INTRODUCTION TO REPRESENTATION THEORY- Spring 2019-2020

 

Schedule:  Monday 12:40 - 13:30, M106 , Friday  10:40 - 12:30, M106

 

Instructor:  SEMRA ÖZTÜRK

Office : M 138,  sozkap@metu.edu.tr,  For my schedule see http://users.metu.edu.tr/sozkap/aa.pdf

 

Course Grading : Homework and attendance 30,  Exam 1 60,  Exam 2 60,  Final Exam 60,  Total 210

Course Policies : Class Attendance Attendance is administered, encouraged.  Class Participation Encouraged. Late Submission of Assignments Is not recommended.

Course Objectives:  At the end of this course, the student will learn: basic concepts used in representation theory, such as modules, decomposing modules, into irreducibles, computing character tables,  obtaining information about the group from the character table of the group .

Course Learning Outcomes:  Student, who passed the course satisfactorily will be able to: construct modules over group algebra,s determine the type of the group algebra,  deteremine irreducibility of a given module compute the  character table of a group,  derive information about the group from its character table.

 
Text book : Representations and Characters of Groups, by G. James and M. Liebeck, Cambridge University Press 

 

Weekly  outline including homeworks:

Week

Topic

Relevant Reading

Assignments

1

Introduction, review of some topics:  Groups, Linear transformations.

Chapter 1 and 2 

Chapter 1 , # 2, 4,7,10

 

 

 

Chapter 2  ,  # 5 (b), 7,9

2

Group Representations 

Chapter 3 

Chapter 3  ,  # 1,2,7,8

3

FG-modules, submodules,

Chapter 4,

Chapter 4  ,  # 2,3,4.

4

FG-modules and irreducibility

Chapter 5

Chapter 5; # 1,3

5

Group algebras and FG-homomorphisms

Chapter 6, 7 

Chapter 6; #1, 4

 

 

 

Chapter 7; #1, 3

6

Maschke's Theorem

Chapter 8

Chapter 8; #3,5

7

Schur's Lemma

Chapter 9

Chapter 9; # 4,5,6

8

Irreducible modules and group algebra

Chapter 10

Chapter 10; # 1,2,3,4,6

9

More on group algebra, conjugacy classes

Chapter 11, 12

Chapter 11; #  2,3,4

 

 

 

Chapter 12; #  1,2,6

10

Characters

Chapter 13

Chapter 13, # 1,2,3, 7,8,10

11

Inner product of characters

Chapter 14

Chapter 14, # 1,2,3,4,7,8

12

Inner products of characters, decomposition of modules, idempotent decomposition

Chapter 14

Chapter 14; #  25--28

13

The number of irreducible characters

Chapter 15

Chapter 15;  #1,2,3,4

14

Character tables and orthogonality relations

Chapter 16

Chapter 16; #1,2,3,4

15

Normal subgroups and lifted characters

Chapter 17

Chapter 17; #1,3,4,5,