Sheet Metal Work

Developments

The component having a thickness greater than zero and less than 12 mm is called a sheet metal component. A sheet metal component is created by bending, cutting, or deforming an existing sheet of metal having uniform thickness,

A sheet metal component

Flattened view of the sheet metal

component

Development of a one-piece carton with fold-down sides.

material	thickness	Aperture		
	(mm)	(mm)		En (mr
	0.2	6		Boy(m
Coil sheet	0.35	5		0.40
Coll Sileet	0.45 6			0.50
	0.8	3		0.60
	0.5	1		0.70
Flat sheet	0.8	1.5		0.80
	1.5	2	5	1.00
	3	5	٤	1.20
	0.5	1	Kalinlik (mm)	1.50
744	0.8	1.5	Śaliii	2.00
stainless metal plate	1	2	-	2.50
	2	5		3.00
	0.5	1		4.00
aluminium plate	0.8	3		5.00
	1.5	2		6.00
	2	4		8.00
	2	4		10.00

ness	Aperture				L	evha							Rulo		
(mm)			En (mm)	1000	1250	15	00	20	00	1000 1350 15		0 1500 2000	Fn (mm)		
	6		Boy(mm)	2000	2500	3000	6000	4000	6000		1230	1500	2000	En (min)	
	5		0.40	Х	х					Х	Х			0.40	
	6		0.50	Х	Х					Х	Х			0.50	1
	3		0.60	χ	Х					χ	χ			0.60	1
	1		0.70	Х	χ	Х	Х			Х	χ	Х		0.70	
	1.5		0.80	Х	Х	Х	Х			Χ	χ	Х		0.80	
	2	5	1.00	χ	χ	Х	Х			Χ	Χ	Χ		1.00] a
	5	Kalinlik (mm)	1.20	χ	χ	Χ	χ	Х	Χ	χ	χ	χ	χ	1.20	Kalinlik (mm)
	1	Jik	1.50	Х	Χ	Х	Х	Х	Χ	Χ	χ	Х	Χ	1.50	1
	1.5	Calır	2.00	χ	Х	Х	Х	Х	χ	Χ	χ	Χ	χ	2.00	1 5
	2	1	2.50	Χ	χ	Χ	χ	Х	Χ	Χ	χ	Χ	χ	2.50	•
	5		3.00	Х	Χ	Χ	χ	Χ	Χ	Χ	χ	Χ	Χ	3.00	
	1		4.00	χ	Χ	Х	Χ	Х	Х	Χ	χ	χ	Χ	4.00	
	3		5.00	Χ	Χ	Χ	Χ	X	Χ	Χ	χ	Χ	χ	5.00	
	2		6.00	Χ	Χ	Х	Χ	χ	Х	Χ	χ	Χ	Χ	6.00	
			8.00	Χ	Х	Х	Х	Х	Χ	Х	χ	Х	χ	8.00	
	4		10.00	χ	χ	Χ	χ	X	Х	X	χ	Χ	χ	10.00	

Methods/Types of Bending

Bending Machines

Rotary draw bending

Compression bending

Ram bending

3 roll bending

Development of a cylinder.

Development of a transition piece.

Generic K-Factors	Aluminum		Steel
Radius	Soft Materials	Medium Materials	Hard Materials
Air Bending			
0 to Thickness	0.33	0.38	0.40
Thickness to 3 x Thickness	0.40	0.43	0.45
Greater than 3 x Thickness	0.50	0.50	0.50
Bottoming			
0 to Thickness	0.42	0.44	0.46
Thickness to 3 x Thickness	0.46	0.47	0.48
Greater than 3 x Thickness	0.50	0.50	0.50
Coining			
0 to Thickness	0.38	0.41	0.44
Thickness to 3 x Thickness	0.44	0.46	0.47
Greater than 3 x Thickness	0.50	0.50	0.50

BA = bend allowance

BD = bend deduction

R = inside bend radius

K = K-Factor, which is t / T

T = material thickness

t = distance from inside face to the neutral line[6]

A = bend angle in degrees (the angle through which the material is bent)

$$BA = A\left(\frac{\pi}{180}\right)(R + K \times T)$$

EXAMPLE 3 120° BEND

Bend allowance for each degree of bend.

Radius (mm)		Minimum Metal Thickness (mm)													
	Degrees	0.40	0.50	0.60	0.80	1	1.2	1.4	1.6	1.8	2	2.5	3	3.5	4
Ra	Pe						Al	lowance							
0.5	1	0.011	0.012	0.012	0.013	0.015	0.016	0.017	0.018	0.019	0.020	0.023	0.026	0.029	0.032
0.5	90	0.99	1.05	1.10	1.20	1.31	1.41	1.52	1.62	1.73	1.83	2.09	2.36	2.62	2.88
1	1	0.020	0.020	0.021	0.022	0.023	0.024	0.026	0.027	0.028	0.029	0.032	0.035	0.038	0.041
1/	90	1.78	1.83	1.88	1.99	2.09	2.20	2.30	2.41	2.51	2.62	2.88	3.14	3.40	3.66
1.5	1	0.028	0.029	0.030	0.031	0.032	0.033	0.034	0.035	0.037	0.038	0.041	0.044	0.047	0.049
1.5	90	2.56	2.62	2.67	2.78	2.88	2.98	3.09	3.19	3.30	3.40	3.66	3.93	4.19	4.45
2	1	0.037	0.038	0.038	0.040	0.041	0.042	0.043	0.044	0.045	0.047	0.049	0.052	0.055	0.058
2	90	3.35	3.40	3.46	3.56	3.66	3.77	3.87	3.98	4.08	4.19	4.45	4.71	4.97	5.23
2.5	1	0.046	0.047	0.047	0.048	0.049	0.051	0.052	0.053	0.054	0.055	0.058	0.061	0.064	0.067
2.5	90	4.14	4.19	4.24	4.34	4.45	4.55	4.66	4.76	4.87	4.97	5.23	5.50	5.76	6.02
2	1	0.055	0.055	0.056	0.057	0.058	0.059	0.060	0.062	0.063	0.064	0.067	0.070	0.073	0.076
3	90	4.92	4.97	5.03	5.13	5.23	5.34	5.44	5.55	5.65	5.76	6.02	6.28	6.54	6.80
2.5	1	0.063	0.064	0.065	0.066	0.067	0.068	0.069	0.070	0.072	0.073	0.076	0.079	0.081	0.084
3.5	90	5.71	5.76	5.81	5.92	6.02	6.12	6.23	6.33	6.44	6.54	6.80	7.07	7.33	7.59
	1	0.072	0.073	0.073	0.074	0.076	0.077	0.078	0.079	0.080	0.081	0.084	0.087	0.090	0.093
4	90	6.49	6.54	6.60	6.70	6.80	6.91	7.02	7.12	7.22	7.33	7.59	7.85	8.11	8.38
	1	0.081	0.081	0.082	0.083	0.084	0.086	0.087	0.088	0.089	0.090	0.093	0.096	0.099	0.102
4.5	90	7.28	7.33	7.38	7.49	7.59	7.70	7.80	7.90	8.01	8.11	8.38	8.64	8.90	9.16
	1	0.090	0.090	0.091	0.092	0.093	0.094	0.095	0.097	0.098	0.099	0.102	0.105	0.108	0.111
5	90	8.06	8.12	8.17	8.27	8.38	8.48	8.59	8.69	8.79	8.90	9.16	9.42	9.69	9.95
	1 -	0.098	0.099	0.099	0.101	0.102	0.103	0.104	0.105	0.106	0.108	0.111	0.113	0.116	0.119
5.5	90	8.85	8.90	8.95	9.06	9.16	9.27	9.37	9.47	9.58	9.69	9.95	10.21	10.47	10.73
	1	0.107	0.108	0.108	0.109	0.111	0.112	0.113	0.114	0.115	0.116	0.119	0.122	0.125	0.128
6	90	9.63	9.68	9.74	9.84	9.95	10.05	10.16	10.26	10.37	10.47	10.73	10.99	11.26	11.52

No bend relief causes tearing

Bend relief eliminates tearing W= 2 x Thickness D= Bend Radius +Thickness

Autodesk Inventor allows you to create the sheet metal components in a special module, called the **Sheet Metal** module, provided specially for the sheet metal components. This environment provides all the tools that are required for creating the sheet metal components. To invoke the **Sheet Metal** module, double-click on **Sheet Metal** (mm).ipt in the **Metric** tab of the **New File** dialog box,

