d.

The element e∅ is the multiplicative identity element in the algebra and
will usually just be denoted 1. A coefficient x∅ will often be written simply
as x0:

x0 = x∅.

Observe that if S = {s1, ..., sn}, where s1 < ... < sn, then

es1 ...esn = eS,

a relation which motivated the formal construction. We will often write this
element as

es1...sn .

Thus, e1...d means e[d].

14.1.2 The Center of Cd
The nature of the center Z(Cd) of Cd depends on whether d is even or odd.

An element z of Cd lies in the center if and only if it commutes with each
er, i.e. if and only if

erzer = z

holds for every r ∈ [d]. Let us analyze this relation, using the expression of
z in terms of the standard basis in Cd:

z =
∑
S⊂[d]

zSeS.

For any r ∈ [d], the product ereSer equals ±eS, and so the mapping

x 7→ erxer

has the effect of replacing some of the coefficients xS with their negatives. In
particular, if |S| is odd and r /∈ S, or if |S| is even and r ∈ S, then

ereSer = −eS,

and so
(erxer)S = −xS.
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Thus if z is in the center of Cd then, and any r /∈ S with |S| odd, or r ∈ S
with |S| even, we have zS equal to its own negative. Since the characteristic
of the field F is not 2, we see that if z is in the center of the algebra then

zS = 0 if |S| 6= 0 is even or if it is odd and |S| < d.

In particular, if d is a positive even integer then the coefficient zS is 0 for
all non-empty S. Thus, if d is even then the center of Cd consists of just the
scalar multiples of the identity element 1.

Now suppose d is odd. The arguments in the preceding paragraph work
for all non-empty S ⊂ [d] except for S = [d]. Moreover, it is readily checked
that, for d odd, e[d] commutes with every ej and so is in the center of Cd.
Thus, the center, in this case, consists of all linear combinations of 1 = e∅
and e[d].

We can now summarize the results for the center of the Clifford algebra.
Note that we have only needed to use, in the preceding arguments, that
1 6= −1 in the field F. If 1 + 1 = 0 in F then, going back to the defining
relations for the Clifford algebra, we see that the algebra is then commutative.

Proposition 14.1.1 Let Cd be the Clifford algebra with d generators, over
any field F of scalars. If the characteristic of F is not 2 then the center of Cd
is

Z(Cd) =

{
k1 if d is even;

k1 + ke[d] if d is odd.
(14.6)

If F has characteristic 2 then Cd is abelian.

14.2 Semisimple Structure of the Clifford Al-

gebra

Let us recall some structure theory for semisimple algebras. If A is a semisim-
ple algebra over an algebraically closed field F of characteristic 0, then the
center Z(A), as a F-vector-space has a basis u1, ..., uC , where each uj is a
non-zero idempotent, with ujum = 0 if j 6= m, and

1 = u1 + · · ·+ uC .

The algebra A is the product of the 2-sided ideals Aj = Auj, viewed as
F-algebras. The 2-sided ideal Aj is a direct sum of simple left ideals, all
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isomorphic to one simple left ideal Lj. If j 6= m then the simple left ideals
Lj and Lm are not isomorphic; every simple left A-module is isomorphic to
exactly one of the Lj.

In view of the results about the center of Cd we can see that, if Cd is
semisimple then the algebra Cd is simple if d is even, and is the direct sum
of two 2-sided ideals if d is odd. In the latter case the ideals are generated
by the two idempotents

1

2
(1± id(d−1)/2e[d]),

where the right side arises from e2
[d]. Note that d(d−1) being even, the power

id(d−1)/2 is an integer power of i and is therefore in the field F.
For even d we know that, if Cd is semisimple then it is, in fact, simple,

and hence would be the direct sum of p semisimple left ideals, each of which
is p-dimensional. Thus, p must be 2d/2. We shall construct these simple left
ideals directly using idempotents, and thereby prove semisimplicity of Cd as
by-product. Semisimplicity of Cd can, of course, readily be checked directly.

14.2.1 Structure of Cd for d ≤ 2

We shall work out the structure of Clifford algebras generated by one and
two elements. We work with a field of characteristic 6= 2. For the case of two
generator algebras, we shall also need to use the square root i =

√
−1 in F.

First consider the Clifford algebra Ey generated by one element y. Then

Ey = k1 + ky.

Since

y2 = 1,

the elements

uy =
1 + y

2
and uy,− =

1− y
2

are idempotents. Moreover,

yuy,+ = uy,+ and yuy,− = −uy,−,

and

uy,+uy,− = 0 = uy,−uy,+.
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Then Ey decomposes as the internal direct sum of left ideals:

Ey = Eyuy,+ ⊕ Eyuy,−.

This being a decomposition of the two-dimensional vector space Ey into non-
zero subspaces, each is a one-dimensional subspace

Eyuy,± = kuy,±.

Being one-dimensional, these are necessarily simple left ideals in Ey. These
left ideals are non-isomorphic as Ey-modules, because if

f : Eyuu,+ → Eyuu,−

were an Ey-linear mapping then f(uy,+) would be cuy,− for some c ∈ k, and
then

f(uu,+) = f(uy,+uy,+) = uy,+f(uy,+) = cuy,+uy,− = 0.

In other words,
EndEy(Eyuy,+, Eyuy,−) = 0.

Now we move on to the Clifford algebra Eα generated by a pair

α = {r, s}

of elements r, s. Then

Eα = k1 + keα + ker + kes.

We have
(ieα)2 = 1,

and so

uα,+ =
1 + ieα

2
and uα,− =

1− ieα
2

are idempotents.
In terms of the two idempotents uα,± the algebra decomposes as the

internal direct sum of left ideals Eαuα,±:

Eα = Eαuα,+ + Eαuα,−

We observe also that, for j ∈ α,

ejuα,+ = uα,−ej and uα,+ej = ejuα,−,
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and
ieαuα,+ = uα,+ and ieαuα,− = uα,−.

Consequently, for any x ∈ Eα,

xuα,±x

is a F-multiple of uα,±. Therefore, by the simple result in Theorem 4.5.1 (i),
the element uα,± is a primitive idempotent in Eα, and the left ideals Eαuα,±
are simple.

For the pair α = {r, s}, with r < s, an ordered basis of Eαuα,+ as a
F-vector-space is given by

eruα,+, uα,+. (14.7)

Observing that

eseruα,+ = i(ieres)uα,+ = iuα,+

esuα,+ = (−ier)(ieres)uα,+ = −ieruα,+,
(14.8)

we see that the matrices for multiplication on the left by er and by es on
Eαuα,+, relative to the basis (14.7) are

σ1 =

[
0 1
1 0

]
and σ2 =

[
0 −i
i 0

]
, (14.9)

respectively. Similarly, the matrices for multiplication on the left by er and
by es on Eαuα,−, relative to the ordered basis

uα,−, eruα,− (14.10)

are

σ1 =

[
0 1
1 0

]
and σ2 =

[
0 −i
i 0

]
, (14.11)

respectively.
The mapping

f : Eα,+ → Eα,− : x 7→ xeruα,−

is clearly Eα-linear, and has the following action on the basis in Eα,+:

f(uα,+) = eruα,−

f(eruα,−) = uα,+.

Thus, f is an isomorphism of the simple left modules Eα,±.
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14.2.2 Structure of Cd for even d

Assume that d is even. Fix a partition of [d] into pairs, say

Pd = {{1, 2}, {3, 4}, ..., {d− 1, d}} for even d. (14.12)

For each α = {r, r + 1} ∈ Pd, the two elements er and er+1 generate the
subalgebra

Eα = k1 + ker,r+1 + ker + ker+1,

in which there are the two primitive idempotents

uα,± =
1

2
(1± ieα) .

We will construct primitive idempotents in Cd by taking products of the uα,±.
To this end let us first observe

Lemma 14.2.1 The mapping

E12 × · · · × Ed−1,d → Cd : (a12, ..., ad−1,d) 7→ a12...ad−1,d (14.13)

induces a F-linear isomorphism

f : E12 ⊗ · · · ⊗ Ed−1,d → Cd (14.14)

Proof The mapping in (14.13) is multilinear over the scalars in F, and so
induces a linear map f in (14.14). A basis of the tensor product E12 ⊗ · · · ⊗
Ed−1,d is given by all the elements of the form eS12 ⊗ · · · ⊗ eSd−1,d

, where Sα
runs over subsets of α for each α ∈ Pd. The map f carries this basis element
to eS12∪...∪Sd−1,d

; thus f maps a basis to a basis, and so is an isomorphism.

QED
Let ε be any mapping

ε : Pd → {+,−} : {r, s} 7→ εrs = εsr.

Associate to this the idempotent

uε =
∏
α∈Pd

uα,εα =
∏

{r,r+1}∈Pd

1 + εr,r+1ierer+1

2
. (14.15)
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Note first that this is not 0. The following relations are readily checked:∑
ε∈Pd

uε = 1

u2
ε = uε

uε′uε = 0 if ε 6= ε′.

(14.16)

We also observe that

eruε = uεrer, (14.17)

where εr agrees with ε on all pairs except on the pair which contains r.
Moreover, for any {r, r + 1} ∈ Pd, we have

ierer+1uε = εr,r+1uε (14.18)

Lemma 14.2.2 The idempotents uε are primitive.

Proof Suppose A1 and A2 are subalgebras of a F-algebra A such that the
mapping

f : A1 ⊗ A2 → A : a1 ⊗ a2 7→ a1a2

is a F-linear isomorphism, and suppose ui ∈ Ai is a primitive idempotent
with the property that uixui is a F-multiple of ui for every x ∈ Ai, for
i ∈ {1, 2}. Assume, moreover, that u1 commutes with every element of A2,
and u2 commutes with every element of A1. Then, for any a1 ∈ A1 and
a2 ∈ A2, we have

u1u2a1a2u1u2 = u1a1(u2a2u2)u1 ∈ ku1a1u1u2 ⊂ ku1u2.

Then, by Theorem 4.5.1 (i) (whose proof is simple), it follows that u1u2 is
a primitive idempotent in A. Applying this inductively to the subalgebras
E12, E34, .., Ed−1,d, and the idempotents uα,± (primitive inside Eα), we see

that the products uε are primitive, for every ε ∈ {+,−}Pd . QED
The maps ε run over the set

{+,−}Pd ,

which contains 2d/2 elements.
To summarize:



182 Ambar N. Sengupta

Proposition 14.2.1 Suppose d ≥ 2 is an even number, and Pd the set of
pairs {{1, 2}, {3, 4}, ..., {d−1, d}}. Then for every ε ∈ {+,−}Pd, the element
uε is a primitive idempotent. Moreover,

uε′uε = 0 if ε 6= ε′,

and ∑
ε∈{+,−}Pd

uε = 1.

Next we show that the uε generate isomorphic left ideals:

Lemma 14.2.3 Let d ≥ 2 be an even integer. For any ε, ε′ ∈ {+,−}Pd, the
left ideals Cduε and Cduε′ are isomorphic as left Cd-modules.

Proof The key to this is the observation that if r < s in [d], then

urs,+er = erurs,−, and urs,−er = erurs,+.

Thus to convert uε into uε′ we can multiply by a suitable product y of the
er’s. Let D = {α ∈ Pd : εα 6= ε′α}. Let us write each pair as α = {α1, α2},
with α1 < α2. Let

y =
∏
α∈D

eα1 ,

where the product is, say, in increasing order of the subscripts α1. Then

uεy = yuε′ .

The map

h : Cduε → Cduε′ : auε 7→ auεy = ayuε′

is Cd-linear, maps the generator uε to the non-zero element yuε′ ∈ Cduε′ (it is
non-zero because in the expansion of yuε′ in the standard basis, the coefficient
of y is 1). Therefore, h is an isomorphism of the simple left ideals.

We can now summarize all our results for even d. For this, recall that
an algebra is said to be simple if it is a direct sum of isomorphic simple left
ideals.
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Theorem 14.2.1 For any even positive integer d, the Clifford algebra Cd
generated by elements e1, ..., ed, over a field F which contains i =

√
−1 and

has characteristic 6= 2, is a simple algebra which decomposes as the direct
sum of 2d/2 simple left-ideals:

Cd =
⊕

ε∈{+,−}Pd

Cduε,

where Pd = {{1, 2}, ..., {d− 1, d}}, and

uε =
∏

{r,r+1}∈Pd

1 + εr,r+1erer+1

2
.

Each left ideal Cduε is a 2d/2-dimensional vector space over F, and the sim-
ple left ideals Cduε are isomorphic to each other as Cd-modules, for all ε ∈
{+,−}Pd. A basis of the vector space Cduε is given by the vectors eRuε, with
R running over all subsets of [d]odd, the set of odd integers in [d] = {1, ..., d}.

Let us also make another observation.

Lemma 14.2.4 For any ε ∈ {+,−}Pd, the simple left ideal in Cd generated
by uε can be expressed as

Cduε = f(E12,ε12 ⊗ · · · ⊗ E{d−1,d},εd−1,d
), (14.19)

where f : E12 ⊗ · · · ⊗ Ed−1,d → Cd is specified by f(a12 ⊗ · · · ⊗ ad−1,d) =
a12...ad−1,d.

Proof. Let aα ∈ Eα, for each α ∈ Pd. Then

aαuβ,εβ = uβ,εβaα for all β ∈ Pd with β 6= α.

Then, since Eα,± has a basis, as F-vector-space, given by the elements uβ,±
and eruβ,±, with r ∈ β, we have the following equality of ordered products∏

α∈Pd

aαuα,εα = (
∏
α∈Pd

aα)uε.

Hence,
∏

α∈Pd Eα,εα is a subset of the simple left ideal Cduε. On the other
hand, by Lemma 14.2.1, every element of Cd is a sum of products of the
form

∏
α∈Pd aα. It follows then that every element of Cduε is in the image in

f(E12,ε12 ⊗ · · · ⊗ E{d−1,d},εd−1,d
). QED
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14.2.3 Structure of Cd for odd d

Now suppose d is odd. We then also have to consider the idempotents

1± ed
2

.

So, for odd d, define

Pd = {{1, 2}, {3, 4}, ..., {d− 2, d− 1}, {d}} for odd d, (14.20)

and, for ε ∈ {+,−}Pd , we set

uε =

(
1 + εded

2

) ∏
α∈Pd\{d}

(
1 + εαieα

2

)
(14.21)

Note that this is not 0, and that this is a product of terms which commute
with each other. (There is no point in making a distinction between d and
{d} as subscript.)

The only difference with the case of even d is that there is now an extra
term from the idempotents corresponding to ed. We still have the relations∑

ε∈{+,−}Pd

uε = 1

u2
ε = uε

uε′uε = 0 if ε 6= ε′.

(14.22)

Arguing analogously to the case of even d we have:

Proposition 14.2.2 Suppose d ≥ 1 is an odd number, and let Pd be the
set {{1, 2}, {3, 4}, ..., {d − 2, d − 1}, {d}}. Then for every ε ∈ {+,−}Pd, the
element uε is a primitive idempotent. Moreover,

uε′uε = 0 if ε 6= ε′,

and ∑
ε∈{+,−}Pd

uε = 1.
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Thus, Cd decomposes into the internal direct sum of the simple left ideals
Cduε. We need now only determine which of these are isomorphic. To this
end, for each ε ∈ {+,−}Pd , we introduce

σ(ε) =
∑
α∈Pd

εα mod Z2, (14.23)

where we have identified + with 0 ∈ Z2 and − with 1 ∈ Z2.

Lemma 14.2.5 Let d ≥ 1 be an odd integer. For any ε, ε′ ∈ {+,−}Pd, the
primitive left ideals Cduε and Cduε′ are isomorphic if and only if σ(ε) = σ(ε′).

Proof If
f : Cduε → Cduε′

is Cd-linear, then f(uε) equals xuε′ for some x ∈ Cd, and then f is given by

f(auε) = f(auεuε) = auεxuε′ .

We will show that if σ(u) = σ(u′) then there is an x ∈ Cd for which uεx
equals uε′ , while if σ(u) 6= σ(u′) then auεxuε′ is 0 for all x ∈ Cd.

For α ∈ Pd−1 = {{1, 2}, ..., {d− 2, d− 1}} we have

uεeα1 = eα1uε(1), (14.24)

where α = {α1, α2}, and ε(1) disagrees with ε on α and on {d}. Since ε and
ε(1) differ on exactly two elements in Pd it follows that

σ(ε) = σ(ε(1)). (14.25)

From (14.24) we see that, for any S ⊂ [d− 1],

uεeS = eSuεS ,

where εS disagrees with ε on α ∈ Pd−1 if and only if |S ∩ α| = 1, and εS
disagrees with ε on {d} if and only if |S| is odd. Moreover, from (14.25) it
follows that

σ(ε) = σ(εS).

Consider now ε, ε′ ∈ {+,−}Pd . Suppose σ(ε) 6= σ(ε′). Then for every
S ⊂ [d− 1] we have εS 6= ε′ and so

uεeSuε′ = eSuεSuε = 0,
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which then also implies

uεeSeduε′ = ±uεeSuε′ = 0.

Therefore,
uεxeduε′ = 0 for all x ∈ Cd.

This implies that any Cd linear map Cduε → Cduε′ is 0, and so these simple
left ideals are not isomorphic as Cd-modules.

Suppose now that σ(ε) = σ(ε′). Let

D = {α ∈ Pd−1 : εα = ε′α},

and D1 be the subset of [d] consisting of one element exactly from each α ∈ D
(in particular, |D1| equals |D|). Then |{α ∈ Pd : εα 6= ε′α}| is even. Then
either |D| is even and ε′d = εd or |D| is odd and ε′d 6= εd. In either case, we
have

uεeD1 = eD1uε′ .

Therefore the Cd-linear mapping

Cduε → Cduε′ : auε 7→ auεeD1

is non-zero, carrying uε to eD1uε′ 6= 0, and hence an isomorphism of the

simple left ideals. QED
We can also verify the effect of the central element e[d] on the simple left

ideals.

Lemma 14.2.6 Let d ≥ 1 be odd. Then

i(d−1)/2e[d]x =

{
x if x ∈ Cduε where σ(ε) = 0;

−x if x ∈ Cduε where σ(ε) = 1.
(14.26)

In particular, multiplication by the central idempotent

z+ =
1 + id(d−1)/2e[d]

2

is given by

z+x =

{
x if x ∈ Cduε where σ(ε) = 0;

0 if x ∈ Cduε where σ(ε) = 1.
(14.27)
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Proof Consider the central element

y = ed
∏

α∈Pd−1

(ieα) = i(d−1)/2e[d].

Multiplying with this, we have, for any ε ∈ {+,−}Pd ' ZPd
2 ,

yuε = (−1)σ(ε)uε

Then
id(d−1)/2e[d]uε = yduε = (−1)σ(ε)duε = (−1)σ(ε)uε,

because d is odd. This yields (14.27). QED
Now we can summarize our results for odd d. Recall that a two-sided

ideal is said to be simple if it is a direct sum of isomorphic simple left ideals.

Theorem 14.2.2 For any odd positive integer d, the Clifford algebra Cd gen-
erated by elements e1, ..., ed, over a field F which contains i =

√
−1 and has

characteristic 6= 2, decomposes as the direct sum of 2 simple two-sided ideals

Cd = C+
d ⊕ C

−
d ,

where the central idempotent
1+id(d−1)/2e[d]

2
acts as identity on C+

d , and on C−d
as 0. Each of these two-sided ideals is the direct sum of 2(d−1)/2 simple left-
ideals:

C+
d =

⊕
ε∈{+,−}Pd ,σ(ε)=0

Cduε,

and
C−d =

⊕
ε∈{+,−}Pd ,σ(ε)=1

Cduε,

where Pd = {{1, 2}, ..., {d− 1, d}, {d}}, and

uε =

(
1 + εded

2

) ∏
{r,r+1}∈Pd

1 + εr,r+1erer+1

2
.

Each left ideal Cduε is a 2(d−1)/2-dimensional vector space over F, and the
simple left ideals Cduε within each of the two-sided ideals C±d are isomorphic
to each other as Cd-modules. A basis of the vector space Cduε is given by the
vectors eRuε, with R running over all subsets of [d − 1]odd, the set of odd
integers in [d− 1] = {1, ..., d− 1}.
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Again we have an observation on tensor product decompositions.

Lemma 14.2.7 Let d ≥ 1 be an odd integer. Then there is an isomorphism
of vector spaces given by

f : E12⊗· · ·⊗Ed−2,d−1⊗Ed → Cd : a12⊗· · ·⊗ad−2,d−1⊗ad 7→ a12...ad−2,d−1ad.

For any ε ∈ {+,−}Pd, the simple left ideal in Cd generated by uε can be
expressed as

Cduε = f(E12,ε12 ⊗ · · · ⊗ E{d−1,d},εd−2,d−1
⊗ Ed), (14.28)

where

Proof. The proof that f is an isomorphism is entirely analogous to the case of
even d in Lemma 14.2.1: the map f carries basis elements to basis elements.

Let aα ∈ Eα, for each α ∈ Pd. Then

uβ,εβaα = aαuβ,εβ for all β ∈ Pd−1 with β 6= α.

Then, since Eα,± has a basis, as F-vector-space, given by the elements uβ,±
and eruβ,±, with r ∈ β, we have the following equality of ordered products∏

α∈Pd

aαuα,εα = (
∏
α∈Pd

aα)uε.

Thus,
∏

α∈Pd Eα,εα is a subset of the simple left ideal Cduε. On the other
hand, since f is an isomorphism, every element of Cd is a sum of products of
the form

∏
α∈Pd aα. It follows then that every element of Cduε is in the image

in f(E12,ε12 ⊗ · · · ⊗ E{d−1,d},εd−2,d−1
⊗ Ed). QED

14.3 Representations

In this section F is, as before, a field of characteristic 6= 2 which contains
i =
√
−1. We will use notation from the previous section.
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14.3.1 Representations with Endomorphisms

For any even positive integer d, we have seen that the Clifford algebra Cd,
with d generators e1, ..., ed, over the field F, is a simple algebra. Recall that
its basis, as a vector space is given by the elements eS, with S running over
[d]. All simple Cd modules are isomorphic to the simple left ideal

Cdu,

where

u =
∏
α∈Pd

1 + ieα
2

,

where Pd = {{1, 2}, ..., {d − 1, d}}. A vector space basis of this left module
is given by the elements eRu, with R running over all subsets of [d]odd, the
set off odd numbers in [d]. If

f : Cdu→ Cdu

is Cd-linear then f(u) is xu for some x ∈ Cd, and then, as seen in the proof
of Lemma 14.2.2, uxu equals cu, for some c ∈ k, and so

f(au) = f(auu) = auf(u) = auxu = cau, for all a ∈ Cd.

Thus,
EndA(Cdu) = k1,

where 1 here is the identity map on Cdu. Next, for the ‘double commutant’,
we have:

Proposition 14.3.1 Let Cd be the Clifford algebra on d generators over a
field of characteristic 6= 2 and containing i =

√
−1. If d is even then, for

any simple Cd-module L, the mapping

µ : Cd → EndF(L),

which associates to each a ∈ Cd the F-linear map L → L : y 7→ ay, is an
isomorphism of F-algebras. If d is odd and L± a simple Cd-module on which
the central element i(d−1)/2e[d] acts as ±1, then

µ : Cd → EndF(L+)⊕ EndF(L−)

is an isomorphism of F-algebras, where, for each a ∈ Cd, the element µ(a) ∈
EndF(L±) maps any y ∈ L± to ay.
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Proof It is clear that µ is F-linear, and maps the identity in Cd to the identity
in EndF(L).

Suppose d is even. If a ∈ Cd is such that µ(a) is 0 then, since all simple left
modules of Cd are isomorphic, and Cd is itself a direct sum of such modules
appearing as simple left ideals, it follows that multiplication in Cd by a on
the left is 0, which implies that a = a1 is 0. Thus µ is injective. We
can check directly that µ is surjective, or observe that dimF Cd = 2d/2 and
dimF

(
EndF(L)

)
= (dimF L)2 = (2d/2)2 = 2d, and therefore µ must also be

surjective.
The argument for odd d is very similar. QED

14.3.2 Representations on Exterior Algebras

In the Clifford algebra Cd, with all notation and hypotheses as usual, there
is the simple left ideal L+ generated by

u+ =
∏
α∈Ps

uα,+.

A basis of this as a vector space is given by the elements eRu+, with R
running over all subsets of [d]odd.

The exterior algebra ΛD, over the field F, on an ordered set D 6= ∅ of
generators is the free F-vector-space with basis yR, with R running over all
finite subsets of D; the bilinear product structure on ΛD is specified by

yRyS = ε0RSyR∆S, (14.29)

where

ε0RS =
∏

r∈R,s∈S

εrs (14.30)

and

εrs =


1 if r < s;

0 if r = s;

−1 if r > s,

and the empty product in (14.30), if R or S is empty, understood to be 1.
Note that

y2
r = 0 and yrys = −ysyr
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for all r, s ∈ D. The multiplicative identity y∅ will be written simply as 1.
Clearly, ΛD has dimension 2|D|.

Let V be the linear span of the elements yr for r ∈ D:

V =
∑
r∈D

kyr ⊂ ΛD.

The m-th exterior power ΛmV of V is the linear span in ΛD of the basis
elements yS with |S| = m. Thus, ΛD is the direct sum of these subspaces:

ΛD =

|D|⊕
m=0

ΛmV.

For any v ∈ V the creation operator cv on ΛD is is the linear mapping on ΛD

specified by
cv(yS) = vyS for all S ⊂ D,

where vyS is the product in ΛD. We write cr for cyr ; thus,

cr(yS) = yryS =

{
ε{r}Sy{r}∪S if r /∈ S;

0 if r /∈ S.
(14.31)

Define the annihilation operator av by

av(yS) =
∑
r∈D

vrar(yS),

for v =
∑

r∈D vryr ∈ V , and where

ar(yS) =

{
0 if r /∈ S;

ε{r}SyS\{r} if r ∈ S.
(14.32)

The annihilation operator has a convenient algebraic property:

av(xy) = (avx)y + (−1)px(avy), (14.33)

if x ∈ ΛpV .
Returning to the Clifford algebra, let ΛD be the exterior algebra with

generating set being [d− 1]odd. Consider the linear mapping

C : L+ → ΛD : eRu+ 7→ yR for all R ⊂ [d]odd.
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Since, by definition, this carries a basis to a basis, it is an isomorphism of
vector spaces. Let

C+
d

be Cd is d if even, and for d odd be the two-sided ideal in Cd on which
i(d−1)/2e[d] acts as multiplication by +1. Then, by Proposition 14.3.1,

C+
d ' EndF(L+),

and therefore
B : C+

d ' EndF(Λ[d−1]odd
) (14.34)

We have made no use at all of the exterior product structure in ΛD as yet.
This structure plays a role only when we express the isomorphism B explicitly
in terms of that structure.

The following can be verified by straightforward computation:

Proposition 14.3.2 With notation as above, and, as always, for F a field
of charateristic 6= 2 and containing i =

√
−1,

B(er) = cr + ar and B(er+1) = i(cr − ar)

for all r ∈ [d − 1]odd, where cr and ar are the creation and annihilation
operators on Λ[d−1]odd

.

14.4 Superalgebra structure

In this section, we will discuss a graded structure on Clifford algebras, and
review some of the results of this chapter in the context of this graded struc-
ture.

14.4.1 Superalgebras

A Z2-graded algebra or superalgebra B over a commutative unital ring R is
an expression of the algebra B as a direct sum

B = B0 ⊕B1

where each Bp is a sub-R-module, and

BpBq ⊂ Bp+q,
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where p+ q is the sum in Z2, i.e. modulo 2. Elements of B0 are called even,
and elements of B1 are called odd. Since B0B0 ⊂ B0, we see that B0 is a
subalgebra of B. If B has a multiplicative identity 1 then 12 equals 1, and
so 1 ∈ B0.

Elements which are even or odd are called homogeneous. A general el-
ement of the algebra is, of course, expressed uniquely as a sum of an even
part and an odd part.

In a superalgebra B, there is the superbracket or supercommutator {·, ·}
which is a bilinear product defined on homogeneous elements by

{x, y} def
= xy − (−1)pqyx, (14.35)

where x ∈ Bp and y ∈ Bq. This bracket is super-skew-symmetric:

{y, x} = (−1)pqyx, for all x ∈ Bp and y ∈ Bq.

Moreover, the superbracket satisfies the super-Jacobi identity:

{x, {y, z}} = {{x, y}, z}+ (−1)pq{x, {y, z}}, (14.36)

for all x ∈ Bp, y ∈ Bq, and z ∈ B.
Suppose

A = A0 ⊕ A1 and B = B0 ⊕B1

are Z2-graded associative algebras over some commutative unital ring R. We
will work with the tensor product R-module

A⊗B.

It will be convenient to write the element a ⊗ b simply as ab. We define a
bilinear product on A⊗B by

(ab)(a′b′) = (−1)qp
′
(aa′)(bb′),

if a, b, a′, b′ are all homogeneous, and b ∈ Bq and a′ ∈ Ap′ . Then, as may be
verified by explicit checking, A ⊗ B is an associative algebra over R; it has
multiplicative identity 1 given by 1A1B if A and B have identities 1A and 1B,
respectively. In fact, it is a superalgebra, on setting

(A⊗B)p =
⊕

r,s∈Z2,r+s=p

Ar ⊗Bs (14.37)
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14.4.2 Clifford algebras as superlagebras

We turn now to Clifford algebras over some fixed field F.

The Clifford algebra Cd has a superalgebra structure:

Cd = C0
d + C1

d , (14.38)

where C0
d is the subspace spanned by all eS with |S| even, and C1

d is spanned
by all eS with |S| odd.

14.4.3 Tensor product decomposition

Let us, for the moment, denote the Clifford algebra with generating set E =
{e1, ..., ed}, by CE. Then, if E ′ and E ′′ partition E into disjoint non-empty
subsets then

CE′ ⊗ CE′′ → CE : a⊗b 7→ ab (14.39)

is an isomorphism of superalgebras, i.e. is is an isomorphism of algebras
which carries even elements to even elements and odd to odd.

The preceding tensor product isomorphism naturally carries over to the
case where [d] is partitioned into multiple subsets.

In particular, if d is even, we can partition [d] into pairs

Pd = {{1, 2}, ..., {d− 1, d}}

and have the superalgebra isomorphism

f : E12 ⊗ E34 ⊗ · · · ⊗ Ed−1,d → Cd : a12 ⊗ ...⊗ad−1,d 7→ a12...ad−1,d (14.40)

where Ers is the Clifford algebra over {er, es}.
If d is odd then we have the partition

Pd = {{1, 2}, ..., {d− 1, d}, {d}}

and the corresponding isomorphism

f : E12⊗E34⊗· · ·⊗Ed−1,d⊗Ed → Cd : a12⊗...⊗ad−1,d 7→ a12...ad−1,d, (14.41)

where Ed is the Clifford algebra over the one generator ed.



Representations of Algebras and Finite Groups 195

14.4.4 Semisimple structure

Assume, as usual, that the field F has character 6= 2.
As seen before, the Clifford algebra Eα decomposes as a direct sum of

simple left ideals
Eα = Eα,+ ⊕ Eα,−,

where each Eα,± is 2-dimensional as a F-vector-space if α is a pair, and is
1-dimensional if α is a singleton. Explicitly,

Eα,+ = Eαuα,+, and Eα,− = Eαuα,−,

where the primitive idempotents uα,± are given by

u{r,s},+ =
1 + ieres

2
and u{r,s},− =

1− ieres
2

ur,+ =
1 + er

2
and ur,− =

1− er
2

,
(14.42)

for any r, s ∈ [d] with r 6= s.
Let ε be any element of {+,−}Pd . The algebra isomorphism f then maps⊗

α∈Pd

Eα,εα

onto the simple left ideal
Cduε,

where

uε
def
=

{
u12,ε12 ...u{d−1,d},ε{d−1,d} if d is even;

u12,ε12 ...u{d−1,d},ε{d−1,d}ud,εd if d is odd.

Thus the decomposition

⊗
α∈Pd

Eα =
⊕

ε∈{+,−}Pd

(⊗
α∈Pd

Eα,εα

)

carries over, via f , to the decomposition of the Clifford algebra Cd into simple
left ideals:

Cd =
⊕

ε∈{+,−}Pd

Cduε.
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Exercises

1. Prove the super-Jacobi identity (14.36).

2. The super-center of Cd is the set of all elements a for which {a, x} = 0
for all x ∈ Cd. Work out the super-center of Cd.

3. For a basis element eS in the Clifford algebra, show that

e2
S = (−1)πS1,

where πS = |S|(|S|−1)/2 is the number of unordered pairs of elements
in S.

4. Show that the Clifford algebra generated by one element e1 contains
exactly two idempotents other than 0 and 1, these being (1 ± e1)/2.
Conclude that these are primitive idempotents.

5. For a Clifford algebra Cd over a field F, determine all linear maps T :
Cd → k which have the trace-property that T (ab) = T (ba) for all
a, b ∈ Cd.

6. Fix d ≥ 1, and let F be a field of characteristic 6= 2. Suppose E is
a left ideal in Cd, the Clifford algebra with d generators over the field
F. Treating it as a vector space over F, we have a linear surjection
P : Cd → E, which is equal to the identity map on E. Construct from
P a surjection P ′ : Cd → E which is linear as a map of Cd-modules and
is, again, the identity on E.

7. Prove directly from the definition that the Clifford algebra Cd, over a
field of characteristic 6= 2, is semisimple.

8. Fix d ≥ 1, and let e−1, e0, e1, ..., ed generate a group G subject to the
relations :(i) e0 is the identity element; (ii) e−1 commutes with all
elements; (iii) e2

r = e0 for all r ∈ {−1, 0, ..., d}; (iv) eres = e−1eser if
r 6= s ∈ {1, ..., d}. Work out the structure of the group algebra F[G].
Show that Cd is the quotient of F[G] by the 2-sided ideal generated by
e0 + e−1.

9. Suppose A and B are semisimple algebras over a field F, and L and
M simple left ideals in A and B, respectively. Suppose, moreover, that
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EndA(L,L) and EndB(M,M) are one-dimensional, as vector spaces
over F. Show that L⊗M is a simple left ideal in the algebra A⊗B.

10. Let d be a positive integer, and Cd the Clifford algebra with generators
e1, ..., ed over a field of characteristic 6= 2 which contains i =

√
−1. For

any S ⊂ [d], and ε ∈ {+,−}, let

uS,ε =
1 + εi|S|(|S|−1)/2eS

2
.

Show that uS,ε is an idempotent, and prove the following relations:

uS,+ + uS,− = 1

uS,+uS,− = 0 = uS,−uS,+

uS,+ − uS,− = i|S|(|S|−1)/2eS.

Work out all relations between uS,εuT,ε′ and uT,ε′uS,ε.

11. A trace τ on an algebra A, with identity 1, over a field F is a linear
map τ : A→ k, satifying τ(1) = 1 and τ(xy) = τ(yx) for all x, y ∈ A.
Let d be a positive integer and consider the Clifford algebra Cd with d
generators e1, ..., ed, over a field F of characteristic 6= 2.

(i) Let τ0 : Cd → k be the linear map for which τ(e∅) = 1 and
τ(eS) = 0 for S 6= ∅; show that τ0 is a trace.

(ii) If τ : Cd → k is a trace which is 0 on all eS for |S| odd, show that
τ = τ0.

12. We work with the notation and hypotheses of the preceding problem;
thus, τ0 is the unique trace on Cd which vanishes on all eS with S 6= ∅.
Let k → k : λ 7→ λ be an automorphism of the field F, and let

Cd → Cd : x 7→ x∗

be the unique mapping specified by requiring that (xy)∗ = y∗x∗ for all
x, y ∈ Cd and (λx) = λx∗ for all x ∈ Cd and all λ ∈ k. Consider the
pairing

Cd × Cd → k : (x, y) 7→ 〈x, y〉 def
= τ(xy∗).

This is clearly linear in the first variable, conjugate linear in the second.
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(i) Show that 〈·, ·〉 is a metric, i.e.

〈y, x〉 = 〈x, y〉 for all x, y ∈ Cd,

and that if 〈x, y〉 is 0 for all y then x is 0.

(ii) Show that {eS : S ⊂ {1, ..., d}} is an orthonormal basis of Cd with
respect to the metric 〈·, ·〉.

(iii) Check that left multiplication by ej on Cd is hermitian operator,
i.e.

〈x, ejy〉 = 〈ejx, y〉 for all x, y ∈ Cd and all j ∈ {1, ..., d}.

Check that this also holds for right multiplication by ej.



Some algebraic Background

The purpose of this Appendix is to present summary definitions and some
basic results for concepts used in the book.

14.5 Some basic algebraic structures

A group is a set G along with an operation

G×G→ G : (a, b) 7→ a · b

for which the following hold:

(G1) the operation is associative:

a · (b · c) = (a · b) · c for all a, b, c ∈ G.

(G2) there is an element e ∈ G, called the identity element for which

a · e = e · a = a for all a ∈ G. (14.43)

(G3) for each element a ∈ G there is an element a−1 ∈ G, called the inverse
of a, for which

a · a−1 = a−1 · a = e (14.44)

If e′ ∈ G is an element with the same property (14.43) as e then

e′ = e · e′ = e′,

and so the identity element is unique. Similarly, if a, aL ∈ G are such that
aL · a is e, then

aL = aL · e = aL · (a · a−1) = (aL · a) · a−1 = e · a−1 = a−1,

199



200 Ambar N. Sengupta

and, similarly, if a · aR is e then aR is equal to a−1. Thus, the inverse of an
element is unique.

Usually, we drop the · in the operation and simply write ab for a · b:

ab = a · b

A group is abelian or commutative if

ab = ba for all a, b ∈ G.

For many abelian groups, the group operation is written additively:

G×G→ G : (a, b) 7→ a+ b,

the identity element denoted 0, and the inverse of a then denoted −a.
A ring R is a set with two operations

addition : F× F→ F : (a, b) 7→ a+ b

multiplication : F× F→ F : (a, b) 7→ ab

such that under addition R is an abelian group, the operation of multiplica-
tion is associative, and multiplication distributes over addition:

a(b+ c) = ab+ ac

(b+ c)a = ba+ ca
(14.45)

The set Z of all integers is a ring under the usual arithmetic operations.
An left ideal I in a ring R is a non-empty subset of R with the property

that RI ⊂ I, i.e.
xa ∈ I for all x ∈ R and a ∈ I.

A right ideal J is a nonempty subset of R for which JR ⊂ R. A subset of R
is a two-sided ideal if it is both a left ideal and a right ideal.

In Z an ideal is a subset of the form mZ, for some m ∈ Z.
A commutative ring is a ring whose multiplication operation is commu-

tative.
An element a in a commutative ring R is a divisor of b ∈ R if b = ac, for

some c ∈ R.
An ideal I in a commutative ring R is a prime ideal if it is not R and has

the property that if a, b ∈ R have their product ab in I then a or b is in I. In
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the ring Z an ideal is prime if and only if it consists of all multiples of some
prime number.

Suppose R is a commutative ring with 1 6= 0. Then there is the ring
R[[X]] of power series in the variable X, with coefficients in R; a typical
element of R[[X]] is of the form

p(X) =
∑

j∈{0,1,2,...}

ajX
j,

where each an is an element of R. Addition and multiplication are specified
in the natural way∑

j

ajX
j +
∑
j

bjX
j =

∑
j

(aj + bj)X
j

and (∑
j

ajX
j

)(∑
j

bjX
j

)
=
∑
j

cjX
j,

where

cj =

j∑
k=0

akbj−k for all j ∈ {0, 1, 2, ...}.

Technically, the power series
∑

j ajX
j is simply the sequence (a0, a1, ...), writ-

ten in a visually convenient way, with X standing for (0, 1, 0, 0, ...), and addi-
tion and multiplication given as above. By a constant we shall mean a power
series

∑
j ajX

j for which aj = 0 for all j ∈ {1, 2, ...}.
Inside the ring of power series is the polynomial ring R[X] which consists

of all elements
∑

j ajX
j for which the set {j : aj 6= 0} is finite. For a non-zero

polynomial, the largest j for which the coefficient of Xj is not zero is called
the degree of the polynomial.

Consider now a field F. If I is a non-zero ideal in F[X], and q(X) is an
element in I of smallest degree, then I consists of all the multiples of q(X),
i.e. I is F[X]q(X). This ideal is prime if and only if q(X) is irreducible, i.e.
any divisor of q(X) in F[X] is either a constant or a constant multiple of
q(X). CHECK.

If R is a commutative ring, and I an ideal in R, then the quotient

R/I
def
= {x+ I : x ∈ R} (14.46)
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is a ring under the operatons

(x+ I) + (y + I) = (x+ y) + I, (x+ I)(y + I) = xy + I.

If R is a multiplicative identity 1 then 1 + I is the multiplicative identity in
R/I.

If a ∈ R and m ∈ {1, 2, 3, ..} the sum of m copies of a is denoted ma;
more officially, define inductively:

1a = a and (m+ 1)a = ma+ a.

Further, setting
0a = 0,

wherein 0 on the left is the integer 0, and for m ∈ {1, 2, ..}, setting

(−m)a = m(−a),

gives a map
Z×R→ R : (n, a) 7→ na

which is additive in n and in a, and also satisfies

m(na) = (mn)a for all m,n ∈ Z and a ∈ R.

14.6 Fields

A field is a ring, with a unit element 1 6= 0, in which the operation of
multiplication is commutative and the non-zero elements form a group under
multiplication.

In more detail, a field is a set F, along with two operations

addition : F× F→ F : (a, b) 7→ a+ b

multiplication : F× F→ F : (a, b) 7→ ab

such that

(F1) F is an abelian group under addition,

(F2) F− {0} is a group under multiplication
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(F3) multiplication is distributive over addtion:

a(b+ c) = ab+ ac

(b+ c)a = ba+ ca
(14.47)

(F4) F contains at least two elements, or, equivalently, the multiplicative
identity 1 is not equal to the additive identity 0

(F5) multiplication is commutative:

ab = ba for all a, b ∈ F (14.48)

Of course, in view of commutativity of multiplication, the second distributive
law in (14.47) is superfluous. The distributive property implies

a · 0 = 0 for all a ∈ F

The existence of multiplicative inverses of non-zero elements implies that if
the product of two elements in a field is 0 then at least one of them must be
0.

Suppose R is a commutative ring with a multiplicative identity element
1 6= 0, and suppose I is a prime ideal in R. Then the quotient ring R/I is a
field. Applying this to the ring Z, and a prime number p, produces the finite
field

Zp = Z/pZ (14.49)

If p(X) is a polynomial which has no polynomial divisors other than
constants, then we have the quotient

F[X]/Ip(X),

where
Ip(X) = p(X)F[X],

is the ideal consisting of all multiples of p(X). If p(X) is irreducible then
F[X]/Ip(X) is a field.

If p(X) =
∑d

j=1 ajX
j ∈ F[X] and α ∈ F then

p(α) =
d∑
j=1

ajα
j.
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The element α is called a root of p(X) of p(α) is 0.

A field F is algebraically closed of each polynomial p(X) ∈ F of degree
≥ 1, has a root in F. In this case, a polynomial p(X) of degree d ≥ 1, splits
into a product of terms each of the form X − α, for α ∈ F, and a constant.

Basic examples of fields include:

(i) the rational numbers Q

(ii) for any prime number p, the integers modulo p form the field Zp

both with the usual arithmetic addition and multiplication operations.

At another extreme are the field R of real numbers, and the field C of
complex numbers. The field of complex numbers is algebraically closed.

Suppose F is a field, and F′ ⊂ F is a subset which is a field under the
operations inherited from F. Then F is called an extension of F′. Often we
work with an extension that is given by adjoining certain elements to the
subfield.

Consider a field F, with multiplicative unit 1F. Then

ZF = {m ∈ Z : m1F = 0}

is an ideal in Z and so is of the form

ZF = cZ,

where c is the smallest non-negative element of ZF, and is called the charac-
teristic of F. If m and n are integers such that mn1F is 0 then this means
that m1Fn1F is 0 and so m1F or n1F is 0; thus, the ideal ZF is a prime ideal,
and so the characteristic of a field, if non-zero, is a prime number. The field
Zp has characteristic p.

14.7 Vector Spaces over Division Rings

A division ring is an algebraic structure which has all the properties of a
field except for commutativity of multiplication. Thus, a division ring is a
ring with a multiplicative unit element 1 6= 0, in which all non-zero elements
have multiplicative inverses.
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A vector space V over a division ring D is a set V equipped an operation
of addition under which it is an abelian group, and a further operation of
multiplication by scalars

D × V → V : (a, v) 7→ av,

such that

(a+ b)v = av + bv

a(v + w) = av + aw

a(bv) = (ab)v

1v = v

(14.50)

for all v, w ∈ V , and a, b ∈ D. Elements of V are called vectors, and elements
of D are, in this context, called scalars.

If n ∈ {1, 2, 3, ..}, then Dn has a natural vector space structure over D:

(a1, ..., an) + (b1, ..., bn) = (a1 + b1, ..., an + bn)

k(a1, ..., an) = (ka1, ..., kan)
(14.51)

for all a1, ..., an, b1, ..., bn, k ∈ D.
A linear combination of elements v1, ..., vn ∈ V is an element of the form

a1v1 + · · · anvn, where a1, ..., an ∈ D. The set of all linear combinations of
elements in a set S ⊂ V is called the span of S.

A subset S of V is said to be linearly independent if it is nonempty and
for any n ∈ {1, 2, ...}, and v1, ..., vn ∈ V , a relation

a1v1 + · · ·+ anvn = 0

can hold with a1, ..., an ∈ D only if each of a1, ..., an is 0. Note that, in
particular, no set which is linearly independent can contain the vector 0.

A basis of a vector space V is a subset of V which is linearly independent
and whose span is V .

Theorem 14.7.1 Every vector space, other than {0}, over a division ring
has a basis. More generally, if V 6= {0} is a vector space over a division ring
D, and S is a subset of V whose span is V , and I a subset of V which is
linearly independent, then there is a basis B of V of the form B = I ∪ S ′,
where S ′ ⊂ S is a subset of S disjoint from I. Any two bases of V have the
same cardinality, and this common value is called the dimension of V and
denoted dimD V .
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14.8 Modules over Rings

In this section R is a ring with a multiplicative identity element 1R. A left R-
module M is a set M which is an abelian group under an addition operation
+, and there is an operation of scalar multiplication

R×M →M : (r, v) 7→ rv

for which the following hold:

(r + s)v = rv + sv

r(v + w) = rv + rw

r(sv) = (rs)v

1Rv = v

for all v, w ∈M , and r, s ∈ R. As for vector spaces,

0v = 0 for all v ∈M ,

where 0 on the left is the zero in R, and 0 on the right is 0 in M .
A right R-module is defined analogously, except that the multiplication

by scalars is on the right:

M ×R→ R : (v, r) 7→ vr

and so the ‘associative law’ reads

(vr)s = v(rs).

By convention/bias, an R-module means a left R-module.
Any abelian group A is automatically a Z-module, because of the multi-

plication
Z× A→ A : (n, a) 7→ na.

If M and N are left R-modules, a map f : M → N is linear if

f(rv + w) = rf(v) + f(w) for all v, w ∈M and all r ∈ R.

The set of all linear maps M → N is denoted

HomR(M,N)
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and is an abelian group under addition. IfR is commutative, then HomR(M,N)
is an R-module, with multiplication of an element f ∈ HomR(M,N) by a
scalar r ∈ R defined to be the map

rf : M → N : v 7→ rf(v).

Note that rf is linear only on using the commutativity of R.
A subset N ⊂M of a left R-module M is a submodule of M is it a module

under the restrictions of addition and scalar multiplication, i.e. if N+N ⊂ N
and RN ⊂ N . In this case, the quotient

M/N = {v +N : v ∈M}

becomes a left R-module with the natural operations

(v +N) + (w +N) = (v + w) +N, and r(v +N) = rv +N

for all v, w ∈ M and r ∈ R. Thus, it is the unique R-module structure on
M/N which makes the quotient map

M →M/N : v 7→ v +N

linear.
The span of a subset T of an R-module is the set of all elements of M

which are linear combinations of elements of T . A set I ⊂ M is linearly
independent if I is nonempty and or any n ∈ {1, 2, ...}, v1, ..., vn ∈ M and
r1, ..., rn ∈ R with r1v1 + · · · rnvn = 0 the elements r1, ..., rn are all 0. A
subset of M which is linearly independent and whose span is M is called a
basis of M . If M has a basis it is said to be a free module.

If S is a non-empty set, and R a ring with identity 1R, then the set R[S],
of all maps f : S → R for which f−1(R − {0}) is finite, is a left R-module
with the natural operations of addition and multiplication induced from R:

(f + g)(s) = f(s) + g(s), (rf)(s) = rf(s),

for all s ∈ S, r ∈ R, and f, g ∈ R[S]. The R-module R[S] is called the free
R-module over S. It is convenient to write an element f ∈ R[S] in the form

f =
∑
x∈S

f(x)x.
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For x ∈ S, let j(x) be the element of R[S] equal to 1R on x and 0 elsewhere.
Then j : S → R[S] is an injection which is uded to identify S with the subset
j(S) of R[S]. Note that j(S) is a basis of R[S], i.e. every element of R[S]
can be expressed in a unique way as a linear combination of the elements of
j(S):

f =
∑
x∈S

f(x)j(x)

wherein all but finitely many elements are 0 and so it is, in fact, a finite
sum. If M is a left R-module and φ : S → M a map then φ = φ′ ◦ j, where
φ′ : R[S]→ M is uniquely specified by requiring that it be linear and equal
to φ(x) on j(x).

14.9 Tensor Products

In this section R is a commutative ring with multiplicative identity element
1R. We will also use, later in the section, a possibly non-commutative ring
D.

Consider left R-modules M1, ...,Mn. If N is also an R-module, a map

f : M1 × · · ·Mn → N : (v1, ..., vn) 7→ f(v1, ..., vn)

is called multilinear if it is linear in each vj, with the other vi held fixed; i.e.
if

f(v1, ..., avk + bv′k, ..., vn) = af(v1, ..., vn) + bf(v1, ..., v
′
k, ..., vn)

for all v1 ∈M1, ..., vk, v
′
k ∈Mk, ..., vn ∈Mn and a, b ∈ R.

Consider the set S = M1 × . . . ×Mn, and the free R-module R[S], with
the injection j : S → R[S]. Inside R[S] consider the submodule J spanned
by all elements of the form

(v1, ..., avk + bv′k, ..., vn)− a(v1, ...., vn)− b(v1, ..., v
′
k, ...vn)

with v1 ∈ M1, ..., vk, v
′
k ∈ Mk, ..., vn ∈ Mn and a, b ∈ R. The quotient R-

module
M1 ⊗ . . .⊗Mn = R[S]/J (14.52)

is called the tensor product of the modulesM1, ...,Mn. The image of (v1, ..., vn) ∈
M1 × · · · ×Mn under j is denoted v1 ⊗ · · · ⊗ vn:

v1 ⊗ · · · ⊗ vn = j(v1, ..., vn). (14.53)
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The tensor product construction has the following ‘universal property’: if
f : M1 × · · · ×Mn → N is a multilinear map then there is a unique linear
map f ′ : M1 ⊗ · · · ⊗ Mn → N such that f = f ′ ◦ j, specified simply by
requiring that

f(v1, ..., vn) = f ′j(v1, ..., vn),

for all v1, ..., vn ∈ M . Occasionally, the ring R needs to be stressed, and we
then write the tensor product as

M1 ⊗R · · · ⊗RMn.

There is a tensor product construction for two modules over a possibly
non-commutative ring. Let D be a ring with multiplicative identity element
1D, and suppose Mr is a right D-module and Nr a left D-module. There is
then the injection

j : Srl → Z[Srl],

where Z[Srl] is the free Z-module over the set Mr×Nl. Inside Z[Srl] consider
the Z-submodule Jrl spanned by all elements of the form

(mrd, nl)− (mr, dnl)

with mr ∈Mr, nl ∈ Nl, and d ∈ D. The quotient is the Z-module

Mr ⊗Di Nl = Z[Srl]/Jrl (14.54)

The image of (mr, nl) ∈Mr ∈ Nl under j is denoted

mr ⊗ nl = j(mr, nl).

The key feature now is that

(mrd)⊗ nl = mr ⊗ (dnl),

for all (mr, nl) ∈ Mr ∈ Nl and d ∈ D. Indeed, we could also think of
Mr ⊗Di Nl as the Z-module tensor product Mr ⊗Z Nl quotiented by the
submodule generated by all elements of the form mrd⊗ nl −mr ⊗ dnl.
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End Notes

In preparing these notes I have consulted several sources. The most influence
has been from Hermann Weyl [19]. I have also consulted Lang [11] exten-
sively. Other works that have influenced the notes include Dieudonné and
Carrell [4], Don Zagier’s appendix to the book of Lando and Zvonkin [10],
and Serre [18]. For Clifford algebras, in addition to the Artin’s book [1], the
recent book by Gracia-Bond́ıa et al. [6] is a very convenient reference.

211



212 Ambar N. Sengupta



Bibliography

[1] Artin, Emil, Geometric Algebra. Interscience Publishers (1957).

[2] Burrow, Martin: Representation theory of finite groups. New York, In-
terscience Publishers [1962]. QA171 .B975

[3] Curtis, Charles W., and Reiner, Irving: Representation theory of fi-
nite groups and associative algebras. New York, Interscience Publishers
[1962]. QA171 .C86

[4] Dieudonné, Jean Alexandre, and Carrell, James B.: Invariant Theory
Old and New. Academic Press (1971). QA261 .D54 1971
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[7] Hall, Brian C. : Lie Groups, Lie Algebras, and Representations An
Elementary Introduction. Springer 2003. QA 387. H34. 2003

[8] James, Gordon, and Liebeck, Martin: Representations and Characters
of Groups. Cambridge University Press (2001). QA 176.J36. 2001

[9] Hall, Brian C. Lie groups, Lie algebras, and representations: an elemen-
tary introduction. Springer (2003). QA387 .H34 2003

[10] Lando, Sergei, and Zvonkin, Alexander. Graphs on Surfaces and their
Applications. Springer Verlag (2004). QA166 .L36 2004

[11] Lang, Serge. Algebra. Springer (2002). QA154.3 .L3 2002

213



214 Ambar N. Sengupta

[12] Littlewood, Dudley E. : The Theory of Group Characters and Matrix
Representations of Groups. Oxford at the Clarendon Press (195). QA
171 L77 1950.

[13] Okounkov, Andrei, and Vershik, Anatoly. A New Approach to Repre-
sentation Theory of Symmetric Groups. Erwin Schrödinger International
Institute for Mathematical Physics preprint ESI 333 (1996).

[14] Schur, Issai. Gesammelte Abhandlungen. Hrsg. von Alfred Brauer u.
Hans Rohrbach. Springer. QA3.S37 1973.

[15] Serre, J.-P. : Linear Representations of Finite Groups. Translated by
Leonard Scott. Springer (1996). QA177 .S4713 1996

[16] Simon, Barry: Representation Theory of Finite and Compact Groups.
American Mathematical Society. QA176 .s76. 1996.

[17] Weintraub, Steven H. : Representation Theory of Finite Groups: Alge-
bra and Arithmetic. American Mathematical Society. QA176 W45 2003.

[18] Serre, Jean Pierre. Linear Representations of Finite Groups. Translated
by Leonard L. Scott. (4th Edition) Springer-Verlag, 1993. QA177 .S4713
1993

[19] Weyl, Hermann. Group Theory and Quantum Mechanics. Dover (1956)
QA171 .W54 1950

[20] Young, Alfred. Quantitative Substitutional Analysis I. Proc. Lond. Math.
Soc. (1) 33 (1901). Available in the Collected Works published by Uni-
versity of Toronto Press, c1977. QA3 .Y68.


