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CHAPTER 1

Introduction

This is class notes for the course on representation theory of finite groups taught by
the author at IISER Pune to undergraduate students. We study character theory of finite
groups and illustrate how to get more information about groups. The Burnside’s theorem
is one of the very good applications. It states that every group of order paqb, where p, q are
distinct primes, is solvable. We will always consider finite groups unless stated otherwise.
All vector spaces will be considered over general fields in the beginning but for the purpose
of character theory we assume the field is that of complex numbers.

We assume knowledge of the basic group theory and linear algebra. The point of view
I projected to the students in the class is that we have studied linear algebra hence we
are familiar with the groups GL(V ), the general linear group or GLn(k) in the matrix
notation. The idea of representation theory is to compare (via homomorphisms) finite
(abstract) groups with these linear groups (some what concrete) and hope to gain better
understanding of them.

The students were asked to read about “linear groups” from the book by Alperin and
Bell (mentioned in the bibiliography) from the chapter with the same title. We also revised,
side-by-side in the class, Sylow’s Theorem, Solvable groups and motivated ourselves for the
Burnside’s theorem.

The aim to start with arbitrary field was to give the feeling that the theory is dependent
on the base field and it gets considerably complicated if we move away from characteristic
0 algebraically closed field. This we illustrate by giving an example of higher dimensional
irreducible representation of cyclic group over Q while all its irreducible representations are
one dimensional over C. Thus this puts things in perspective why we are doing the theory
over C and motivates us to develop “Character Theory”.
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CHAPTER 2

Representation of a Group

Let G be a finite group. Let k be a field. We will assume that characteristic of k is 0,
e.g.,C, R or Q though often char(k) - |G| is enough.

Definition 2.1 (Representation). A representation of G over k is a homomorphism
ρ : G → GL(V ) where V is a vector space of finite dimension over field k. The vector
space V is called a representation space of G and its dimension the dimension of
representation.

Strictly speaking the pair (ρ, V ) is called representation of G over field k. However if
there is no confusion we simply call ρ a representation or V a representation of G. Let us fix
a basis {v1, v2, . . . , vn} of V . Then each ρ(g) can be written in a matrix form with respect
to this basis. This defines a map ρ̃ : G→ GLn(k) which is a group homomorphism.

Definition 2.2 (Invariant Subspace). Let ρ be a representation of G and W ⊂ V be
a subspace. The space W is called a G-invariant (or G-stable) subspace if ρ(g)(w) ∈
W∀w ∈W and ∀g ∈ G.

Notice that once we have a G-invariant subspace W we can restrict the representation to
this subspace and define another representation ρW : G→ GL(W ) where ρW (g) = ρ(g)|W .
Hence W is also called a subrepresentation.

Example 2.3 (Trivial Representation). Let G be a group and k and field. Let V be a
vector space over k. Then ρ(g) = 1 for all g ∈ G is a representation. This is called trivial
representation. In this case every subspace of V is an invariant subspace.

Example 2.4. Let G = Z/mZ and k = C. Let V be a vector space of dimension n.

(1) Suppose dim(V ) = 1. Define ρr : Z/mZ→ C∗ by 1 7→ e
2πir
m for 1 ≤ r ≤ m− 1.

(2) Define ρ : Z/mZ → GL(V ) by 1 7→ T where Tm = 1. For example if dim(V ) = 2
once can take T = diag{e

2πir1
m , e

2πir2
m }. There is a general theorem in Linear

Algebra which says that any such matrix over C is diagonalizable.

Example 2.5. Let G = Z/mZ and k = R. Let V = R2 with basis {e1, e2}. Then we
have representations of Z/mZ:

ρr : 1 7→
[
cos 2πr

m − sin 2πr
m

sin 2πr
m cos 2πr

m

]
7



8 2. REPRESENTATION OF A GROUP

where 1 ≤ r ≤ m− 1. Notice that we have m distinct representations.

Example 2.6. Let φ : G→ H be a group homomorphism. Let ρ be a representation of
H. Then ρ ◦ φ is a representation of G.

Example 2.7. Let G = Dm = 〈a, b | am = 1 = b2, ab = bam−1〉 the dihedral group with
2m elements. We have representations ρr defined by :

a 7→
[
cos 2πr

m − sin 2πr
m

sin 2πr
m cos 2πr

m

]
, b 7→

[
0 1
1 0

]
.

Notice that we make use of the representation of Z/mZ to construct this.

Example 2.8 (Permutation Representation of Sn). Let Sn be the symmetric group
on n symbols and k any field. Let V = kn with standard basis {e1, . . . , en}. We define a
representation of Sn as follows: σ(ei) = eσ(i) for σ ∈ Sn. Notice that while defining this
representation we don’t need to specify any field.

Example 2.9 (Group Action). Let G be a group and k be a field. Let G be acting
on a finite set X, i.e., we have G × X → X. We denote k[X] = {f | f : X → k}, set
of all maps. Clearly k[X] is a vector space of dimension |X|. The elements ex : X → k

defined by ex(x) = 1 and ex(y) = 0 if x 6= y form a basis of k[X]. The action gives
rise to a representation of G on the space k[X] as follows: ρ : G → GL(k[X]) given by
(ρ(g)(f))(x) = f(g−1x) for x ∈ X. In fact one can make k[X] an algebra by the following
multiplication:

(f ∗ f ′)(t) =
∑
x

f(x)f ′(x−1t).

Note that this is convolution multiplication not the usual point wise multiplication. If we
take G = Sn and X = {1, 2, . . . , n} we get back above example.

Example 2.10 (Regular Representation). Let G be a group of order n and k a field.
Let V = k[G] be an n-dimensional vector space with basis as elements of the group itself.
We define L : G → GL(k[G]) by L(g)(h) = gh, called the left regular representation. Also
R(g)(h) = hg−1, defines right regular representation of G. Prove that these representations
are injective. Also these representations are obtained by the action of G on the set X = G

by left multiplication or right multiplication.

Example 2.11. Let G = Q8 = {±1,±i,±j,±k} and k = C. We define a 2-dimensional
representation of Q8 by:

i 7→
[

0 1
−1 0

]
, j 7→

[
0 i

i 0

]
.

Example 2.12 (Galois Theory). Let K = Q(θ) be a finite extension of Q. Let G =
Gal(K/Q). We take V = K, a finite dimensional vector space over Q. We have natural
representation of G as follows: ρ : G → GL(K) defined by ρ(g)(x) = g(x). Take θ = ζ,
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some nth root of unity and show that the cyclic groups Z/mZ have representation over field
Q of possibly dimension more than 2. This is a reinterpretation of the statement of the
Kronecker-Weber theorem.

Definition 2.13 (Equivalence of Representations). Let (ρ, V ) and (ρ′, V ′) be two rep-
resentations of G. The representations (ρ, V ) and (ρ′, V ′) are called G-equivalent (or
equivalent) if there exists a linear isomorphism T : V → V ′ such that ρ′(g) = Tρ(g)T−1

for all g ∈ G.

Let ρ be a representation. Fix a basis of V , say {e1, . . . , en}. Then ρ gives rise to a map
G → GLn(k) which is a group homomorphism. Notice that if we change the basis of V
then we get a different map for the same ρ. However they are equivalent as representation,
i.e. differ by conjugation with respect to a fix matrix (the base change matrix).

Example 2.14. The trivial representation is irreducible if and only if it is one dimen-
sional.

Example 2.15. In the case of Permutation representation the subspaceW =< (1, 1, . . . , 1) >
and W ′ = {(x1, . . . , xn) |

∑
xi = 0} are two irreducible Sn invariant subspaces. In fact this

representation is direct sum of these two and hence completely reducible.

Example 2.16. One dimensional representation is always irreducible. If |G| ≥ 2 then
the regular representation is not irreducible.

Exercise 2.17. Let G be a finite group. In the definition of a representation, let us
not assume that the vector space V is finite dimensional. Prove that there exists a finite
dimensional G-invariant subspace of V .

Hint : Fix v ∈ V and take W the subspace generated by ρ(g)(v) ∀g ∈ G.

Exercise 2.18. A representation of dimension 1 is a map ρ : G→ k∗. There are exactly
two one dimensional representations of Sn over C. There are exactly n one dimensional
representations of cyclic group Z/nZ over C.

Exercise 2.19. Prove that every finite group can be embedded inside symmetric group
Sn fro some n as well as linear groups GLm for some m.

Hint: Make use of the regular representation. This representation is also called “God
given” representation. Later in the course we will see why its so.

Exercise 2.20. Is the above exercise true if we replace Sn by An and GLm by SLm?

Exercise 2.21. Prove that the cyclic group Z/pZ has a representation of dimension
p− 1 over Q.

Hint: Make use of the cyclotomic field extension Q(ζp) and consider the map left mul-
tiplication by ζp. This exercise shows that representation theory is deeply connected to the
Galois Theory of field extensions.
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2.1. Commutator Subgroup and One dimensional representations

Let G be a finite group. Consider the set of elements {xyx−1y−1 | x, y ∈ G} and G′ the
subgroup generated by this subset. This subgroup is called the commutator subgroup
of G. We list some of the properties of this subgroup as an exercise here.

Exercise 2.22. (1) G′ is a normal subgroup.
(2) G/G′ is Abelian.
(3) G′ is smallest subgroup of G such that G/G′ is Abelian.
(4) G′ = 1 if and only if G is Abelian.
(5) For G = Sn, G′ = An; G = Dn =< r, s | rn = 1 = s2, srs = r−1 > we have

G′ =< r >∼= Z/nZ and Q′8 = Z(Q8).

Let Ĝ be the set of all one-dimensional representations of G over C, i.e., the set of all
group homomorphisms from G to C∗. For χ1, χ2 ∈ Ĝ we define multiplication by:

(χ1χ2)(g) = χ1(g)χ2(g).

Exercise 2.23. Prove that Ĝ is an Abelian group.

We observe that for a χ ∈ Ĝ we have G′ ⊂ ker(χ). Hence we can prove,

Exercise 2.24. Show that Ĝ ∼= G/G′.

Exercise 2.25. Calculate directly Ĝ for G = Z/nZ, Sn and Dn.

Let G be a group. The group G is called simple if G has no proper normal subgroup.

Exercise 2.26. (1) Let G be an Abelian simple group. Prove that G is isomorphic
to Z/pZ where p is a prime.

(2) Let G be a simple non-Abelian group. Then G = G′.



CHAPTER 3

Maschke’s Theorem

In the last chapter we saw a representation can have possibly a subrepresentation. This
motivates us to define:

Definition 3.1 (Irreducible Representation). A representation (ρ, V ) of G is called
irreducible if it has no proper invariant subspace, i.e., only invariant subspaces are 0 and
V .

Let (ρ, V ) and (ρ′, V ′) be two representations of G over field k. We can define direct
sum of these two representations (ρ ⊕ ρ′, V ⊕ V ′) as follows: ρ ⊕ ρ′ : G → GL(V ⊕ V ′)
such that (ρ ⊕ ρ′)(g)(v, v′) = (ρ(g)(v), ρ′(g)(v′)). In the matrix notation if we have two
representations ρ : G→ GLn(k) and ρ′ : G→ GLm(k) then ρ⊕ ρ′ is given by

g 7→
[
ρ(g) 0

0 ρ′(g)

]
.

This motivates us to look at those nice representations which can be obtained by taking
direct sum of irreducible ones.

Definition 3.2 (Completely Reducible). A representation (ρ, V ) is called completely
reducible if it is a direct sum of irreducible ones. Equivalently if V = W1 ⊕ . . .⊕Wr, where
each Wi is G-invariant irreducible representations.

This brings us to the following questions:

(1) Is it true that every representation is direct sum of irreducible ones?
(2) How many irreducible representations are there for G over k?

The answer to the first question is affirmative in the case G is a finite group and char(k) - |G|
which is the Maschake’s theorem proved below. (It is also true for Compact Groups where
it is called Peter-Weyl Theorem). The other exceptional case comes under the subject
‘Modular Representation Theory’. We will answer the second question over the field of
complex numbers (and possible over R) which is the character theory. For the theory over
Q the subject is called ‘rationality questions’ (refer to the book by Serre).

Theorem 3.3 (Maschke’s Theorem). Let k be a field and G be a finite group. Suppose
char(k) - |G|, i.e. |G| is invertible in the field k. Let (ρ, V ) be a finite dimensional repre-
sentation of G. Let W be a G-invariant subspace of V . Then there exists W ′ a G-invariant

11



12 3. MASCHKE’S THEOREM

subspace such that V = W ⊕W ′. Conversely, if char(k) | |G| then there exists a representa-
tion, namely the regular representation, and a proper G-invariant subspace which does not
have a G-invariant compliment.

Proposition 3.4 (Complete Reducibility). Let k be a field and G be a finite group with
char(k) - |G|. Then every finite dimensional representation of G is completely reducible.

Now we are going to prove the above results. We need to recall notion of projection
from ‘Linear Algebra’. Let V be a finite dimensional vector space over field k.

Definition 3.5. An endomorphisms π : V → V is called a projection if π2 = π.

Let W ⊂ V be a subspace. A subspace W ′ is called a compliment of W if V = W ⊕W ′.
It is a simple exercise in ‘Linear Algebra’ to show that such a compliment always exists (see
exercise below) and there could be many of them.

Lemma 3.6. Let π be an endomorphism. Then π is a projection if and only if there
exists a decomposition V = W ⊕W ′ such that π(W ) = 0 and π(W ′) = W ′ and π restricted
to W ′ is identity.

Proof. Let π : V → V such that π(w,w′) = w′. Then clearly π2 = π.
Now suppose π is a projection. We claim that V = ker(π)⊕ Im(π). Let x ∈ ker(π) ∩

Im(π). Then there exists y ∈ V such that π(y) = x and x = π(y) = π2(y) = π(π(x)) =
π(0) = 0. Hence ker(π) ∩ Im(π) = 0. Now let v ∈ V . Then v = (v − π(v)) + π(v) and we
see that π(v) ∈ Im(π) and v−π(v) ∈ ker(π) since π(v−π(v)) = π(v)−π2(v) = 0. Now let
x ∈ Im(π), say x = π(y). Then π(x) = π(π(y)) = π(y) = x. This shows that π restricted
to Im(π) is identity map. �

Remark 3.7. The reader familiar with ‘Canonical Form Theory’ will recognise the
following. The minimal polynomial of π is X(X − 1) which is a product of distinct linear
factors. Hence π is a diagonalizable linear transformation with eigen values 0 and 1. Hence
with respect to some basis the matrix of π is diag{0, . . . , 0, 1, . . . , 1}. This will give another
proof of the Lemma.

Proof of the Maschke’s Theorem. Let ρ : G→ GL(V ) be a representation. Let W
be a G-invariant subspace of V . Let W0 be a compliment, i.e., V = W0 ⊕W . We have to
produce a compliment which is G-invariant. Let π be a projection corresponding to this
decomposition, i.e., π(W0) = 0 and π(w) = w for all w ∈ W . We define an endomorphism
π′ : V → V by ‘averaging technique’ as follows:

π′ =
1
|G|

∑
t∈G

ρ(t)−1πρ(t).

We claim that π′ is a projection. We note that π′(V ) ⊂ W since πρ(t)(V ) ⊂ W and W

is G-invariant. In fact, π′(w) = w for all w ∈ W since π′(w) = 1
|G|
∑

t∈G ρ(t)−1πρ(t)(w) =
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1
|G|
∑

t∈G ρ(t)−1π(ρ(t)(w)) = 1
|G|
∑

t∈G ρ(t)−1(ρ(t)(w)) = w (note that ρ(t)(w) ∈ W and π

takes it to itself). Let v ∈ V . Then π′(v) ∈ W . Hence π′2(v) = π′(π′(v)) = π′(v) as we
have π′(v) ∈W and π′ takes any element of W to itself. Hence π′2 = π′.

Now we write decomposition of V with respect to π′, say V = W ′ ⊕W where W ′ =
ker(π′) and Im(π′) = W . We claim that W ′ is G-invariant which will prove the theorem.
For this we observe that π′ is a G-invariant homomorphism, i.e., π′(ρ(g)(v)) = ρ(g)(π′(v))
for all g ∈ G and v ∈ V .

π′(ρ(g)(v)) =
1
|G|

∑
t∈G

ρ(t)−1πρ(t)(ρ(g)(v))

=
1
|G|

∑
t∈G

ρ(g)ρ(g)−1ρ(t)−1πρ(t)ρ(g)(v)

= ρ(g)
1
|G|

∑
t∈G

ρ(tg)−1πρ(tg)(v)

= ρ(g)(π′(v)).

This helps us to verify that W ′ is G-invariant. Let w′ ∈ W ′. To show that ρ(g)(w′) ∈ W ′.
For this we note that π′(ρ(g)(w′)) = ρ(g)(π′(w)) = ρ(g)(0) = 0. This way we have produced
G-invariant compliment of W .

For the converse let char(k) | |G|. We take the regular representation V = k[G].
Consider W =

{∑
g∈G αgg |

∑
αg = 0

}
. We claim that W is G-invariant but it has no

G-invariant compliment. �

Remark 3.8. In the proof of Maschke’s theorem one can start with a symmetric bilinear
form and apply the trick of averaging to it. In that case the compliment will be the
orthogonal subspace. Conceptually I like that proof better however it requires familiarity
with bilinear form to be able to appreciate that proof. Later we will do that in some other
context.

Proof of the Proposition (Complete Reducibility). Let ρ : G→ GL(V ) be a rep-
resentation. We use induction on the dimension of V to prove this result. Let dim(V ) = 1.
It is easy to verify that one-dimensional representation is always irreducible. Let V be of
dimension n ≥ 2. If V is irreducible we have nothing to prove. So we may assume V has a
G-invariant proper subspace, say W with 1 ≤ dim(W ) ≤ n− 1. By Maschke’s Theorem we
can write V = W ⊕W ′ where W ′ is also G-invariant. But now dim(W ) and dim(W ′) bot
are less than n. By induction hypothesis they can be written as direct sum of irreducible
representations. This proves the proposition. �

Exercise 3.9. Let V be a finite dimensional vector space. Let W ⊂ V be a subspace.
Show that there exists a subspace W ′ such that V = W ⊕W ′.

Hint: Start with a basis of W and extend it to a basis of V .
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Exercise 3.10. Show that when V = W ⊕W ′ the map π(w + w′) = w is a projection
map. Verify that ker(π) = W ′ and Im(π) = W . The map π is called a projection on W .
Notice that this map depends on the chosen compliment W ′.

Exercise 3.11. (1) Compliment of a subspace is not unique. Let us consider
V = R2. Take a line L passing through the origin. It is a one dimensional
subspace. Prove that any other line is a compliment.

(2) Let W be the one dimensional subspace x-axis. Choose the compliment space as
y-axis and write down the projection map. What if we chose the compliment as
the line x = y?

The exercises below show that Maschke’s theorem may not be true if we don’t have
finite group.

Exercise 3.12. Let G = Z and V = {(a1, a2, . . .) | ai ∈ R} be the sequence space
(a vector space of infinite dimension). Define ρ(1)(a1, a2. . . .) = (0, a1, a2, . . .) and ρ(n) by
composing ρ(1) n-times. Show that this is a representation of Z. Prove that it has no
invariant subspace.

Exercise 3.13. Consider a two dimensional representation of R as follows:

a 7→
(

1 a

0 1

)
.

It leaves one dimensional subspace fixed generated by (1, 0) but it has no complementary
subspace. Hence this representation is not completely reducible.

Exercise 3.14. Let k = Z/pZ. Consider two dimensional representation of the cyclic
group G = Z/pZ of order p over k of characteristic p defined as in the previous example.
Find a subspace to show that Maschke’s theorem does not hold.

Exercise 3.15. Let V be an irreducible representation of G. Let W be a G-invariant
subspace of V . Show that either W = 0 or W = V .



CHAPTER 4

Schur’s Lemma

Definition 4.1 (G-map). Let (ρ, V ) and (ρ′, V ′) be two representations of G over field
k. A linear map T : V → V ′ is called a G-map (between two representations) if it
satisfies the following:

ρ′(t)T = Tρ(t)∀t ∈ G.

The G-maps are also called intertwiners.

Exercise 4.2. Prove that two representations of G are equivalent if and only if there
exists an invertible G-map.

In the case representations are irreducible the G-maps are easy to decide. In the wake
of Maschke’s Theorem considering irreducible representations are enough.

Proposition 4.3 (Schur’s Lemma). Let (ρ, V ) and (ρ′, V ′) be two irreducible represen-
tations of G (of dimension ≥ 1). Let T : V → V ′ be a G-map. Then either T = 0 or T is
an isomorphism. Moreover if T is nonzero then T is an isomorphism if and only if the two
representations are equivalent.

Proof. Let us consider the subspace ker(T ). We claim that it is a G-invariant subspace
of V . For this let us take v ∈ ker(T ). Then Tρ(t)(v) = ρ′(t)T (v) = 0 implies ρ(t)(v) ∈
ker(T ) for all t ∈ G. Now applying Maschke’s theorem on the irreducible representation V
we get either ker(T ) = 0 or ker(T ) = V . In the case ker(T ) = V the map T = 0.

Hence we may assume ker(T ) = 0, i.e., T is injective. Now we consider the subspace
Im(T ) ⊂ V ′. We claim that it is also G-invariant. For this let y = T (x) ∈ Im(T ). Then
ρ′(t)(y) = ρ′(t)T (x) = Tρ(t)(x) ∈ Im(T ) for any t ∈ G. Hence Im(T ) is G-invariant.
Again by applying Maschke’s theorem on the irreducible representation V ′ we get either
Im(T ) = 0 or Im(T ) = V ′. Since T is injective Im(T ) 6= 0 and hence Im(T ) = V ′. Which
proves that in this case T is an isomorphism. �

Exercise 4.4. Let V be a vector space over C and T ∈ End(V ) be a linear transfor-
mation. Show that there exists a one-dimensional subspace of V left invariant by T . Show
by example that this need not be true if the field is R instead of C.

Hint: Show that T has an eigen-value and the corresponding eigen-vector will do the
job.

15
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Corollary 4.5. Let (ρ, V ) be an irreducible representation of G over C. Let T : V → V

be a G-map. Then T = λ.Id for some λ ∈ C and Id is the identity map on V .

Proof. Let λ be an eigen-value of T corresponding to the eigen-vector v ∈ V , i.e.,
T (v) = λv. Consider the subspace W = ker(T − λ.Id). We claim that W is a G-invariant
subspace. Since T and scalar multiplications are G-maps so is T − λ. Hence the kernal is
G-invariant (as we verified in the proof of Schur’s Lemma). One can do this directly also
see the exercise below.

Since W 6= 0 and is G-invariant we can apply Maschke’s Theorem and get W = V . This
gives T = λ.Id. �

Exercise 4.6. Let T and S be two G-maps. Show that ker(T + S) is a G-invariant
subspace.



CHAPTER 5

Representation Theory of Finite Abelian Groups over C

Throughout this chapter G denotes a finite Abelian group.

Proposition 5.1. Let k = C and G be a finite Abelian group. Let (ρ, V ) be an irre-
ducible representation of G. Then, dim(V ) = 1.

Proof. Proof is a simple application of the Schur’s Lemma. We will break it in step-
by-step exercise below. �

Exercise 5.2. With notation as in the proposition,

(1) for g ∈ G consider ρ(g) : V → V . Prove that ρ(g) is aG-map. (Hint: ρ(g)(ρ(h)(v)) =
ρ(gh)(v) = ρ(hg)(v) = ρ(h)(ρ(g)(v)).)

(2) Prove that there exists λ (depending on g) in C such that ρ(g) = λ.Id. (Hint: Use
the corollary of Schur’s Lemma.)

(3) Prove that the map ρ : G→ GL(V ) maps every element g to a scalar map, i.e., it
is given by ρ(g) = λg.Id where λg ∈ C.

(4) Prove that the dimension of V is 1. (Hint: Take any one dimensional subspace of
V . It is G-invariant. Use Maschke’s theorem on it as V is irreducible.)

Proposition 5.3. Let k = C and G be a finite Abelian group. Let ρ : G → GL(V ) be
a representation of dimension n. Prove that we can choose a basis of V such that ρ(G) is
contained in diagonal matrices.

Proof. Since V is a representation of finite group we can use Maschke’s theorem to
write it as direct sum of G-invariant irreducible ones, say V = W1 ⊕ . . . ⊕Wr. Now using
Schur’s lemma we conclude that dim(Wi) = 1 for all i and hence in turn we get r = n. By
choosing a vector in each Wi we get the required result. �

Corollary 5.4. Let G be a finite group (possibly non-commutative). Let ρ : G→ GL(V )
be a representation. Let g ∈ G. Then there exists a basis of V such that the matrix of ρ(g)
is diagonal.

Proof. Consider H =< g >⊂ G and ρ : H → GL(V ) the restriction map. Since H is
Abelian, using above proposition, we can simultaneously diagonalise elements of H. This
proves the required result. �

17
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Remark 5.5. In ‘Linear Algebra’ we prove the following result: A commuting set of
diagonalizable matrices over C can be simultaneously diaognalised. The proposition above
is a version of the same result. We also give a warning about corollary above that if we
have a finite subgroup G of GLn(C) then we can take a conjugate of G in such a way that
a particular element becomes diagonal.

Now this leaves us the question to determine all irreducible representations of an Abelian
group G. For this we need to determine all group homomorphisms ρ : G→ C∗.

Exercise 5.6. Let G be a finite group (not necessarily Abelian). Let χ : G→ C∗ be a
group homomorphism. Prove that |χ(g)| = 1 and hence χ(g) is a root of unity.

Let Ĝ be the set of all group homomorphisms from G to the multiplicative group C∗.
Let us also denote ̂̂G for the group homomorphisms from Ĝ to C∗.

Exercise 5.7. With the notation as above,

(1) Prove that for G = G1 ×G2 we have Ĝ ∼= Ĝ1 × Ĝ2.
(2) Let G = Z/nZ. Prove that Ĝ = {χk | 0 ≤ k ≤ n − 1} is a group generated by χ1

of order n where χ1(r) = e
2πir
n and χk = χk1. Hence Ẑ/nZ ∼= Z/nZ.

(3) Use the structure theorem of finite Abelian groups to prove that G ∼= Ĝ.

(4) Prove that G is naturally isomorphic to ̂̂G given by g 7→ eg where eg(χ) = χ(g) for
all χ ∈ G.

Exercise 5.8 (Fourier Transform). For f ∈ C[Z/nZ] = {f | f : Z/nZ → C} we define
f̂ ∈ C[Z/nZ] by,

f̂(q) =
1
n

n−1∑
k=0

f(k)e(−kq) =
1
n

n−1∑
k=0

f(k)χq(−k).

Show that f(k) =
∑n−1

q=0 f̂(q)e(kq) =
∑n−1

q=0 f̂(q)χq(k) and 1
n

∑n−1
k=0 |f(k)|2 =

∑n−1
q=0 |f̂(q)|2.

Exercise 5.9. On C[Z/nZ] let us define an inner product by 〈f, f ′〉 = 1
n

∑n−1
j=0 f(j)f̄ ′(j)

where bar denotes complex conjugation. Prove that {χk | 0 ≤ k ≤ n−1} form an orthonor-
mal basis of C[Z/nZ]. Let

f =
∑

χ∈Ẑ/nZ

cχχ.

Calculate the coefficients using the inner product and compare this with previous exercise.

Now we show that the converse of the Proposition 5.1 is also true.

Theorem 5.10. Let G be a finite group. Every irreducible representation of G over C
is 1 dimensional if and only if G is an Abelian group.
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Proof. Let all irreducible representations of G over C be of dimension 1. Consider
the regular representation ρ : G → GL(V ) where V = C[G]). We know that if |G| ≥ 2
this representation is reducible and is an injective map (also called faithful representation).
Using Maschke’s theorem we can write V as a direct sum of irreducible ones and they are
given to be of dimension 1. Hence there exists a basis (check why?) {v1, . . . , vn} of V
such that subspace generated by each basis vectors are invariant. Hence ρ(G) consists of
diagonal matrices with respect to this basis which is an Abelian group. Hence G ∼= ρ(G) is
an Abelian group. �

5.1. Example of representation over Q

5.1.1. An Irreducible Representation of Z/pZ. Consider G = Z/pZ where p is an
odd prime. Let K = Q(ζ) where ζ is a primitive pth root of unity. Let us consider the left
multiplication map lζ : K → K given by x 7→ ζx. Consider the basis {1, ζ, ζ2, . . . , ζp−2} of
K. Then lζ(1) = ζ, lζ(ζi) = ζi+1 for 1 ≤ i ≤ p − 1 and lζ(ζp−2) = ζp−1 = −(1 + ζ + ζ2 +
. . .+ ζp−2) and the matrix of lζ is:

0 0 0 · · · 0 −1
1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
...

. . .
...

...
0 0 0 · · · 1 −1


The map 1 7→ lζ defines a representation ρ : G → GLp−1(Q). It is an irreducible represen-
tation of G. For this we note that K = Q(ζ) is a simple

5.1.2. An Irreducible Representation of the Dihedral Group D2p. Notice that
the Galois group Gal(K/Q) ∼= Z/(p−1)Z comes with a natural representation on K. Let σ ∈
Gal(K/Q). Then σ is a Q-linear map which gives representation Gal(K/Q) ∼= Z/(p−1)Z→
GLp−1(Q). If we consider slightly different basis of K, namely, {ζ, ζ2, . . . , ζp−1} then the
matrix of each σ is a permutation matrix. In fact this way Gal(K/Q) ↪→ Sp−1, the symmetric
group. However this representation is not irreducible (the element ζ + ζ2 + · · · + ζp−1 is
invariant and gives decomposition).

Notice that the Galois automomrphism σ : K → K given by ζ 7→ ζ−1 is an order 2
element. We claim that σ normalizes lζ , i.e., σlζσ = lζ−1 . Since σlζσ(ζi) = σlζ(ζ−i) =
σ(ζ1−i) = ζi−1 = lζ−1(ζi). Let us denote the subgroup generated by σ as H and the
subgroup generated by lζ by K. Then HK is a group of order 2p where K is a normal
subgroup of order p. Hence HK ∼= D2p. This gives representation of order p − 1 of
D2p = 〈r, s | rp = 1 = s2, srs = r−1〉 given by D2p → GL(K) such that r 7→ lζ and s 7→ σ.

Exercise 5.11. Prove that the representation constructed above are irreducible.

Exercise 5.12. Write down the above representation concretely for D6 and D10.





CHAPTER 6

The Group Algebra k[G]

Let R be a ring (possibly non-commutative) with 1.

Definition 6.1. A (left) module M over a ring R is an Abelian group (M,+) with a
map (called scalar multiplication) R×M →M satisfying the following:

(1) (r1 + r2)m = r1m+ r2m for all r1, r2 ∈ R and m ∈M .
(2) r(m1 +m2) = rm1 + rm2 for all r ∈ R and m1,m2 ∈M .
(3) r1(r2m) = (r1r2)m for all r1, r2 ∈ R and m ∈M .
(4) 1.m = m for all m ∈M .

Notice that this definition is same as definition of a vector space over a field. Analogous
to definitions there we can define submodules and module homomorphisms.

Example 6.2. If R = k (a field) or D (a division ring) then the modules are nothing
but vector spaces over R.

Example 6.3. Let R be a PID (a commutative ring such as Z or polynomial ring k[X]
etc). Then R×R . . .×R and R/I for an ideal I are modules over R. The structure theory
of modules over PID states that any module is a direct sum of these kinds. However over
a non-PID things could be more complicated.

Example 6.4. In the non-commutative situation the simple/semisimple rings are stud-
ied.

A module M over a ring R is called simple if it has no proper submodules. And a
module M is called semisimple if every submodule of M has a direct compliment. It is
also equivalent to saying that M is a direct sum of simple modules.

A ring R is called semisimple if every module over it is semisimple. And a ring R is
called simple1 if it has no proper two-sided ideal.

Exercise 6.5. (1) Is Z a semisimple ring or simple ring?
(2) When Z/nZ a semisimple or simple ring?
(3) Prove that the ring Mn(D) where D is a division ring is a simple ring and the

module Dn thought as one of the columns of this ring is a module over this ring.
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22 6. THE GROUP ALGEBRA k[G]

All of the representation theory definitions can be very neatly interpreted in module
theory language. Given a field k and a group G, we form the ring

k[G] =

∑
g∈G

αgg | αg ∈ k


called the group ring of G. We can also define k[G] = {f | f : G→ k}. We define following
operations on k[G]:

(∑
g∈G αgg

)
+
(∑

g∈G βgg
)

=
∑

g∈G (αg + βg) g, λ
(∑

g∈G αgg
)

=∑
g∈G(λαg)g and the multiplication by∑

g∈G
αgg

 .

∑
g∈G

βgg

 =
∑
g∈G

(∑
t∈G

αtβt−1g

)
g =

∑
g∈G

 ∑
ts=g∈G

αtβs

 g.

With above operations k[G] is an algebra called the group algebra of G (clearly it’s a ring).
A representation (ρ, V ) for G is equivalent to taking a k[G]-module V (see the exercises
below).

Exercise 6.6. Prove that k[G] is a ring as well as a vector space of dimension |G|. In
fact it is a k-algebra.

Exercise 6.7. Let k be a field. Let G be a group. Then,
(1) (ρ, V ) is a representation of G if and only if V is a k[G]-module.
(2) W is a G-invariant subspace of V if and only if W is a k[G]-submodule of V .
(3) The representations V and V ′ are equivalent if and only if V is isomorphic to V ′

as k[G]-module.
(4) V is irreducible if and only if V is a simple k[G]-module.
(5) V is completely reducible if and only if V is a semisimple module.

We can rewrite Maschke’s Theorem and Schur’s Lemma in modules language:

Theorem 6.8 (Maschke’s Theorem). Let G be a finite group and k a field. The ring
k[G] is semisimple if and only if char(k) - |G|.

Proposition 6.9 (Schur’s Lemma). Let M,M ′ be two non-isomorphic simple R module.
Then HomR(M,M ′) = {0}. Moreover, HomR(M,M) is a division ring.

Proof. Proof is left as an exercise. �

Exercise 6.10. Let D be a finite dimensional division algebra over C then D = C.

Exercise 6.11. Let R be a finite dimensional algebra over C and M a simple module
over R. Suppose M is a finite dimensional over C. Then HomR(M,M) ∼= C.



CHAPTER 7

Constructing New Representations

Here we will see how we can get new representations out of the known ones. All of the
representations are considered over a field k.

7.1. Subrepresentation and Sum of Representations

Let (ρ, V ) and (ρ′, V ′) be two representations of the group G. We define (ρ ⊕ ρ′, V ⊕
V ′) by (ρ ⊕ ρ′)(t)(v, v′) = (t(v), t(v′)). This is called sum of the two representations. If
we have a representation (ρ, V ) and W is a G-invariant subspace then we can define a
subrepresentation (ρ̃,W ) by ρ̃(t)(w) = ρ(t)(w).

7.2. Adjoint Representation

Let V be a vector space over k with a basis {e1, . . . , en}. A linear map f : V → k is
called a linear functional. We denote V ∗ = Homk(V, k), the set of all linear functionals.
We define operations on V ∗: (f1 + f2)(v) = f1(v) + f2(v) and (λf)(v) = λf(v) and it
becomes a vector space. The vector space V ∗ is called the dual space of V .

Exercise 7.1. With the notation as above,

(1) Show that V ∗ is a vector space with basis e∗i where e∗i (ej) = δij . Hence it has same
dimension as V . After fixing a basis of V we can obtain a basis this way of V ∗

which is called dual basis with respect t the given one.
(2) Show that V is naturally isomorphic to V ∗∗.

Let T : V → V be a linear map. We define a map T ∗ : V ∗ → V ∗ by T ∗(f)(v) = f(T (v)).

Exercise 7.2. Fix a basis of V and consider the dual basis of V ∗ with respect to that.
Let A = (aij) be the matrix of T . Show that the matrix of T ∗ with respect to the dual
basis is tT , the transpose matrix.

Let ρ : G → GL(V ) be a representation. We define the adjoint representation (ρ∗, V ∗)
as follows: ρ∗ : G → GL(V ∗) where ρ∗(g) = ρ(g−1)∗. In the matrix form if we have a
repesentation τ : G→ GLn(k) then τ∗ : G→ GLn(k) is given by τ∗(g) = tτ(g)−1.

Exercise 7.3. With the notation as above,

(1) Show that ρ∗ is a representation of G of same dimension as ρ.

23



24 7. CONSTRUCTING NEW REPRESENTATIONS

(2) Fix a basis and suppose τ is the matrix form of ρ then show that the matrix form
of ρ∗ is τ∗.

(3) Prove that if ρ is irreducible then show is ρ∗.

The last exercise will become easier in the case of complex representations once we define
characters as we will have a simpler criterion to test when a representation is irreducible.

7.3. Tensor Product of two Representations

Let V and V ′ be two vector spaces over k. First we define tensor product of two vector
spaces. Tensor product of V and V ′ is a vector space V⊗V ′ = {

∑r
i=1 vi ⊗ v′i | vi ∈ V, v′i ∈ V ′}

with following properties:

(1) (
∑r

i=1 vi ⊗ v′i) + (
∑s

i=1wi ⊗ w′i) = v1⊗ v′1 + · · ·+ vr⊗ v′r +w1⊗w′1 + · · ·+ws⊗w′s.
(2) (v1 + v2)⊗ v′ = v1 ⊗ v′ + v2 ⊗ v′ and v ⊗ (v′1 + v′2) = v ⊗ v′1 + v ⊗ v′2.
(3) λ (

∑r
i=1 vi ⊗ v′i) =

∑r
i=1 λvi ⊗ v′i =

∑r
i=1 vi ⊗ λv′i.

Let {e1, . . . , en} be a basis of V and {e′1, . . . , e′m} be that of V ′. Then {ei ⊗ e′j | 1 ≤ i ≤
n, 1 ≤ j ≤ m} is a basis of the vector space V ⊗ V ′ hence of dimension nm.
Warning: Elements of V ⊗ V ′ are not exactly of kind v ⊗ v′ but they are finite sum of
these ones!

Let (ρ, V ) and (ρ′, V ′) be two representations of the group G. We define (ρ⊗ρ′, V ⊗V ′)
by (ρ⊗ ρ′)(t)(

∑
v ⊗ v′) =

∑
(ρ(t)(v)⊗ ρ′(t)(v′)).

Exercise 7.4. Choose a basis of V and V ′. Let A = (aij) be the matrix of ρ(t) and
B = (blm) be that of ρ′(t). What is the matrix of (ρ⊗ ρ′)(t)?

Exercise 7.5. Let (ρ, V ) be a representation of G. Let {e1, . . . , en} be a basis of V .

(1) Consider an automorphism θ of V ⊗ V defined by θ(ei ⊗ ej) = ej ⊗ ei. Show that
θ2 = θ.

(2) Consider the subspace Sym2(V ) = {z ∈ V ⊗ V | θ(z) = z} and ∧2(V ) = {z ∈
V ⊗ V | θ(z) = −z}. Prove that V ⊗ V = Sym2(V )⊕ ∧2(V ). Write down a basis
of Sym2(V ) and ∧2(V ) and find its dimension.

(3) Prove that V ⊗ V = Sym2(V )⊕ ∧2(V ) is a G-invariant decomposition.

If (ρ, V ) is a representation of G then V ⊗n = V ⊗ · · · ⊗ V, SymnV,∧n(V ) are also
representations of G. This way starting from one representation we can get many represen-
tations. Though even if you start from an irreducible representation the above constructed
representations need not be irreducible (for example V ⊗V given above) but often they con-
tain other irreducible representations. Writing down direct sum decompositions of tensor
representaion is a important topic of study. Often it happens that we need much smaller
number of representations (called fundamental representations) of which tensor prod-
ucts contain all irreducible representations.
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7.4. Restriction of a Representation

Let (ρ, V ) be a representation of the group G. Let H be a subgroup. Then (ρ, V ) is a
representation of H also denoted as (ρH , V ). Let N be a normal subgroup of G. Then any
representation of G/N gives rise to a representation of G. Moreover if the representation
of G/N is irreducible then the representation of G remains irreducible.





CHAPTER 8

Matrix Elements

Now onwards we assume the field k = C. We also denote S1 = {α ∈ C | |α| = 1}. Let G
be a finite group. Then C[G] = {f | f : G→ C} is a vector space of dimension |G|. Let f1, f2

be two functions from G to C, i.e., f1, f2 ∈ C[G]. We define a map (, ) : C[G] × C[G] → C
as follows,

(f1, f2) =
1
|G|

∑
t∈G

f1(t)f2(t−1).

Note that (f1, f2) = (f2, f1).
Let ρ : G→ GL(V ) be a representation. We can choose a basis and get a map in matrix

form ρ : G→ GLn(C) where n is the dimesnion of the representation. This means we have,

g 7→


a11(g) a12(g) · · · a1n(g)
a21(g) a22(g) · · · a2n(g)

...
...

. . .
...

an1(g) an2(g) · · · ann(g)


where aij : G→ C, i.e, aij ∈ C[G]. The maps aij ’s are called matrix elements of ρ. Thus
to a representation ρ we can associate a subspace W of C[G] spanned by aij . In what
follows now we will explore relations between these subspaces W associated to irreducible
representations of a finite group G. Let ρ1, . . . , ρr, · · · be irreducible representations of G of
dimension n1, · · · , nr, · · · respectively. We don’t know yet whether there are finitely many
irreducible representations which we will prove later. Let W1, · · · ,Wr, · · · be associated
subspaces of C[G] to the irreducible representations.

Theorem 8.1. Let (ρ, V ) and (ρ′, V ′) be two irreducible representations of G of dimen-
sion n and n′ respectively. Let aij and bij be the corresponding matrix elements with respect
to fixed basis of V and V ′. Then,

(1) (ail, bmj) = 0 for all i, j, l,m.

(2) (ail, amj) = 1
nδijδlm =

{
1
n if i = j and l = m

0 otherwise
.

Proof. Let T : V → V ′ be a linear map. Define

T 0 =
1
|G|

∑
t∈G

ρ(t)T (ρ′(t))−1.

27



28 8. MATRIX ELEMENTS

Then T 0 is a G-linear map. Using Lemma 4.3 we get T 0 = 0. Let us denote the matrix of
T by xlm. Then ijth entry of T 0 is zero for all i and j, i.e.,

1
|G|

∑
t∈G

∑
l,m

ail(t)xlmbmj(t−1) = 0.

Since T is arbitrary linear transformation the entries xlm are arbitrary complex num-
ber hence can be treated as indeterminate. Hence coefficients of xlm are 0. This gives
1
|G|
∑

t∈G ail(t)bmj(t
−1) = 0 hence (ail, bmj) = 0 for all i, j, l,m.

Now let us consider T : V → V , a linear map. Again define T 0 = 1
|G|
∑

t∈G ρ(t)T (ρ(t))−1

which is aG-map. From Corollary 4.5 we get that T 0 = λ.Id where λ = 1
n tr(T ) = 1

n

∑
l xll =

1
n

∑
l,m xlmδlm since n.λ = tr(T 0) = 1

|G|
∑

t∈G tr(T ) = tr(T ). Now using matrix elements
we can write ijth term of T 0:

1
|G|

∑
t∈G

∑
lm

ail(t)xlmamj(t−1) = λδij =
1
n

∑
l,m

xlmδlmδij .

Again T is an arbitrary linear map so its matrix elements xlm can be treated as indetermi-
nate. Comparing coefficients of xlm we get:

1
|G|

∑
t∈G

ail(t)amj(t−1) =
1
n
δlmδij .

Which gives (ail, amj) = 1
nδlmδij . �

Exercise 8.2. Prove that, in both cases, T 0 is a G-map.

Corollary 8.3. If f ∈ Wi and f ′ ∈ Wj with i 6= j then (f, f ′) = 0, i.e., (Wi,Wj) = 0.



CHAPTER 9

Character Theory

We have C[G], space of all complex valued functions on G which is a vector space of
dimension |G|. We define an inner product 〈, 〉 : C[G]× C[G]→ C by

〈f1, f2〉 =
1
|G|

∑
t∈G

f1(t)f2(t).

Exercise 9.1. With the notation as above,
(1) Prove that 〈, 〉 is an inner product on C[G].
(2) If f1 and f2 take value in S1 ⊂ C then 〈f1, f2〉 = (f1, f2).

Definition 9.2 (Character). Let (ρ, V ) be a representation of G. The character of
(corresponding to) representation ρ is a map χ : G→ C defined by χ(t) = tr(ρ(t)) where tr
is the trace of corresponding matrix.

Strictly speaking it is χρ but for the simplicity of notation we write χ only when it is clear
which representation it corresponds to.

Exercise 9.3. Let A,B ∈ GLn(k). Prove the following:
(1) tr(AB) = tr(BA).
(2) tr(A) = tr(BAB−1).

Exercise 9.4. Usually we define trace of a matrix. Show that in above definition
character is a well defined function. That is, prove that χ(t) doesn’t change if we choose
different basis and calculate trace of ρ(t). This is another way to say that trace is invariant
of conjugacy classes of GLn(k).

Exercise 9.5. If ρ and ρ′ are two isomorphic representations, i.e., G-equivalent, then
the corresponding characters are same. The converse of this statement is also true which
we will prove later.

Proposition 9.6. If ρ is a representation of dimension n and χ is the corresponding
character then,

(1) χ(1) = n is the dimension of the representation.
(2) χ(t−1) = χ(t) for all t ∈ G where bar denotes complex conjugation.
(3) χ(tst−1) = χ(s) for all t, s ∈ G, i.e., character is constant on the conjugacy classes

of G.
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30 9. CHARACTER THEORY

(4) For f ∈ C[G] we have (f, χ) = 〈f, χ〉.

Proof. For the proof of part two we use Corollary 5.4 to calculate χ(t). From that
corollary every ρ(t) can be diagonalised (at a time not simultaneously which is enough for
our purposes), say diag{ω1, · · · , ωn}. Since t is of finite order, say d, we have ρ(t)d = 1. That
is each ωdj = 1 means the diagonal elements are dth root of unity. We know that roots of
unity satisfy ω−1

j = ωj . Hence χ(t−1) = tr(ρ(t)−1) = ω−1
1 + · · ·+ω−1

n = ω1 + · · ·+ωn = χ(t).
We can also prove this result by upper triangulation theorem, i.e., every matrix ρ(t)

can be conjugated to an upper triangular matrix. And the fact that trace is same for the
conjugate matrices. �

Definition 9.7 (Class Function). A function f : G→ C is called a class function if f
is constant on the conjugacy classes of G. We denote the set of class functions on G by H.

Exercise 9.8. With the notation as above,
(1) Prove that H is a subspace of C[G].
(2) The dimension of H is the number of conjugacy classes of G.
(3) Let cg =

∑
x∈G xgx

−1 ∈ C[G]. The center of the group algebra C[G] is spanned
by cg.

(4) Let χ be a character corresponding to some representation of G. Then, χ ∈ H.

Proposition 9.9. Let (ρ, V ) and (ρ′, V ′) be two representations of the group G and
χ, χ′ be the corresponding characters. Then,

(1) The character of the sum of two representations is equal to the sum of characters,
i.e., χρ⊕ρ′ = χ+ χ′.

(2) The character of the tensor product of two representations is the product of two
characters, i.e., χρ⊗ρ′ = χχ′.

Proof. Proof is a simple exercise involving matrices. �

This way we can define sum and product of characters which is again a character.

Exercise 9.10. Let (ρ, V ) be a representation of the group G. Then V ⊗ V is also a
representation of G. We look at the map θ : V ⊗V −→ V ⊗V defined by θ(ei⊗ej) = ej⊗ei.
This gives rise to the decomposition V ⊗V = Sym2(V )⊕∧2(V ) which is a G-decomposition.
Calculate the characters of Sym2(V ) and ∧2(V ).

Exercise 9.11. Let χ be the character of a representation ρ. Show that the character
of the adjoint representation ρ∗ is given by χ.



CHAPTER 10

Orthogonality Relations

Let G be a finite group. Let W1,W2, . . . ,Wh, . . . be irreducible representations of G
of dimension n1, n2, . . . , nh, . . . over C. Let χ1, χ2, . . . , χh, . . . are corresponding charac-
ters, called irreducible characters of G. We will fix this notation now onwards. We
will prove that the number of irreducible characters and hence the number of irreducible
representations if finite and equal to the number of conjugacy classes.

In the last chapter we introduced an inner product 〈, 〉 on C[G]. We also observed that
character of any representation belongs to H, the space of class functions.

Theorem 10.1. The set of irreducible characters {χ1, χ2, . . .} form an orthonormal set
of (C[G], 〈, 〉). That is,

(1) If χ is a character of an irreducible representation then 〈χ, χ〉 = 1.
(2) If χ and χ′ are two irreducible characters of non-isomorphic representations then
〈χ, χ′〉 = 0.

Proof. Let ρ and ρ′ be non-isomorphic irreducible representations and (aij) and (bij)
be the corresponding matrix elements. Then χ(g) =

∑
i aii(g) and χ′(g) =

∑
j bjj(g). Then

〈χ, χ′〉 = (χ, χ′) = (
∑

i aii,
∑

j bjj) =
∑

i,j(aii, bjj) = 0 from Theorem 8.1 and Proposi-
tion 9.6 part 4. Using the similar argument we get 〈χ, χ〉 = (χ, χ) = (

∑
i aii,

∑
j bjj) =∑

i(aii, bii) =
∑n

i=1
1
n = 1 where n is the dimension of the representation ρ. �

Corollary 10.2. The number of irreducible characters are finite.

Proof. Since the irreducible characters form an orthonormal set they are linearly in-
dependent. Hence their number has to be less than the dimension of C[G] which is |G|,
hence finite. �

Once we prove that two representations are isomorphic if and only if their characters are
same this corollary will also give that there are finitely many non-isomorphic irreducible
representations.

We are going to use above results to analyse general representation of G and identify
its irreducible components.

Theorem 10.3. Let (ρ, V ) be a representation of G with character χ. Let V decomposes
into a direct sum of irreducible representations:

V = V1 ⊕ · · · ⊕ Vm.
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Then the number of Vi isomorphic to Wj (a fixed irreducible representation) is equal to the
scalar product 〈χ, χj〉.

Proof. Let φ1, . . . , φm be the characters of V1, . . . , Vm. Then χ = φ1 + · · ·+ φm. Also
〈χ, χj〉 =

∑
i〈φi, χj〉 =

∑
φi=χj

〈φi, χj〉 = the number of Vi isomorphic to Wj . �

Corollary 10.4. With the notation as above,
(1) The number of Vi isomorphic to a fixed Wj does not depend on the chosen decom-

position.
(2) Let (ρ, V ) and (ρ′, V ′) be two representations with characters χ and χ′ respectively.

Then V ∼= V ′ if and only if χ = χ′.

Proof. The proof of part 1 is clear from the theorem above. For the proof of part 2 it
is clear that if V ∼= V ′ we get χ = χ′. Now suppose χ = χ′. Let V ∼= Wn1

1 ⊕ · · · ⊕W
nh
h and

V ′ ∼= Wm1
1 ⊕ · · · ⊕Wmh

h be the decomposition as direct sum of irreducible representations
(we can do this using Maschke’s Theorem) where ni,mj ≥ 0. Suppose χ1, χ2, . . . , χh be
the irreducible characters of W1, . . . ,Wh. Then χ = n1χ1 + · · · + nhχh and χ′ = m1χ1 +
· · ·+mhχh. However as χi’s form an orthonormal set they are linearly independent. Hence
χ = χ′ implies ni = mi for all i. Hence V ∼= V ′. �

From this corollary it follows that the number of irreducible representations are same
as the number of irreducible characters which is less then or equal to |G|. In fact later we
will prove that this number is equal to the number of conjugacy classes. The above analysis
also helps to identify whether a representation is irreducible by use of the following:

Theorem 10.5 (Irreducibility Criteria). Let χ be the character of a representation
(ρ, V ). Then 〈χ, χ〉 is a positive integer and 〈χ, χ〉 = 1 if and only if V is irreducible.

Proof. Let V ∼= Wn1
1 ⊕ · · · ⊕W

nh
h . Then χ = n1χ1 + · · ·+ nhχh and

〈χ, χ〉 = 〈n1χ1 + · · ·+ nhχh, n1χ1 + · · ·+ nhχh〉 =
∑
i

n2
i .

Hence 〈χ, χ〉 = 1 if and only if one of the ni = 1, i.e, χ = χi for some i. Hence the result. �

Exercise 10.6. Let χ be an irreducible character. Show that χ is so. Hence a repre-
sentation ρ is irreducible if and only if ρ∗ is so.

Exercise 10.7. Use the above criteria to show that the “Permutations representation”,
“Regular Representation” (defined in the second chater) are not irreducible if |G| > 1.

Exercise 10.8. Let ρ be an irreducible representation and τ be an 1-dimensional rep-
resentation. Show that ρ⊗ τ is irreducible.



CHAPTER 11

Main Theorem of Character Theory

11.1. Regular Representation

Let G be a finite group and χ1, . . . , χh be the irreducible characters of dimension
n1, . . . , nh respectively. Let L be the left regular representation of G with corresponding
character l.

Exercise 11.1. The character l of the regular representation is given by l(1) = |G| and
l(t) = 0 for all 1 6= t ∈ G.

Theorem 11.2. Every irreducible representation Wi of G is contained in the regular
representation with multiplicity equal to the dimension of Wi which is ni. Hence l = n1χ1 +
· · ·+ nhχh.

Proof. In the view of Theorem 10.3 the number of times χi is contained in the regular
representation is given by 〈l, χi〉 = 1

|G| l(1)χi(1) = 1
|G| |G|ni = ni. �

If we are asked to construct irreducible representations of a finite group we don’t know
where to look for them. This theorem ensures a natural place, namely the regular representa-
tion where we could find them. For this reason it is also called “God Given Representation”.

Exercise 11.3. With the notation as above,

(1) The degree ni satisfy
∑h

i=1 n
2
i = |G|.

(2) If 1 6= s ∈ G we have
∑h

i=1 niχi(s) = 0.

Hints: This follows from the formula for l as in the theorem by evaluating at s = 1 and
s 6= 1.

These relations among characters will be useful to determine character table of the
group G.

11.2. The Number of Irreducible Representations

Now we will prove the main theorem of the character theory.

Theorem 11.4 (Main Theorem). The number of irreducible representations of G (upto
isomorphism) is equal to the number of conjugacy classes of G.
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The proof of this theorem will follow from the following proposition. We know that the
irreducible characters χ1, . . . , χh ∈ H and they form an orthonormal set (see Theorem 10.1).
We prove that, in fact, they form an orthonormal basis of H and generate as an algebra
whole of C[G].

Proposition 11.5. The irreducible characters of G form an orthonormal basis of H,
the space of class functions.

To prove this we will make use of the following:

Lemma 11.6. Let f ∈ H be a class function on G. Let (ρ, V ) be an irreducible repre-
sentation of G of degree n with character χ. Let us define ρf =

∑
t∈G f(t)ρ(t) ∈ End(V ).

Then, ρf = λ.Id where λ = |G|
n 〈f, χ〉.

Proof. We claim that ρf is a G-map and use Schur’s Lemma to prove the result. For
any g ∈ G we have,

ρ(g)ρfρ(g−1) =
∑
t∈G

f(t)ρ(g)ρ(t)ρ(g−1) =
∑
t∈G

f(t)ρ(gtg−1) =
∑
s∈G

f(g−1sg)ρ(s) = ρf .

Hence ρf is a G-map. From Schur’s Lemma (see 4.5) we get that ρf = λ.Id for some λ ∈ C.
Now we calculate trace of both side:

λ.n = tr(ρf ) =
∑
t∈G

f(t)tr(ρ(t)) =
∑
t∈G

f(t)χ(t) = |G| 1
|G|

∑
t∈G

f(t)χ(t−1) = |G|〈f, χ〉.

Hence we get λ = |G|
n 〈f, χ〉. �

Proof of the Proposition 11.5. We need to prove that irreducible characters span
H as being orthonormal they are already linearly independent. Let f ∈ H. Suppose f is
orthogonal to each irreducible χi, i.e., 〈f, χi〉 = 0 for all i. Then we will prove f = 0.

Since 〈f, χi〉 = 0 it implies 〈f, χi〉 = 0 for all i. Let ρi be the corresponding irreducible
representation. Then from previous lemma ρif =

(
|G|
n 〈f, χi〉

)
.Id = 0 for all i. Now let ρ be

any representation of G. From Maschke’s Theorem it is direct sum of ρi’s, the irreducible
ones. Hence ρf = 0 for any ρ.

In particular we can take the regular representation L : G → GL(C[G]) for ρ and we
get Lf = 0. Hence Lf (e1) = 0 implies

∑
t∈G f(t)L(t)(e1) = 0, i.e.,

∑
t∈G f(t)et = 0 hence

f(t) = 0 for all t ∈ G. Hence f = 0. �

Proposition 11.7. Let s ∈ G and let rs be the number of elements in the conjugacy
class of s. Let {χ1, . . . , χh} be irreducible representations of G. Then,

(1) We have
∑h

i=1 χi(s)χi(s) = |G|
rs

.
(2) For t ∈ G not conjugate to s, we have

∑h
i=1 χi(s)χi(t) = 0.
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Proof. Let us define a class function ft by ft(t) = 1 and ft(g) = 0 if g is not conjugate
to t. Since irreducible characters span H (see 11.5) we can write ft =

∑h
i=1 λiχi where

λi = 〈ft, χi〉 = 1
|G|rtχi(t). Hence ft(s) = rt

|G|
∑h

i=1 χi(t)χi(s) for any s ∈ G. This gives the
required result by taking s conjugate to t and not conjugate to t. �

Exercise 11.8. Let G be a finite group. The elements s, t ∈ G are conjugate if and
only if χ(s) = χ(t) for all (irreducible) characters χ of G.

Exercise 11.9. A normal subgroup of G is disjoint union of conjugacy classes.

Exercise 11.10. Any normal subgroup can be obtained by looking at the intersection
of kernel ({g ∈ G | χ(g) = 1}) of some characters.





CHAPTER 12

Examples

Let G be a finite group. Let ρ1, . . . , ρh be irreducible representations of G over C with
corresponding characters χ1, . . . , χh. We know that the number h is equal to the number
of conjugacy classes in G. We can make use of this information about G and make a
character table of G. The character table is a matrix of size h × h of which rows are
labelled as characters and columns as conjugacy classes.

r1 = 1 r2 · · · rh
g1 = e g2 · · · gh

χ1 n1 = 1 1 · · · 1
χ2 n2

...
...

χh nh

where g1, g2, . . . denote representative of the conjugacy class and ri denotes the number
of elements in the conjugacy class of gi. The following proposition summarizes the results
proved about characters. We also recall the inner product on C[G] defined by 〈f1, f2〉 =
1
|G|
∑

t∈G f1(t)f2(t).

Proposition 12.1. With the notation as above we have,

(1) The number of conjugacy classes is same as the number of irreducible characters
which is same as the number of non-isomorphic irreducible representations.

(2) Two representations are isomorphic if and only if their characters are equal.
(3) A representation ρ with character χ is irreducible if and only if 〈χ, χ〉 = 1.
(4) |G| = n2

1 + n2
2 + · · ·+ n2

h where n1 = 1.
(5) The characters form orthonormal basis of H, i.e.,∑

t∈G
χi(t)χj(t) =

∑
gl

rlχi(gl)χj(gl) = δij |G|.

That is, the rows of the charcater table are orthonormal.
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(6) The columns of the character table also form an orthogonal set, i.e.,
h∑
i=1

χi(gl)χi(gl) =
|G|
rl

and
h∑
i=1

χi(gl)χi(gm) = 0

where gl and gm are representative of different conjugacy class.
(7) The character table matrix is an invertible matrix.
(8) The degree of irreducible representations divide the order of th group, i.e., ni | |G|.

The proof of the last statement will be done later.
Warning : If character table of two groups are same that does not imply that the

groups are isomorphic. Look at the character tables of Q8 and D4. In fact, all non-Abelian
groups of order p3 have same character table (find a reference for this).

12.1. Groups having Large Abelian Subgroups

First we will give another proof of the Theorem 5.10 using Character Theory.

Theorem 12.2. Let G be a finite group. Then G is Abelian if and only if all irreducible
representations are of dimension 1, i.e., ni = 1 for all i.

Proof. With the notation as above let G be Abelian. We have

|G| = n2
1 + · · ·+ n2

h

where h = |G|. Hence the only solution to the equation is ni = 1 for all i. Now suppose
ni = 1 for all i. Then the above equation implies h = |G|. Hence each conjugacy class is
has size 1 and the group is Abelian. �

Proposition 12.3. Let G be a group and A be an Abelian subgroup. Then ni ≤ |G||A| for
all i.

Proof. Let ρ : G → GL(V ) be an irreducible representation. We can restrict ρ to
A and denote it by ρA : A → GL(V ) which may not be irreducible. Let W an invariant
subspace of V for A. The above theorem implies dim(W ) = 1. Say W =< v > where v 6= 0.
Consider V ′ =< {ρ(g)v | g ∈ G} >⊂ V . Clearly V ′ is G-invariant and as V is irreducible
V ′ = V . Notice that ρ(ga)v = λρ(g)v, i.e., ρ(ga)v and ρ(g)v are linearly dependent. Hence
V ′ =< {ρ(g1)v, . . . , ρ(gm)v} > where gi are representatives of the coset giA in G/A. This
implies dim(V ) ≤ m = |G|

|A| . �

Corollary 12.4. Let G = Dn be the dihedral group with 2n elements. Any irreducible
representation of Dn has dimension 1 or 2.
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12.2. Character Table of Some groups

Example 12.5 (Cyclic Group). Let G = Z/nZ. All representations are one dimensional
hence give character. The characters are χ1, . . . , χn given by χr(s) = e

2πi
n
rs for 0 ≤ s ≤ n.

Example 12.6 (S3).

S3 = {1, (12), (23), (13), (123), (132)}

We already know the one dimensional representations of S3 which are trivial representation
and the sign representation. The characters for these representations are itself. Now we
use the formula 6 = |G| = n2

1 + n2
2 + n2

3 = 1 + 1 + n2
3 gives n3 = 2. Now we use 〈χ3, χ1〉 =

1
6{1.2.1 + 3.a.1 + 2.b.1} = 0 and 〈χ3, χ2〉 = 1

6{1.2.1 + 3.a.(−1) + 2.b.1 = 0}. Hence solving
the above equations 3a+ 2b = −2 and −3a+ 2b = −2 gives a = 0 and b = −1.

r1 = 1 r2 = 3 r3 = 2
g1 = 1 g2 = (12) g3 = (123)

χ1 n1 = 1 1 1
χ2 n2 = 1 −1 1
χ3 n3 = 2 a = 0 b = −1

Example 12.7 (Q8).

Q8 = {1,−1, i,−i, j,−j, k,−k}

The commutator subgroup of Q8 = {1,−1} and Q8/{±1} ∼= Z/2Z × Z/2Z. Hence it has
4 one dimensional representations which are lifted from Z/2Z × Z/2Z. Notice that the
first Z/2Z component is the image of i and second one of j. Now we use 8 = |G| =
n2

1 + n2
2 + n2

3 + n2
4 + n2

5 = 1 + 1 + 1 + 1 + n2
5 gives n5 = 2. Again using orthogonality of χ5

with other known χi’s we get following equations:

1.2.1 + 1.a.1 + 2.b.1 + 2.c.1 + 2.d.1 = 0

1.2.1 + 1.a.1 + 2.b.1 + 2.c.(−1) + 2.d.(−1) = 0

1.2.1 + 1.a.1 + 2.b.(−1) + 2.c.1 + 2.d.(−1) = 0

1.2.1 + 1.a.1 + 2.b.(−1) + 2.c.(−1) + 2.d.1 = 0

This gives the solution a = −2, b = 0, c = 0 and d = 0.
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r1 = 1 r2 = 1 r3 = 2 r4 = 2 r5 = 2
g1 = 1 g2 = −1 g3 = i g4 = j g5 = k

χ1 n1 = 1 1 1 1 1
χ2 n2 = 1 1 1 −1 −1
χ3 n3 = 1 1 −1 1 −1
χ4 n4 = 1 1 −1 −1 1
χ5 n5 = 2 a = −2 b = 0 c = 0 d = 0

Example 12.8 (D4).

D4 = {r, s | r4 = 1 = s2, rs = sr−1}

The commutator subgroup of D4 is {1, r2} = Z(D4). And D4/Z(D4) ∼= Z/2Z×Z/2Z hence
there are 4 one dimensional representations as in the case of Q8. We can also compute rest
of it as we did in Q8. We also observe that the character table is same as Q8.

r1 = 1 r2 = 1 r3 = 2 r4 = 2 r5 = 2
g1 = 1 g2 = r2 g3 = r g4 = s g5 = sr

χ1 n1 = 1 1 1 1 1
χ2 n2 = 1 1 1 −1 −1
χ3 n3 = 1 1 −1 1 −1
χ4 n4 = 1 1 −1 −1 1
χ5 n5 = 2 a = −2 b = 0 c = 0 d = 0

Example 12.9 (A4).

A4 = {1, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)}

We note that the 3 cycles are not conjugate to their inverses. Here we have

H = {1, (12)(34), (13)(24), (14)(23)} ∼= Z/2Z× Z/2Z

a normal subgroup of A4 and A4/H ∼= Z/3Z. This way the 3 one dimensional irreducible
representations of Z/3Z lift to A4 as we have maps A4 → A4/H ∼= Z/3Z → GL1(C) given
by ω where ω3 = 1. We use 12 + 12 + 12 +n2

4 = 12 = |A4| to get n4 = 3. Now we take inner
product of χ4 with others and get the equations:

1.3.1 + 3.a.1 + 4.b.1 + 4.c.1 = 0

1.3.1 + 3.a.1 + 4.b.ω + 4.c.ω2 = 0

1.3.1 + 3.a.1 + 4.b.ω2 + 4.c.ω = 0

This gives us the character table.
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r1 = 1 r2 = 3 r3 = 4 r4 = 4
g1 = 1 g2 = (12)(34) g3 = (123) g4 = (132)

χ1 n1 = 1 1 1 1
χ2 n2 = 1 1 ω ω2

χ3 n3 = 1 1 ω2 ω

χ4 n4 = 3 a = −1 b = 0 c = 0

Example 12.10 (S4). The group S4 has 2 one dimensional representations given by
trivial and sign. We recall that the permutation representation (Example 2.15) gives rise
to the subspace V = {(x1, x2, . . . , xn) ∈ Cn | x1 + x2 + · · · + xn = 0} which is an n − 1
dimensional irreducible representation of Sn. We will make use of this to get a 3 dimensional
representation of S4 and corresponding character χ3. A basis of the space V is {e1−e2, e2−
e3, e3 − e4} and the action is given by:

(12) : (e1 − e2) 7→ e2 − e1 = −(e1 − e2)

(e2 − e3) 7→ e1 − e3 = (e1 − e2) + (e2 − e3)

(e3 − e4) 7→ (e3 − e4)

So the matrix is

−1 1 0
0 1 0
0 0 1

 and χ3((12)) = 1. The action of (12)(34) is e1 − e2 7→

e2 − e1 = −(e1 − e2), e2 − e3 7→ e1 − e4 = (e1 − e2) + (e2 − e3) + (e3 − e4) and e3 −

e4 7→ e4 − e3 = −(e3 − e4) and the matrix is

−1 1 0
0 1 0
0 1 −1

. So χ3((12)(34)) = −1. The

action of (123) is e1 − e2 7→ e2 − e3, e2 − e3 7→ e3 − e1 = −(e1 − e2) − (e2 − e3) and

e3 − e4 7→ e1 − e4 = (e1 − e2) + (e2 − e3) + (e3 − e4). So the matrix is

0 −1 1
1 −1 1
0 0 1

 and

χ3((123)) = 0. And the action of (1234) is e1 − e2 7→ e2 − e3, e2 − e3 7→ e3 − e4 and

e3 − e4 7→ e4 − e1 = −(e1 − e2) − (e2 − e3) − (e3 − e4). So the matrix is

0 0 −1
1 0 −1
0 1 −1

 and

χ3((1234)) = −1. This gives χ3. We can get another character χ4 = χ3.χ2 corresponding
to the representation Perm ⊗ sgn. We can check that this is different from others so
corresponds to a new representation and also irreducible as 〈χ4, χ4〉 = 1.

To find χ5 we can use orthogonality relations and get equations.
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r1 = 1 r2 = 6 r3 = 3 r4 = 8 r5 = 6
g1 = 1 g2 = (12) g3 = (12)(34) g4 = (123) g5 = (1234)

χ1 n1 = 1 1 1 1 1
χ2 n2 = 1 −1 1 1 −1
χ3 n3 = 3 1 −1 0 −1
χ4 n4 = 3 −1 −1 0 1
χ5 n5 = 2 a = 0 b = 2 c = −1 d = 0

Example 12.11. In the above example of S4 we see that the representations ρ3 and
ρ4 are adjoint of each other. This we can see by looking at their characters. This gives an
example of representation which is not isomorphic to its adjoint.

Example 12.12 (Dn, n even).

Dn = {a, b | an = 1 = b2, ab = ba−1}

and the conjugacy classes are {1}, {a
n
2 }, {aj , a−j}(1 ≤ j ≤ n

2 − 1), {ajb | j even} and
{rjb | j odd}. The subgroup generatd by a2 is normal and hence there are 4 one dimensional
representations. Rest of them are two dimensional (refer to Corollary 12.4) representations
defined in the Example 2.7. Using them we can make character table.

Example 12.13 (Dn, n odd).

Dn = {a, b | an = 1 = b2, ab = ba−1}

and the conjugacy classes are {1}, {aj , a−j}(1 ≤ j ≤ n−1
2 ), {ajb | 0 ≤ j ≤ n − 1}. The

subgroup generatd by a is normal and hence there are 2 one dimensional representations.
Rest of them are two dimensional (refer to Corollary 12.4) representations defined in the
Example 2.7. Using them we can make character table.
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Characters of Index 2 Subgroups

In this chapter we will see how we can use characters of a group G to get characters of
its index 2 subgroups. We apply this for S5 and its subgroup A5.

13.1. The Representation V ⊗ V

Let G be a finite group. Suppose that (ρ, V ) and (ρ′, V ′) are representations of G. Then
we can get a new representation of G from these representations defined as follows (recall
from section 7.3):

ρ⊗ ρ′ : G → GL(V ⊗ V ′)
(ρ⊗ ρ′)(g)(v ⊗ v′) = ρ(g)(v)⊗ ρ′(g)(v′)

Now suppose ρ and ρ′ are representations over C and χ and χ′ are the corresponding
characters, then the character of ρ⊗ ρ′ is χχ′ given by (χχ′)(g) = χ(g)χ′(g). However even
if ρ and ρ′ are irreducible ρ⊗ ρ′ need not be irreducible.

Let (ρ, V ) be a representation of G. We consider (ρ ⊗ ρ, V ⊗ V ). As defined above it
is a representation of G with character χ2 where χ2(g) = χ(g)2. Recall from section 7.3 it
can be decomposed as

V ⊗ V = Sym2(V )⊕ Λ2(V ).

We prove below that both Sym2(V ) and Λ2(V ) are G-spaces.

Theorem 13.1. Let (ρ, V ) be a representation of G. Then V ⊗V = Sym2(V )⊕Λ2(V )
where each of the subspaces Sym2(V ) and Λ2(V ) are G-invariant.

Proof. Let {v1, . . . , vn} be a basis of V . Then {vi ⊗ vj | 1 ≤ i, j ≤ n} is a basis of
V ⊗ V with dimension n2. Consider the linear map θ defined on the basis of V ⊗ V by
θ(vi ⊗ vj) = vj ⊗ vi and extended linearly. We observe that θ can also be defined without
the help of any basis by θ(v ⊗ w) = w ⊗ v since if v =

∑
aivi and w =

∑
bjvj , then

θ(v ⊗ w) = θ (
∑
aivi ⊗

∑
bjvj) =

∑
aibjθ(vi ⊗ vj) =

∑
aibj(vj ⊗ vi) =

∑
(bjvj ⊗ aivi) =

(w ⊗ v). Observe that θ2 = 1 and we take the subspaces of V ⊗ V corresponding to eigen
values 1 and −1:

Sym2(V ) = {x ∈ V ⊗ V | θ(x) = x}
Λ2(V ) = {x ∈ V ⊗ V | θ(x) = −x}
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Note that {(vi⊗vj+vj⊗vi) | 1 ≤ i ≤ j ≤ n} is a basis for Sym2(V ) and hence its dimension
is n(n+1)

2 and {(vi ⊗ vj − vj ⊗ vi) | 1 ≤ i < j ≤ n} is a basis for Λ2(V ) and hence dimension
is n(n−1)

2 .
We claim that Sym2(V ) and Λ2(V ) are G-invariant. Suppose that v ⊗ w ∈ Sym2(V )

and g ∈ G then we have

θ(ρ(g)(v ⊗ w)) = θ
(
ρ(g)

(∑
λij(vi ⊗ vj + vj ⊗ vi)

))
= θ

(∑
λij(ρ(g)vi ⊗ ρ(g)vj + ρ(g)vj ⊗ ρ(g)vi)

)
=

∑
λij [θ(ρ(g)vi ⊗ ρ(g)vj) + θ(ρ(g)vj ⊗ ρ(g)vi)]

=
∑

λij [ρ(g)vj ⊗ ρ(g)vi + ρ(g)vi ⊗ ρ(g)vj)]

= ρ(g)
(∑

λij(vj ⊗ vi + vi ⊗ vj)
)

= ρ(g)(v ⊗ w).

We also see that Sym2(V ) ∩ Λ2(V ) = {0}. Also their individual dimensions add up to
n(n+1)

2 + n(n−1)
2 = n2 = dim(V ⊗ V ), hence we have V ⊗ V = Sym2(V )⊕ Λ2(V ). �

Theorem 13.2. The characters of Sym2(V ) and Λ2(V ) are χS and χA respectively
given by

χS(g) =
1
2
(
χ2(g) + χ(g2)

)
χA(g) =

1
2
(
χ2(g)− χ(g2)

)
Proof. Suppose that |G| = d. Then for any g ∈ G, (ρ(g))d = I. Thus m(X), the

minimal polynomial of ρ(g), divides the polynomial p(X) = Xd−1. Since p(X) has distinct
roots so will m(X) and hence ρ(g) is diagonalisable.

Let {e1, · · · en} be an eigen basis for V and let {λ1, · · · , λn} be the corresponding eigen
values. Then from the proof of previous theorem it follows that {(ei ⊗ ej − ej ⊗ ei) | i < j}
is an eigen basis for Λ2(V ) with corresponding eigen values {λiλj | i < j}. We now have

χA(g) = Tr(ρ⊗ ρ)(g) =
∑
i<j

λiλj =
1
2

((∑
λi

)2
−
∑(

λ2
i

))
=

1
2
(
χ2(g)− χ(g2)

)
.

In similar way one can calculate χS . �

13.2. Character Table of S5

With the theory developed above, we are now ready to construct the character table for
the symmetric group S5. We record below some facts about Sn and in particular about S5

which will be the starting point to make the character table:
(1) |S5| = 5! = 120.



13.2. CHARACTER TABLE OF S5 45

(2) Two elements σ and σ′ of Sn are conjugate if and only if their cycle structure is
same when they are written as product of disjoint cycles.

(3) The conjugacy classes in S5 along with their cardinality are as mentioned below:
|(gi)| 1 10 20 15 30 20 24
gi 1 (12) (123) (12)(34) (1234) (12)(345) (12345)

(4) For any Sn, we already know 2 one dimensional (and hence irreducible) represen-
tations: One being the trivial representation and the other the sign representation
which sends each transposition to -1.

(5) For any Sn, we know an irreducible representation of dimension n − 1 (as in the
Example 2.15 obtained by the action of Sn on the subspace V of Cn given by
V = {(x1, x2, . . . , xn) ∈ Cn | x1 + x2 + · · ·+ xn = 0}).

We fill this information into the character table:

|(gi)| 1 10 20 15 30 20 24
gi 1 (12) (123) (12)(34) (1234) (12)(345) (12345)
χ1 1 1 1 1 1 1 1

χ2 1 −1 1 1 −1 −1 1
χ3 4 2 1 0 0 −1 −1

We need to find 4 more irreducible characters. We now deploy the ways described at the
beginning to find new irreducible representations.

Taking tensor product of the trivial representation with any other representation (ρ, V )
gives a representation isomorphic to (ρ, V ) (since χ1χV = χV ). Hence we only need to
consider tensor product of the second and the third representation whose character is χ2χ3.

〈χ2χ3, χ2χ3〉 =
1

120
((4)2 + 10(−2)2) + 20(1)2 + 20(1)2 + 24(−1)2)

= 1

= 〈χ3, χ3〉

Thus this representation turns out to be irreducible. Let χ4 = χ2χ3 6= χ3. We include
this character χ4 into the character table:

|(gi)| 1 10 20 15 30 20 24
gi 1 (12) (123) (12)(34) (1234) (12)(345) (12345)
χ1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1 1
χ3 4 2 1 0 0 −1 −1
χ4 4 −2 1 0 0 1 −1



46 13. CHARACTERS OF INDEX 2 SUBGROUPS

We now consider χ = χ3 and for this we examine the representations χS and χA:
|(gi)| 1 10 20 15 30 20 24
gi 1 (12) (123) (12)(34) (1234) (12)(345) (12345)
χA 6 0 0 −2 0 0 1
χS 10 4 1 2 0 1 0

We check that χA is irreducible as 〈χA, χA〉 = 1
120((6)2 + 15(−2)2 + 24(1)2) = 1.

Thus χ5 = χA is the fifth irreducible character of S5. Suppose that χ6 and χ7 are the
other 2 irreducible characters. Since every representation of a finite group can be written
as a direct sum of irreducible ones we have,

χS = m1χ1 +m2χ2 + · · ·+m7χ7

where mi = 〈χS , χi〉. Calculations show that 〈χS , χS〉 = 3, 〈χS , χ1〉 = 1 and 〈χS , χ3〉 = 1.
We also have

∑
m2
i = 〈χS , χS〉 = 3. Thus χS = χ1 + χ3 + ψ, where ψ is an irreducible

character. We rewrite ψ = χS − χ1 − χ3 explicitly
|(gi)| 1 10 20 15 30 20 24
gi 1 (12) (123) (12)(34) (1234) (12)(345) (12345)
ψ 5 1 −1 1 −1 1 0

Since ψ is irreducible, 〈ψ,ψ〉 = 1
120(52 + 10 + 20 + 15 + 30 + 20) = 1 as expected. Let

χ6 = ψ then χ7 = χ2χ6 will be another new irreducible character. We have thus found the
character table of S5:

Character Table of S5

|(gi)| 1 10 20 15 30 20 24
gi 1 (12) (123) (12)(34) (1234) (12)(345) (12345)
χ1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1 1
χ3 4 2 1 0 0 −1 −1
χ4 4 −2 1 0 0 1 −1
χ5 6 0 0 −2 0 0 1
χ6 5 1 −1 1 −1 1 0
χ7 5 −1 −1 1 1 −1 0

13.3. Index two subgroups

Let (ρ, V ) be a representation of G. Then ρ : G → GL(V ) is a group homomorphism.
Suppose H is a subgroup of G. Then we can restrict the map ρ to H denoted as ρ|H to
obtain a representation for H. Note that even if (ρ, V ) is an irreducible representation,
(ρ|H , V ) need not be irreducible. The following theorem shows the intimate connection
between the characters of a group G and any of its subgroup H. Recall from Chapter 9 we
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define an inner product on C[G] denoted as 〈, 〉. We denote this inner product on C[H] by
〈, 〉H thinking of H as a group in itself.

Proposition 13.3. Let G be a group and H its subgroup. Let ψ be a non zero character
of H. Then there exists an irreducible character χ of G such that 〈χ|H , ψ〉H 6= 0 where 〈, 〉H
represents inner product on C[H] as explained above.

Proof. Let χ1, χ2, . . . , χh be the irreducible characters of G. We have the regular
representation of G: χreg =

∑
χi(1)χi and χreg(1) = |G|, χreg(g) = 0, g 6= 1. Thus we have

the following:

〈χreg|H , ψ〉H =
1
|H|

(χreg(1)ψ(1))

=
|G|ψ(1)
|H|

6= 0

∴ 〈χreg|H , ψ〉H =
h∑
i=1

〈χi|H , ψ〉H 6= 0

Hence atleast one of the 〈χi, ψ〉H 6= 0. �

Theorem 13.4. Let G be a group and H a subgroup. Let χ be an irreducible character
of G. Suppose ψ1, ψ2, . . . , ψk are all irreducible characters of H and χ|H = d1ψ1 + d2ψ2 +
· · ·+ dkψk for some d1, d2, . . . , dk integers. Then

k∑
i=1

d2
i ≤ [G : H]

and equality occurs if and only if χ(g) = 0 for all g /∈ H.

Proof. Thinking of H as a group we have 〈χ|H , χ|H〉H =
∑
d2
i . Since χ is an irre-

ducible character of G we have,

〈χ, χ〉 =
1
|G|

∑
g∈G

χ(g)χ(g)

1 =
1
|G|

∑
h∈H

χ(h)χ(h) +
∑
g/∈H

χ(g)χ(g)


1 =

|H|
|G|
〈χ|H , χ|H〉H +

1
|G|

∑
g/∈H

χ(g)χ(g)
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Rewriting the above we get,

|H|
|G|
〈χ|H , χ|H〉H = 1− 1

|G|
∑
g/∈H

χ(g)χ(g)

∑
d2
i = 〈χ|H , χ|H〉H =

|G|
|H|
− 1
|H|

∑
g/∈H

χ(g)χ(g) ≤ |G|
|H|

.

Moreover equality occurs if and only if 1
|H|
∑

g/∈H χ(g)χ(g) = 0, i.e.,
∑

g/∈H |χ(g)|2 = 0 which
happens if and only if |χ(g)| = 0 and hence χ(g) = 0 for all g /∈ H. �

We will apply the above theorm for index two subgroups and get the following,

Corollary 13.5. Let G be a group and H a subgroup of index 2. Let χ be an irreducible
character of G. Then one of the following happens :

(1) χ|H = ψ is an irreducible character of H. This happens if and only if there exists
g ∈ G and g /∈ H such that χ(g) 6= 0.

(2) χ|H = ψ1 + ψ2 where ψ1 and ψ2 are irreducible characters of H. This happens if
and only if χ(g) = 0 for all g /∈ H.

13.4. Character Table of A5

We will write down the character table of A5. For this we will use the Corollary 13.5
and the character table of S5 derived earlier in this chapter. The conjugacy classes of A5

and their corresponding cardinality are as follows:
|(gi)| 1 20 15 12 12
gi 1 (123) (12)(34) (12345) (13452)

From the character table of S5 it follows that χ1|H = χ2|H , χ3|H = χ4|H and χ6|H = χ7|H
are irreducible characters of A5. Hence we get the character table of A5 partially.

|(gi)| 1 20 15 12 12
gi 1 (123) (12)(34) (12345) (13452)
ψ1 1 1 1 1 1
ψ2 4 1 0 −1 −1
ψ3 5 −1 1 0 0
ψ4 n4 = 3 a1 a2 a3 a4

ψ5 n5 = 3 b1 b2 b3 b4

We know that 12 + 42 + 52 + n4
2 + n5

2 = 60 and hence n4
2 + n5

2 = 18. The only possible
integral solutions of this equation are n4 = n5 = 3.

Now we see that the only irreducible character of S5 whose restriction to A5 is not
irreducible is χ5. Since ψ1, ψ2, ψ3 are all obtained by restriction of the characters other than
χ5 it follows from Theorem 13.4 that only possibly 〈ψ4, χ5|A5〉A5 6= 0 and 〈ψ5, χ5|A5〉A5 6= 0.
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Now from Corollary 13.5 it follows that χ5|A5 is sum of two characters of A5 and hence
χ5|A5 = ψ4 + ψ5. Thus we have a1 = −b1, a2 = −2− b2, a3 = 1− b3 and a4 = 1− b4.

Now we use orthogonality relations for characters of A5 and get 〈ψ4, ψ1〉 = 3 + 20a1 +
15a2 + 12a3 + 12a4 = 0, 〈ψ4, ψ2〉 = 12 + 20a1− 12a3− 12a4 = 0, and 〈ψ4, ψ3〉 = 15− 20a1 +
15a2 = 0. Solving these equations we get a1 = 0, a2 = −1 and a3 + a4 = 1. Hence we have
the following:

|(gi)| 1 20 15 12 12
gi 1 (123) (12)(34) (12345) (13452)
ψ1 1 1 1 1 1
ψ2 4 1 0 −1 −1
ψ3 5 −1 1 0 0
ψ4 3 0 −1 a3 a4 = 1− a3

ψ5 3 0 −1 b3 = 1− a3 = a4 b4 = 1− a4 = a3

Proposition 13.6. Every element of A5 is conjugate to their own inverse. Hence the
entries of the character table are real numbers.

Proof. Clearly it is enough to prove that the representatives of the conjugacy classes
are conjugate to their own inverse. It is clear for the element 1, (123) and (12)(34). For
others we check that

(12345)−1 = (54321) = (15)(24)(12345)(15)(24)

(13452)−1 = (25431) = (12)(35)(13452)(12)(35)

Now we know that χ(g−1) = χ(g) and g being conjugate to g−1 this is also equal to
χ()g. Hence χ(g) = χ(g) gives χ(g) ∈ R for all g ∈ A5. �

The above proposition implies that a3, a4, b3 and b4 are real numbers. From 〈χ4, χ4〉 = 1
we get a2

3 + a2
4 = 3. Substituting a4 = 1− a3 we get a2

3 − a3 − 1 = 0. And the solutions are

a3 =
1 +
√

5
2

= b4, a4 =
1−
√

5
2

= b3

or

a3 =
1−
√

5
2

= b4, a4 =
1 +
√

5
2

= b3.

Since the values of ψ4 and ψ5 on other conjugacy classes are the same, both the above
solutions would give the same set of irreducible characters. Hence without loss of generality
we may take the first set of solutions. This gives the complete character table of A5as
follows:

Character Table of A5
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|(gi)| 1 20 15 12 12
gi 1 (123) (12)(34) (12345) (13452)
ψ1 1 1 1 1 1
ψ2 4 1 0 −1 −1
ψ3 5 −1 1 0 0
ψ4 3 0 −1 1+

√
5

2
1−
√

5
2

ψ5 3 0 −1 1−
√

5
2

1+
√

5
2

Exercise 13.7. Prove that every element of Sn is conjugate to its own inverse and
hence character table consists of real numbers.

Remark : In fact more is true that every element of Sn is conjugate to all those
powers of itself which generates same subgroup (called rational conjugacy). Hence it is true
that characters of Sn always take value in integers. However this is not true for An, for
example check A4 and A5. They may not be even real valued.



CHAPTER 14

Characters and Algebraic Integers

Let G be a finite group and ρ1, . . . , ρh be all irreducible representations of G of dimension
n1, · · · , nh with corresponding characters χ1, · · · , χh.

For any give representation ρ : G → GL(V ) we can define an algebra homomorphism
ρ̃ : C[G] → End(V ) by

∑
g αgg 7→

∑
g αgρ(g). We know that Z(C[G]), the center of C[G],

is spanned by the elements cg1 , . . . , cgh where

cgi =
∑

{t∈G|t=sgis−1}

t

i.e., sum of all conjugates of gi and gi are representatives of different conjugacy class.

Exercise 14.1. Let
∑

g αgg ∈ Z(C[G]) then αg = αsgs−1 for any s ∈ G.

Proposition 14.2. Let ρ be an irreducible representation and z ∈ Z(C[G]). Then
ρ̃(z) = λ.Id for some λ ∈ C.

Proof. We claim that ρ̃(z) ∈ End(V ) is a G-map. Let z =
∑

g αgg then αg = αsgs−1

for any s ∈ G. Then

ρ̃(z)(ρ(t)v) =
∑
g

αgρ(g)(ρ(t)v) = ρ(t)
∑
g

αgρ(t−1gt)v = ρ(t)
∑
u

αtut−1ρ(u)v = ρ(t)ρ̃(z)v.

Since ρ is irreducible Corollary 4.5 (Schur’s Lemma) implies that ρ̃(z) = λ.Id for some
λ ∈ C. �

With notation as above let us denote ρ̃i(cgj ) = λijIdni where λij ∈ C and Idni denotes
the identity matrix. We can take trace of both side and get,

niλij = tr(ρ̃i(cgj )) =
∑

{t∈G|t=sgjs−1}

tr(ρi(t)) = rjχi(gj)

where rj is the number of conjugates of gj . This gives,

λij =
rjχi(gj)
ni

= rj
χi(gj)
χi(1)

.

Proposition 14.3. Each λij is an algebraic integer.
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Proof. Let us consider M = cg1Z⊕ · · ·⊕ cghZ ⊂ Z(C[G]) = cg1C⊕ · · ·⊕ cghC. Clearly
M is a Z-submodule. It is a subring also. Take cgj , cgk ∈ Z(C[G]). Then cgjcgk ∈ Z(C[G]),
in fact cgjcgk ∈ M . Hence we can write cgjcgk =

∑h
l=1 ajklcgl where ajkl are integers. By

applying ρ̃i we get,

(λijIdni)(λikIdni) = ρ̃i(cgj )ρ̃i(cgk) = ρ̃i(cgjcgk) =
h∑
l=1

ajklλilIdni .

This gives λijλik =
∑h

l=1 ajklλil where each ajkl ∈ Z.
Now we take N = λi1Z ⊕ · · · ⊕ λihZ ⊂ C which is a finitely generated Z-module and

λijN ⊂ N for all j. This implies λij is an algebraic integer. �

Lemma 14.4. For any s ∈ G and χ character of a representation, χ(s) is an algebraic
integer.

Proof. Let s ∈ G be of order d in G. Then ρ(s) is of order less than or equal to d.
Since the field is C we can choose a basis such that the matrix of ρ(s), say A, becomes
diagonal (see 5.4 and also proof in 9.6). Clearly Ad = 1 implies diagonal elements are root
of the polynomial Xd − 1 hence are algebraic integer. As sum of algebraic integers is again
an algebraic integer we get sum of diagonals of A which is χ(s) is an algebraic integer. �

Theorem 14.5. The order of an irreducible representation divides the order of the
group, i.e., ni divides |G| for all i.

Proof. Let ρi be an irreducible representation of degree ni with character χi. From
the orthogonality relations we have,

1
|G|

∑
t∈G

χi(t)χi(t−1) = 1

h∑
j=1

rjχi(gj)χi(g−1
j ) = |G|

h∑
j=1

niλijχi(g−1
j ) = |G|

h∑
j=1

λijχi(g−1
j ) =

|G|
ni

Left side of this equation is an algebraic integer (using Proposition 14.3 and Lemma 14.4)
and right side is a rational number. Hence |G|ni is an algebraic integer as well as algebraic
number hence an integer. This implies ni divides |G|. �
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Burnside’s pq Theorem

We continue with the notation in the last chapter and recall,

(1) λij = rj
χi(gj)
ni

is an algebraic integer.
(2) χi(t) is an algebraic integer.

Lemma 15.1. With notation as above suppose rj and ni are relatively prime. Then
either ρi(gj) is in the center of ρi(G) or tr(ρi(gj)) = χi(gj) = 0.

Proof. As in the proof of Proposition 9.6 and Lemma 14.4 we can choose a basis such
that the matrix of ρi(gj) = diag{ω1, · · · , ωni} and χi(gj) = ω1 + · · · + ωni where ωk’s are
dth root of unity (d order of gj). Now |ω1 + · · ·+ ωni | ≤ 1 + · · ·+ 1 = ni hence |χi(gj)ni

| ≤ 1.

In the case |χi(gj)ni
| = 1 we must have ω1 = ω2 = . . . = ωni . This implies the matrix of ρi(gj)

is central and hence in this case ρi(gj) belongs in the center of ρi(G).
Now suppose that |χi(gj)ni

| < 1 and let α = χi(gj)
ni

. Since rj and ni are relatively prime
we can find integers l,m ∈ Z such that rjl + nim = 1. Then λij = rjα gives lλij =
(1 − nim)α = α − mχi(gj). Since λij and χi(gj) are algebraic integers we get α is an
algebraic integer. Let ζ be a primitive dth root of unity and let us consider the Galois
extension K = Q(ζ) of Q. Let ωk = ζak then α = 1

ni
(ζa1 + · · ·+ ζani ). For σ ∈ Gal(K/Q)

the element σ(α) is also of the same kind hence |σ(α)| ≤ 1. This implies the norm of α
defined by N(α) =

∏
σ∈Gal(K/Q) σ(α) has |N(α)| < 1. Since α is an algebraic integer so are

σ(α) and hence the product N(α) is an algebraic integer. Since N(α) is also left invariant
by all σ ∈ Gal(K/Q) it is a rational number hence it must be an integer. However as
|N(α)| < 1 this gives N(α) = 0 and which implies χi(gj) = α = 0. �

Proposition 15.2. Let G be a finite group and C be conjugacy class of g ∈ G. If |C| =
pr, where p is a prime and r ≥ 1, then there exist a nontrivial irreducible representation
ρ of G such that ρ(C) is contained in the center of ρ(G). In particular, G is not a simple
group.

Proof. On contrary let us assume that ρi(C) is not contained in the center of ρi(G)
for all irreducible representations ρi of G. Then from previous Lemma if p does not divide
ni we have χi(g) = 0 for g ∈ C.
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Consider the character of the regular representation χ =
∑h

i=1 niχi. Then for any
1 6= s ∈ G we have

0 = χ(s) =
h∑
i=1

niχi(s) = 1 +
h∑
i=2

niχi(s).

Let us take g ∈ C (note that g 6= 1 since |C| > 1). Then
∑h

i=2 niχi(g) = −1. On the left
hand side we have either p|ni or if p 6 |ni then χi(g) = 0. Rewriting the above expression we
get

∑h
i=2

ni
p χi(g) = −1

p . Left hand side of the expression is an algebraic integer (since ni
p is

an integer) and right hand side is a rational number hence it should be an integer which is
a contradiction. Hence there exist a nontrivial irreducible representation ρi such that ρi(C)
is contained in the center of ρi(G).

Now let us take the above ρ : G → GL(V ) and we have ρ(C) ⊂ Z(ρ(G)) where C is a
conjugacy class of non-identity element. If ker(ρ) 6= 1 it will be normal subgroup of G and
G is not simple. In case ker(ρ) = 1 we have ρ an injective map and Z(ρ(G)) 6= 1. But
center is always a normal subgroup which implies G is not simple. �

Theorem 15.3 (Burnside’s Theorem). Every group of order paqb, where p, q are distinct
primes, is solvable.

Proof. We use induction on a + b. If a + b = 1 then G is a p-group and hence G is
solvable. Now assume a+ b ≥ 2 and any group of order prqs with r + s < a+ b is solvable.
Let Q be a Sylow q-subgroup of G. If Q = {e} then b = 0 and G is a p-group and hence
solvable. So let us assume Q is nontrivial. Since Q is a q-group (prime power order) it has
nontrivial center. Let 1 6= t ∈ Z(Q). Then

t ∈ Q ⊂ CG(t) ⊂ G

and hence |CG(t)| = plqb for some 0 ≤ l ≤ a which gives [G : CG(t)] = pa−l. We claim that
G is not simple. If G = CG(t) then t ∈ Z(CG(t)) = Z(G), i.e., Z(G) is nontrivial normal
subgroup and G is not simple. Hence we may assume |CG(t)| = plqb with l < a. Then using
the formula |C(t)| = |G|

|CG(t)| we get |C(t)| = pa−l. Here C(t) denotes the conjugacy class of
t. Using previous proposition we get G is not simple.

Now we know that G is not simple so it has a proper normal subgroup, say N . The order
of N and G/N both satisfy the hypothesis hence they are solvable. Thus G is solvable. �



CHAPTER 16

Further Reading

16.1. Representation Theory of Symmetric Group

See Fulton and Harris chapter 4.

16.2. Representation Theory of GL2(Fq) and SL2(Fq)

See Fulton and Harris chapter 5.
See self-contained notes by Amritanshu Prasad on the subject available on Arxiv.

16.3. Wedderburn Structure Theorem

See “Non Commutative Algebra” by Farb and Dennis and also “Groups and Represen-
tations” by Alperin and Bell.

16.4. Modular Representation Theory

See the notes by Amritanshu Prasad on “Representations in Positive Characteristic”
available on Arxiv.
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