
2252 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 10, NOVEMBER 2008

Nonblocking Hierarchical Control of
Decentralized Discrete Event Systems

Klaus Schmidt, Thomas Moor, and Sebastian Perk

Abstract—This contribution investigates the hierarchical control
of decentralized discrete event systems (DES) that are synchro-
nized by shared events. A hierarchical control architecture pro-
viding hierarchical consistency is introduced. Moreover, it allows
for composition of decentralized subsystems on the high-level of
the hierarchy and hence reduces the computational complexity of
supervisory control synthesis for language inclusion specifications.
In this context, a crucial issue is the nonblocking operation of the
overall system. Our main theorem identifies sufficient conditions
for this desirable property.

Index Terms—Decentralized control, discrete event systems
(DES), hierarchical control, large-scale systems, supervisory
control.

I. INTRODUCTION

I N the past decade a great variety of ideas have been studied
to reduce the complexity of synthesis algorithms for the su-

pervisory control of discrete event systems. A key ingredient of
promising approaches is to assume or to impose a particular con-
trol architecture, such that computationally expensive product
compositions of individual subsystems can be either avoided
or at least postponed to a more favorable stage in the design
process.

Our work addresses this issue for compound plants, that is,
systems that are composed of a set of subsystems. In order to
reduce the complexity of supervisor synthesis, we propose a
hierarchical design that introduces a vertical control structure,
while preserving the given horizontal structure of the compound
plant. We use the natural projection for information aggrega-
tion, where we require that the set of events that are shared be-
tween at least two subsystems has to be contained in the high-
level alphabet. This allows the computation of the hierarchical
abstraction by first projecting the subsystems and then com-
posing them to an overall high-level system, i.e., the overall
low-level model need not be evaluated explicitly. As we use the
same modeling framework for both the low and the high level,
the method qualifies for a multilevel hierarchy. We perform su-
pervisor synthesis for the high-level system and derive a low-
level realization of the high-level supervisor for each subsystem.
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It guarantees hierarchical consistency of the hierarchical archi-
tecture, i.e., the desired high-level behavior is implemented by
low-level control. Additionally, we introduce local nonblocking,
marked string acceptance and marked string controllability as
structural conditions to achieve nonblocking behavior of our hi-
erarchical and decentralized multilevel architecture.

Several other approaches address the problem of reducing
the complexity of supervisor synthesis. In modular control [1],
monolithic supervisors for different specifications are designed
and implemented together. Although controllability can be ver-
ified easily, checking if the modular supervisors are noncon-
flicting, that is, if their joint action is nonblocking, is compu-
tationally expensive. An improvement of this technique is given
in [2], where the plant is considered as a composite system. The
modular computation of controllable sublanguages of a speci-
fication language is elaborated in [3], where abstractions of the
composite plant are used to avoid the composition of the system
components.

In contrast to the modular approach, decentralized control fo-
cuses on the computation of decentralized supervisors that only
have partial observations of the plant events as investigated in
[4]. Recent work also includes communication between the su-
pervisors. Extensions of the method to compound systems with
modular specifications are given in [5].

A different view on the decentralized control of compound
discrete event systems is taken in [6], [7]. Purely structural con-
ditions of the subsystems are used. The overall system does
not have to be computed, and thus, after verifying the required
system properties, supervisor synthesis can be performed with a
smaller computational effort than for the monolithic approach.
In our work, we extend the idea of identifying structural system
properties for both horizontal and vertical system compositions.

The above approaches which focus on the horizontal struc-
ture of discrete event systems are supplemented by hierarchical
methods that make use of their vertical structure. Hierarchical
system models can be constructed ”top-down” as in [8], [9], i.e.,
a high-level model (for example an automaton) of the system is
generated first, and the structural components of the high-level
model are filled with more detailed information, or ”bottom-
up”. Then, the low-level model is abstracted to higher levels by
aggregation of information (see [10]–[19]). The hierarchical de-
sign proposed in this paper belongs to the second category.

The development of bottom-up hierarchical control tech-
niques was initiated by the work in [10]. A reporter map
is employed for hierarchical abstraction, and output control
consistency is introduced as a structural condition to guarantee
hierarchical consistency, where marking is not considered. The
abstraction of the control mechanism is generalized in [11]
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by introducing control structures. Additionally, consistency
of marking between hierarchical levels helps guaranteeing
nonblocking system behavior. The idea of control structures is
further elaborated in [12]. On the low level of the hierarchy, the
Ramadge/Wonham (RW) framework is used. On the high level,
the concept of control structures is combined with a flexible
marking function to render conditions such as consistency
of marking unnecessary. The work in [14], [20] presents a
hierarchical design method for systems with an input/output
structure in the behavioral framework, where it is possible to
use a high-level specification as the system abstraction. The
approaches in [13], [21] perform an aggregation (partition)
of the state space to obtain an abstraction of the low-level
system. Elaborating on the connectivity of the high-level states,
nonblocking supervisors are designed.

A method that relates to the present paper in that it explic-
itly uses structural information of the discrete event plant is pre-
sented in [22]. It is based on interfaces, which indicate how the
hierarchical levels can interact, and enables the computation of
nonblocking supervisors for large-scale systems.

A control architecture that combines hierarchical and de-
centralized control for compound systems while imposing
nonblocking closed-loop behavior is presented in [15] by the
authors. A number of extensions and variations have been
discussed in [16]–[19].

Technically, this paper builds on results that were obtained in
[18] and is organized as follows. In Section II, the basic nota-
tion is presented, and a framework for the hierarchical control
of discrete event systems is introduced. Based on this control
framework, the main issues to be addressed in this paper are out-
lined. In Section III, we elaborate our method for hierarchical
abstraction and then focus on the low-level implementation of a
high-level supervisor in Section IV. We also present sufficient
conditions for nonblocking and hierarchically consistent super-
visory control. The applicability of the approach to large-scale
composite systems is demonstrated with a laboratory case study
in Section V.

II. PRELIMINARIES

The work is based on the supervisory control theory for dis-
crete event systems [23], [24]. At first, the notation and basic
concepts are briefly summarized.

Notation

For a finite alphabet , the set of all finite strings over
is denoted (Kleene-closure). We write for the
concatenation of two strings and when is
a prefix of , i.e., if there exists a string with .
The empty string is denoted , i.e., for all

. A language over is a subset . The prefix
closure of is defined by .
A language is prefix closed if . For any string ,

is the set of eligible events after . The
concatenation and the Kleene-closure are naturally extended to
languages by defining

and .

A relevant subclass of the languages over is the class of
regular languages, which represents the class of languages that
is constructed by regular expressions over [25].

The natural projection , , for the (not
necessarily disjoint) union is defined iteratively: 1)
let ; 2) for , , let if

, or otherwise. The set-valued inverse of is
denoted , . The
synchronous product of two languages
is . It can be shown that the
natural projection, the inverse projection and the synchronous
product of regular languages are again regular languages.

Similar to the notation in [26], we model a discrete event
system as a tuple of two regular languages

, where is prefix-closed and . The
language describes the desirable strings of the system (for
example strings which indicate the termination of a task). We
refer to these strings as marked strings. includes all strings
which can be generated by the system (in particular prefixes of
strings in ). As both and are required to be regular,
any system can be represented as a finite automaton [18].1 For
convenience, we introduce the canonical projection operators
and such that , . The natural pro-
jection and the synchronous composition
are extended to systems with
and , respec-
tively. Note that and are again systems.

We define a subset relation for systems and with the
same alphabet , i.e., . is a subset
of if the languages of are subsets of the respective
languages of , i.e., iff and

.
In the supervisory control context, we write ,

where is called the set of uncontrollable events and is
the set of controllable events. Considering that is a system
with the alphabet partitioned as above, we denote as a con-
trol system whenever the sets of controllable and uncontrollable
events are clear from the context. A control pattern is a set ,

, and the set of all control patterns is denoted
. A supervisor for a control system is a map ,

where represents the set of enabled events after the occur-
rence of the string ; i.e., a supervisor can disable con-
trollable events only. A system denotes a control system

under supervision by . The language generated by
is iteratively defined by (1) and (2)

iff and . Thus,
represents the behavior of the closed-loop system. To

take into account the marked strings of , let
. The closed-loop system is nonblocking if

, i.e., if each string in is the
prefix of a marked string in . Note that is again
a control system ([18]) with .

A language is said to be controllable w.r.t. a system
and a set of uncontrollable events if

. The set of all sublanguages that are controllable

1In this work, the choice of the tuple ���� � as a system model facilitates
the theoretical considerations. Nevertheless, all systems can be represented by
finite automata. Thus, all computations can be carried out on finite sets.
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Fig. 1. Hierarchical control architecture.

w.r.t. and is denoted . It is characterized by
. Furthermore, the set

is closed under arbitrary union (this result is analogous
to what is presented in [24]). Hence, for every specification
language , there uniquely exists a supremal controllable sub-
language of w.r.t. and , which is formally defined as

. A supervisor that
leads to a closed-loop behavior is said
to be maximally permissive.

The language is -closed for a language ,
if . Nonblocking maximally permissive supervision
is guaranteed for a control system over , if and only if the
specification is -closed and controllable w.r.t. and

. A maximally permissive supervisor can be realized
by an automata representation of . The latter can be
computed from an automata representation of and with a
computational complexity of order , where , is
the respective number of states of the automata for and .

A. Hierarchical Control

Although the complexity of supervisor synthesis is polyno-
mial in time, it is not always practical to compute a supervisor
as the number of states of a discrete event system which is
composed of several components grows exponentially with its
number of components. Hierarchical control addresses this state
space explosion problem by introducing a vertical system struc-
ture, see Fig. 1 ([10]).

On the low level, a control system describes the detailed
behavior of the given system. The idea of hierarchical control is
to compute a supposedly smaller high-level model , and to
perform the supervisor synthesis using . Thus, the high-level
closed-loop consists of the abstracted plant model and the
supervisor with the feedback information and the con-
trol action . The abstraction process is indicated by the in-
formation channel . As the control action of the high-level
supervisor on is just virtual, it must be translated to the
control action of a low-level supervisor , which then directly
controls the low-level system . This translation is symbolized
by the command channel . Together, and form
a low-level closed-loop system, indicated by (control ac-
tion from the supervisor) and (feedback information from
the control system).

III. HIERARCHICAL ABSTRACTION

In real-world applications, large-scale discrete event systems
are composed of smaller subsystems that interact with each
other. A natural way to describe such a system is to model each
individual component by a control system. The overall system
behavior is then given by the synchronous composition of the
subsystems. Based on this low-level model of a compound

system, we point out issues that have to be addressed in the
hierarchical abstraction process, and we develop a hierarchical
abstraction method that conforms to the above issues. We also
show that the high-level model can be computed efficiently.

A. Low-Level System Model

Definition 3.1 formalizes our model for compound systems.
Definition 3.1 (Decentralized Control System): A decentral-

ized control system (DCS) is a family of control sys-
tems with the respective alphabets , . The
controllable and uncontrollable events of a component are
denoted and , respectively. We assume that all com-
ponents agree on the controllability status of the shared events,
i.e., for all with .
The overall control system is with the alphabet

, the controllable events and the
uncontrollable events .

We model the low-level system in Fig. 1 as a decentralized
control system.

B. Hierarchical Abstraction of Decentralized Systems

Given a DCS on the low level, we now turn to the develop-
ment of our hierarchical abstraction method. Particularly, the
following two issues will be addressed.

i) Decentralized control systems possess an inherent struc-
ture due to the interaction of their components. This struc-
tural information gets lost when the system is composed
to a monolithic DES. Considering this argument and the
fact that it is not practical to compose large-scale DCS be-
cause of the state space explosion, we want to retain the
decentralized system structure in the abstraction process.

ii) It is possible that although all individual components of a
DCS are nonblocking, the overall system can be blocking.
This property is captured by the nonconflicting condition
[1]. A DCS with nonblocking subsystems is
nonconflicting if it holds that

Conflicts in DCSs are always caused by disagreement of
different components on the occurrence of shared events
in their synchronized behavior. This observation suggests
to retain the information about the synchronized occur-
rence of shared events in the abstraction step.

In DCSs, the shared behavior is represented by the occurrence
of shared events . Therefore, we use
the natural projection from the system al-
phabet to a high-level alphabet for hierarchical abstrac-
tion, where is chosen such that , that is, all
events shared between at least two subsystems and are
contained in . This results in the high-level control system

in Fig. 1. However, this way of computing
involves the composition of the overall low-level system

which has to be avoided according to item (i) in the above dis-
cussion. The following proposition provides a solution to this
problem.

Proposition 3.1 (High Level Plant [15], [18]): Let
be a DCS with s.t. , and let
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be the natural projection. Also define the decentralized
high-level alphabets as with the corresponding
decentralized natural projections for

. Then,

The proof of Proposition 3.1 is based on the extension of a
result in [24] as pointed out in Lemma 3.1 and Corollary 3.1.
Related proofs can be found in [15], [18].

Lemma 3.1 ([24]): Let and be alphabets and let
and . Assume and

with the natural projections ,
and . Then

.
Corollary 3.1 follows by iterative application of Lemma 3.1.
Corollary 3.1 ([18]): Let be lan-

guages over the alphabets . Assume that
and for all with ,

and define the natural projections
and , . Then

Now Corollary 3.1 can be applied to the languages and
, in Proposition 3.1.

Proof: With Corollary 3.1, it holds that
and
. This means that
.

Proposition 3.1 reduces the computational complexity of the
projection operation for decentralized systems. It is no longer
necessary to compute the overall low-level control system, and
then project it to the high level, but it is possible to project the de-
centralized subsystems to the high level first, and then compose
the projected high-level systems to form the overall high-level
control system.

The described hierarchical abstraction method for DCS is for-
malized in the following definition.

Definition 3.2 (Projected Decentralized Control System):
Let be a DCS with s.t. , and
let be the natural projection. Also define
the decentralized high-level alphabets as
with the corresponding decentralized natural projections

for . A projected decentralized
control system (PDCS) is a triple ),
where , . The overall high-level
system is , and the high-level controllable
and uncontrollable events are defined as
and , respectively. We denote the triple

a projected control system (PCS).
Fig. 2(a) illustrates the concept of the PDCS with the DCS

on the low level, the projections ,
and the high-level system . It can be shown that

is again a DCS.
The hierarchical abstraction for decentralized control systems

is explained in the following example.
Example 3.1: Consider ,

, and

Fig. 2. (a) PDCS construction; (b) Example of a PDCS.

. A graphical representation of the re-
spective control systems in the form of finite automata is given
in Fig. 2(b). Here, the automaton corresponding to a control
system is defined such that its closed language is

and its marked language is .
The shared events of the two subsystems are

. We define the high-level alphabet as
. The high-level alphabets for the two components are then

and with the corresponding pro-
jections for . According to Proposi-
tion 3.1, the overall high-level control system can be computed
by composing the decentralized high-level systems. It holds that

.
Using the same method, and

. Composing the decentralized high-level systems
results in with and

.
The computational effort of the abstraction method will be

discussed. The first step involves the computation of the de-
centralized high-level control systems ,

using the natural projection . The worst case com-
plexity of the natural projection is exponential in the number
of states of an automaton for the control system . However,
we show in the next section that the natural projection of the
control systems suitable for our approach can be evaluated in
polynomial time and the representation of has fewer states
than the representation of . Hence, while the computation of

still has exponential complexity in the number
of components, it involves much smaller components than the

computation of the detailed low-level model .

IV. NONBLOCKING HIERARCHICAL CONTROL

In the previous section, we elaborated a method to effi-
ciently compute the high-level model of a decentralized control
system which captures the shared behavior of the decentral-
ized subsystems. This model can now be used to implement
an overall specification by a high-level su-
pervisor performing monolithic supervisor synthesis. The
resulting nonblocking high-level supervisor such that

is depicted in Fig. 2(a).
In the next step, the virtual high-level control by has

to be translated to a low-level supervisor , where is
required to be nonblocking and hierarchically consistent, i.e.,
compliant with the behavior imposed by the high-level control.
An important implication of the latter condition is that the
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Fig. 3. (a) Hierarchical and decentralized architecture; (b) Example of the de-
centralized supervisor implementation.

low-level closed-loop behavior is nonempty whenever the
high-level closed-loop behavior is nonempty. The hierarchical
control problem is formalized in Definition 4.1.

Definition 4.1 (Hierarchical Control Problem): Given a
PDCS with its high-level abstrac-
tion and a nonblocking high-level supervisor

, compute a nonblocking and hierarchically consistent
low-level supervisor , i.e.,

A. Hierarchical and Decentralized Control Architecture

Analogous to the hierarchical abstraction procedure, it is
not feasible to perform computations on the overall low-level
system for the low-level supervisor implementation. Con-
sequently, we also want to retain the decentralized system
structure in the low-level supervisor. To this end, we refine
the architecture of Fig. 2(a) and suggest the joint operation of
the high-level supervisor and decentralized low-level
supervisors , as illustrated in Fig. 3(a).

In this work, the low-level supervisors are computed
based on specifications that incorporate the behavior
of the high-level closed loop as seen from the respec-
tive subsystem and that exhibit further desirable properties
as formulated in Definition 4.2. An explicit derivation of such
specifications is given in Section IV-D.

Definition 4.2 (Decentralized Specification): Let
be a PDCS with its high-level

abstraction , and let ,
be natural projections. Given a non-

blocking high-level supervisor , the decentralized
low-level specification is defined such that

and is controllable w.r.t
and .

Combining the overall high-level supervisor and
the decentralized low-level supervisors , we define the
overall low-level supervisor such that

. The hierarchical and de-
centralized architecture is summarized as a hierarchical and
decentralized closed-loop system in the following definition.

Definition 4.3 (HDCLS [18]): A Hierarchical
and Decentralized Closed-Loop System (HDCLS)

consists of the following
entities:

i) a PDCS as in Definition 3.2,
ii) a high-level supervisor with the high-

level closed-loop control system ,
iii) decentralized low-level supervisors

such that , where is chosen according
to Definition 4.2,

iv) the overall low-level supervisor with
.

That is, the low-level model of a hierarchical and decentral-
ized closed-loop system is a DCS which is abstracted by pro-
jecting to a superset of the shared events of its components. Be-
cause of the decentralized nature of the system, the controlla-
bility properties of the low-level events are directly transferred
to the high-level in this approach, i.e., a high-level event is con-
trollable if it is controllable in the low-level, and it is uncontrol-
lable if it is uncontrollable in the low level.2 Note that maximal
permissiveness might be lost by this choice of the high-level
controllability properties as opposed to e.g., [12], [13]. How-
ever, using our method, it is ensured that shared events in dif-
ferent subsystems agree on their controllability status. On the
high level, standard supervisory control is applied, yielding the
high-level supervisor. The translation of the high-level control
action to each low level component is performed based on
the specification that is designed to be controllable w.r.t.
and .

The application of the hierarchical and decentralized archi-
tecture is shown in the following example.

Example 4.1: Let be the PDCS in
Example 3.1. The set of controllable events is .
We choose the high-level supervisor for the overall high-
level system such that and

for all other . The specifications
and fulfill Definition 4.2. Thus,

the low-level supervisors with ,
evaluate to for all and

if and otherwise.
The resulting low-level closed-loop behaviors are

and ,
.

Having introduced our hierarchical control architecture, we
now identify sufficient conditions such that the HDCLS solves
the control problem in Definition 4.1, i.e., the low-level super-
visor is hierarchically consistent and nonblocking.

B. Hierarchical Consistency

First, it is proved that the HDCLS in Definition 4.3 is already
hierarchically consistent. In this context, it is interesting to ob-
serve that this result is valid for all specifications that fulfill
the conditions in Definition 4.2.

Proposition 4.1 (Hierarchical Consistency): Let
be a PDCS with a high-level

supervisor and the high-level closed-loop system

2This assignment is called control delay freedom, e.g., in [27].

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on April 04,2010 at 13:40:06 EDT from IEEE Xplore.  Restrictions apply. 



SCHMIDT et al.: NONBLOCKING HIERARCHICAL CONTROL 2257

. If is given as in Definition 4.3, then
is a hierarchically

consistent HDCLS.
Proof: Because of Definition 4.2, is controllable w.r.t.

and , and for all
. Thus, for all , there exists a s.t.

.
Implementing the overall low-level supervisor as in Def-

inition 4.2 results in

because of Lemma 3.1. Also with Lemma 3.1, it is true that

Noting that , it holds that
. Conse-

quently, the hierarchical and decentralized control system is hi-
erarchically consistent.

1) Example 4.2: The HDCLS in Example 4.1 is hierarchi-
cally consistent. There is a corresponding string in the low-level
closed-loop behavior for all strings in the high-level closed-loop
behavior.

In summary, the HDCLS provides hierarchical consistency
without further requirements on the system behavior.

C. Nonblocking Control

Although the hierarchical and decentralized closed-loop
system guarantees hierarchically consistent control, the
closed-loop system is in general not nonblocking. It is possible
that while the desired high-level behavior can be achieved by
low-level control, there are local paths which lead to deadlock
or livelock situations as demonstrated in the following example.

Example 4.3: Consider the HDCLS in Example 4.1. The
string
cannot be extended to a marked string in

. Thus
the overall system is blocking.

In the framework of hierarchical and decentralized closed-
loop systems as introduced in Definition 4.3, there are four is-
sues which can lead to a blocking low-level closed loop. These
issues are illustrated on the basis of Fig. 3(b).

1) the high level considers the string
as marked although some corresponding low-level strings
have a marked predecessor string and some do not. For ex-
ample has a marked predecessor ( )
and does not.

2) the high level assumes that the event can always be gen-
erated after the occurrence of , but this is
not possible after the low-level string .

3) the high level terminates its action after the marked string
but the low level can have a non-

marked extension .
4) the overall high-level supervisor allows the string

but forbids . This means that on the one hand

, i.e., all strings with
are enabled, and on the other hand it can

happen that is not possible after the string
if occurred in . In this case it would be favorable
to disable and after the occurrence of in to
avoid blocking, which is not possible as it cannot be
distinguished if will happen or not.

It is interesting to note that the first three blocking issues
from above only affect each individual projected control system

of a HDCLS. Because of this reason, we
investigate three sufficient conditions for nonblocking hierar-
chical control of the projected control systems :
marked string acceptance, locally nonblocking condition and
marked string controllability.

1) Marked String Acceptance: One reason why nonblocking
control fails in Example 4.3 is that not all local strings corre-
sponding to marked high-level strings are also marked. A so-
lution to this problem is the requirement that if the high-level
observes a string in , the low-level also has to pass a
string in . This means if a high-level string is con-
tained in the language , then it must be guaranteed that
any low-level string which is projected to and which has a
high-level successor event, must have a prefix in and
with the same projection . This property is denoted marked
string acceptance. It is based on the set of exit strings which
contains all strings with a high-level successor event.

Definition 4.4 (Exit Strings): Let be a PCS,
and assume . The set of exit strings of is

Definition 4.5 (Marked String Acceptance): Let
be a PCS. The string is marked

string accepting3 if for all

is marked string accepting if is marked string
accepting for all .

Example 4.4: The hierarchical closed-loop system in Ex-
ample 4.3 is not marked string accepting. The string

is an exit string in for the marked high-level
string , but there is no string s.t.

and .
2) Locally Nonblocking Condition: The second issue in

Example 4.3 originates from the construction of the low-level
supervisor and the possible interaction with other subsystems.
The supervisor is based on the assumption that after a low-level
string, all high-level events which are feasible in the corre-
sponding high-level string can be generated. Furthermore, other
decentralized subsystems only perceive the shared behavior,
and thus assume that if a high-level event is feasible in the
high level, there is also a low-level path such that the event
can be executed. This is generally not the case and can lead to
blocking behavior.

A string is denoted locally nonblocking if for all high-level
events which are feasible after the corresponding high-level

3Note that � � ��� ��� �� �� �� � �� � � � �� � � �.
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string , a local path starting from exists, such that the
high-level event can occur.

Definition 4.6 (Locally Nonblocking): Let be
a PCS. The string is locally nonblocking if for
all with and ,

s.t. . is lo-
cally nonblocking if is locally nonblocking .

Remark 4.1: Our condition is equivalent to the observer prop-
erty for prefix-closed languages as in [11], referring to the nat-
ural projection as the causal reporter map.

Example 4.5: The PCS in Example 4.3 is not
locally nonblocking. Although is feasible after the high-level
string , there is no local path after the corresponding
low-level string to generate .

It is interesting to note that the locally nonblocking condition
together with marked string acceptance imply that automata rep-
resentations of the high-level models in our architecture are
smaller than the corresponding low-level models . It is shown
in [19] that both conditions establish an equivalence relation on
the state space of such that the equivalence classes cor-
respond to the states of . Using this information and the
properties of the synchronous composition, it can also be con-
cluded that an automata representation of cannot have more
states than the low-level model . Furthermore, algorithms for
the verification of the locally nonblocking condition and marked
string acceptance are presented in [18]. Both algorithms employ
a local reachability computation on that in the worst case
has to be carried out for all combinations of states in and

. Bounding the state count of and with and
, respectively, the time complexity evaluates to .

3) Marked String Controllability: We first give definitions of
entry strings and local languages. The set of entry strings4 con-
tains the shortest possible low-level strings which are projected
to a given high-level string.

Definition 4.7 (Entry Strings [12]): Let be a
PCS and . The set of entry strings of is

The local behavior after strings is described next.
It represents the possible local behavior after the observation
of a high-level event. For any string , the continua-
tion of with all local strings in is a
prefix-closed language. A second (not necessarily prefix-closed)
language contains local continuations of in .

Definition 4.8 (Local Languages [18]): Let be a low-level
system and an alphabet. Also let . The local
prefix-closed language is

and the local marked language is

The local system is defined as .

4Entry strings are also called vocal strings or relevant strings.

The third problem in Example 4.3 deals with low-level strings
in a component that correspond to high-level strings without
any successor events for this component in the high-level
closed-loop behavior . In this case, the nonblocking
low-level supervisor must take care that the possible future
local behavior does not cause blocking in the low level, as no
more changes in the high-level can happen.

This is achieved by investigating all entry strings
of such high-level string and com-

puting the supremal controllable and nonblocking language
starting from the entry strings. A nonblocking supervisor can
only be implemented if this supremal controllable and non-
blocking sublanguage is nonempty. This is guaranteed if the
marked string controllability condition is fulfilled.

Definition 4.9 (Marked String Controllability): Let
be a PCS. The string is

marked string controllable if for
all . is marked string control-
lable if is marked string controllable for all .

Given the automaton for , the verification of marked
string controllability requires the construction of a local au-
tomaton for each marked high-level state in and the com-
putation of a supremal controllable sublanguage. This can be
done with a complexity of .

As is computed for the specification according to Def-
inition 4.3, the information whether further high-level events
can happen after strings in has to be incorporated in .
Then, marked string controllability ensures that is control-
lable w.r.t. and , and no blocking behavior can occur
locally. Given a high-level closed loop , a specification
that could be used is . Unfortunately,
the worst case complexity of the natural projection is expo-
nential. In Lemma 4.1, we provide an appropriate specification

that can be constructed in polynomial
time, and show that it is controllable w.r.t. and , i.e.,
fulfills the conditions in Definition 4.2.

Lemma 4.1 (Decentralized Specification): Let
be a PDCS with its high-level

abstraction , and let ,
be natural projections. Given a nonblocking

high-level supervisor , let be defined
such that for all with ,

and

(1)

Define . Then
, and is controllable w.r.t.

and for all , if is marked
string controllable.

The proof of Lemma 4.1 relies on Lemma 4.2. It states that
if the decentralized projection of an entry string in is
contained in , then this entry string is also
contained in . Appendix A provides a proof of Lemma 4.2.

Lemma 4.2: Given the notation as in Lemma 4.1, let
and . Then .

Now Lemma 4.1 can be proved.
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Proof: First, we show that
, i.e., for each there exists a
s.t. . Let .

Then there is a s.t. as
. Because of Lemma

4.2, and . As
was chosen arbitrarily, we have that

. Finally, is controllable w.r.t. and by
definition.

In the light of Lemma 4.1, the specification fulfills the con-
ditions in Definition 4.2 and captures the information whether
further high-level events are allowed to happen after strings in

. Furthermore, the construction of an automata representa-
tion of can be formulated as a relational coarsest partition
problem as in [28] (see Example 4.6). Denoting the state
count of , the result can be computed with a complexity
of as the quotient automaton for an equiva-
lence relation on the state space of . Thus, the automata
representation of has at most states.

4) Ambiguous Extensions: Finally, the fourth issue in Ex-
ample 4.3 that involves the high-level coordination of the de-
centralized components has to be addressed. To this end, we
introduce a further condition which requires that there are no
ambiguous extensions of strings in the high-level closed-loop
system w.r.t. the decentralized high-level alphabets.

Definition 4.10 (Ambiguous Extensions): Let be a
regular language, and the natural
projection. The string is an ambiguous extension of
the string w.r.t. if and there exists a string

such that and there is no with
.

This means that the decentralized low-level supervisors of
the HDCLS must be sure that either further strings are pos-
sible or no further strings can occur due to the overall high-level
supervisor. In our approach it is required that the high-level
closed-loop language does not have ambiguous
extensions w.r.t. all alphabets . This property can be veri-
fied with complexity using the quotient au-
tomaton that is constructed for the specification . It can be
shown that does not have ambiguous extensions
w.r.t. iff the constructed quotient automaton does not con-
tain unobservable transitions.

The following example illustrates the computation of and
the test for the existence of ambiguous extensions.

Example 4.6: Fig. 4 shows an automaton representation of
the high-level supervisor in Example 4.1 (a). The specification

is constructed by adding selfloops according to Lemma 4.1,
and by replacing transitions with events in with -tran-
sitions. The quotient automaton corresponding to the

relational coarsest partition problem for the construction of
is depicted in Fig. 4(b), where the Nerode equivalence w.r.t.

[24] is employed to identify equivalent states (equivalence
classes are characterized by shaded areas). contains
an unobservable ( -) transition between equivalence classes, i.e.,
there is an ambiguous extension due to the possible occurrence
of as described in blocking issue 4). Note that in Example
4.1 evaluates to .

Fig. 4. Construction of the specification language� .

With the additional requirement of absence of ambiguous
extensions, the HDCLS in Definition 4.3 solves the control
problem in Definition 4.1.

Theorem 4.1 (Main Result): Let
be a HDCLS

with the specifications in Lemma 4.1. Assume that,
for , no string has ambiguous
extensions w.r.t. and all PCSs are marked
string accepting, locally nonblocking and marked string
controllable. Then is
nonblocking and hierarchically consistent.

Lemma 4.3 supports the proof of Theorem 4.1. It states that if
a string in the high-level closed-loop system can be extended to a
marked string, then any corresponding string in a decentralized
low-level system can be extended to a corresponding marked
string. Lemma 4.3 is proved in Appendix B.

Lemma 4.3: Let be a
HDCLS with the specifications in Lemma 4.1. As-
sume that all PCSs , are marked
string accepting, locally nonblocking and marked string con-
trollable. Let and s.t.

. If s.t. and
, then there exists a s.t.

and .
With this result, Theorem 4.1 can be proved.

Proof: Proposition 4.1 implies hierarchical consistency.
For proving nonblocking behavior, we show that

for any and
. Note that as and

.
Because of Definition 4.3,

. Thus
and .

Let

The following algorithm is performed to find an appropriate
string leading to a marked string in the high-level.

1. , , .

2. choose .

3. find s.t. and
.

4. remove all with from .

5. if : set and terminate

else and go to 2.
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TABLE I
COMPUTATIONAL COMPLEXITY FOR THE ALGORITHMIC PROCEDURES

First note that the string in 3. always exists and
for all . Assume that

for some . Then there is no
s.t. . But then, there is no ,

s.t. . Consequently .
Now we construct . To initialize the inductive argument,

we observe that and .
The induction assumption is
and . As
and does not contain ambiguous extensions
w.r.t. , there exists a and with

such that
(and also ). But as

is nonblocking, there exists a such that
. Thus, fulfills

the condition in item 3. of the algorithm.
Furthermore, the algorithm terminates as is a finite index

set which is reduced in every step.
Hence, the above algorithm provides a high-level string

s.t. and for all
. Then, because of Lemma 4.3, , s.t.

and .
For , it holds that .

Thus, because of marked string controllability, there is
a s.t. . Then

, it holds that
and . Thus

, which
proves that .

The computational complexity for verifying the sufficient
conditions is summarized in Table I. As this evaluation has to
be carried out for all subsystems, the overall verification of the
sufficient conditions for nonblocking hierarchical control is
also polynomial in the number of individual subsystems.

Furthermore, we briefly discuss what can be done if any of
the sufficient conditions is violated. A polynomial time algo-
rithm for enforcing the marked string acceptance and the lo-
cally nonblocking condition by changing the high-level alphabet
for each PCS , has been presented
in [18]. It is currently investigated which sublanguages of a
given high-level closed-loop language can be im-
plemented if marked string controllability is violated or there
are ambiguous extensions.

It also has to be noted that it can be shown that Theorem 4.1
still holds if marked string acceptance, marked string controlla-
bility and the absence of ambiguous extensions are replaced by
the -observer property for each natural projection
(see [11]), and the specification is used instead of

Fig. 5. (a) Fischertechnik simulation model. (b) Distribution system.

in Lemma 4.15. As both sets of conditions are incomparable,
it depends on each individual compound system and high-level
specification which set of conditions yields better results.

V. LABORATORY CASE STUDY

A. Manufacturing System

An example for a large-scale compound discrete event
system is the Fischertechnik simulation model of the Lehrstuhl
für Regelungstechnik, Universität Erlangen-Nürnberg. It repre-
sents a manufacturing system (see Fig. 5(a)) that consists of a
stack feeder, conveyor belts, pushers, rotary tables, machines
and a rail transport system. The purpose of the manufacturing
system is to process workpieces that enter the system from
the stack feeder ( ) of the distribution system ( ) (compare
Fig. 5). From there, the workpieces are distributed by a long
conveyor belt ( ). The two pushers ( and ) attached to
this conveyor belt transport workpieces to the actual production
part of the system that is entered via two conveyor belts (
and ). Workpieces can be processed by the machines and
then transported to one of the roll conveyors located at both
ends of the rail transport system [see sample path in Fig. 5(a)].
The behavior of the manufacturing system can be described as
a compound DES with interacting components.

Altogether, the system comprises 28 components, and a
monolithic automaton model reaches an estimated number
of states. Due to the size of the manufacturing system,
monolithic supervisor synthesis is not advisable.

Common engineering practice suggests to form modular
groups of subsystems according to local specifications, and
to synthesize supervisors for such groups before combining
locally controlled groups in order to impose superordinate
specifications. Iterative application of this idea leads to a
multilevel hierarchy of controllers, where subsystems that are
related either because of the system structure or because of
given specifications are grouped together. In this section, we
will demonstrate how the theoretical results of Section IV
can be applied to such a multilevel hierarchy constructed for
the manufacturing system in Fig. 5(a). We first employ the
proposed modeling and synthesis procedure for the distribution
system in detail, and then give performance results for the
overall manufacturing system.

In the laboratory case study, we use finite automata as a rep-
resentation of control systems. As the supervisor design for the
distribution system involves more than two hierarchical levels,
the following notation is used for system components on dif-
ferent hierarchical levels.

5A technical proof of this statement is not in the scope of this paper.
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Fig. 6. Multilevel hierarchy.

1) Technical Comments: We write plant automata ,
where denotes the level of the hierarchy where the automaton
model resides and is the name of the component according
to the schematic overview in Fig. 5(b). Given the alphabet

of and the abstraction alphabet , we

denote the respective natural

projection. The control system corresponding to is .

Also, we represent high-level transitions in figures by dashed
arrows, and a tick on an arrow indicates a controllable event.

The following statements clarify how the framework in
Section IV-D can be applied to a multilevel hierarchy. The ideas
are presented along with Fig. 6. In a multilevel hierarchy, groups
of high-level closed-loops (e.g., )
are again used as low-level models for the next higher level of
the hierarchy (e.g., ). If marked string acceptance, locally
nonblocking and marked string controllability are fulfilled
for the respective PCS, Theorem 4.1 can be applied. Having
computed a supervisor without ambiguous extensions for
the current high-level system ( ), an additional low-level
supervisor according to Theorem 4.1 (e.g., ) has to be
synthesized to implement the control action of the respective
supervisor on the next higher level (e.g., ). The combined
control action of the supervisors of such a subsystem (e.g.,
and for ) in turn has to be implemented for the corre-
sponding lower-level systems according to Theorem 4.1 (e.g.,

for ). Observing that the combined
control action of the respective supervisors and can
be represented as a single supervisor, we denote the resulting
supervisor . Consequently, our method can directly be
used in a multilevel hierarchy by successive application of the
described low-level supervisor computation starting from the
supervisor on the highest level.

B. Supervisor Synthesis for the Distribution System

The distribution system as shown in Fig. 5(b) consists of the
stack feeder , the two conveyor belts and , and the long
conveyor belt with the pushers and . The conveyor belt

is split into three parts for modeling convenience. The first
part ( ) describes between the stack feeder and the pusher

. The second part ( ) models from the pusher to the
end of , and the third part (con) accounts for the physical
connection between and via the belt. We construct the
hierarchical architecture for the distribution system.

1) Stack Feeder: The stack feeder consists of a stack and a
belt that can shove workpieces to the conveyor belt c1 using
small blocks that are attached to the belt. The belt’s motion
and end of motion are triggered by the events (move) and

(stop), respectively. The stack feeder is equipped with a

Fig. 7. Stack feeder: (a) Plant �
��

; (b) Specification �
��

; (c) Closed loop
�

��
; (d) Abstraction �

��
.

photoelectric barrier which detects if a workpiece is present. Ar-
rival and departure of a workpiece generate the events and

, respectively. The rest position of the small block is de-
tected by a magnetic sensor which triggers the events (rest
position) and (not in the rest position).

The stack feeder is a control system. Fig. 7(a) shows the au-
tomata representation of its uncontrolled behavior with the
set of controllable events .
The additional event indicates that interaction with the
neighboring component is possible in the respective state, i.e., a
workpiece can be transported to the conveyor belt . The event

represents the elapse of a nonzero time period until the occur-
rence of the next event and captures the physical property that
when the small block arrives at the rest position, the belt can be
stopped before the rest position is left.

We specify that the stack feeder shall only move if a work-
piece has been detected at the sensor ( ), and if cooperation
with the long conveyor belt is possible via . Also, the
belt is allowed to stop only if the small block reaches the rest
position ( in Fig. 7(b)). The resulting closed-loop behavior

is implemented by the automaton

in Fig. 7(c). The stack feeder is connected to the rest of the
distribution system via the conveyor belt , and we choose
the high-level alphabet with the shared event

. The projection yields the high-level automaton
model depicted in Fig. 7(d).

2) Conveyor Belt c1 and Pusher p2: The conveyor belt
transports workpieces while moving into the negative -direc-
tion ( , see also coordinate plane in Fig. 5(b)). The arrival
of a workpiece is detected at the pusher ( ). A work-
piece that is present at can either continue its transport on

( ) or be pushed. In the latter case, extends toward
( ), delivers the workpiece, and retracts to the rest po-

sition ( ). The low-level model has 43 states and is

abstracted to the level 1 model in Fig. 8(a).
3) Conveyor Belt c1 and Pusher p1: The design process for

the combination of and is analogous to the synthesis in
Section V-B.II. To sum up, this component is able to detect
workpieces at the sensor of pusher and push the workpieces

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on April 04,2010 at 13:40:06 EDT from IEEE Xplore.  Restrictions apply. 



2262 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 10, NOVEMBER 2008

Fig. 8. c1: (a) ��� ; (b) ��� ; (c) ��� ; (d) ���� .

to the conveyor belt . It is important to mention that the com-
ponent is physically connected to via the long conveyor
belt. Consequently, the events and are shared be-
tween these components. The resulting model on level 1 is de-
picted in Fig. 8(b).

It can be verified that ,

and are lo-

cally nonblocking, marked string accepting and marked string
controllable. Hence, it is possible to use , and as
components in a compound system on level 1.

4) Connection Between p2 and p1: There are logical con-
ditions that restrict the synchronized behavior of and . A
workpiece can only arrive at the sensor of ( ) if it has
passed the sensor of ( ). In addition to that, there cannot
be more than three workpieces within the space between the two
pushers. The automaton as shown in Fig. 8(c) captures
these constraints.

5) Entire Conveyor Belt c1: Composing the above automata,
the model of the entire conveyor belt is obtained as

. The resulting automaton has 67 states.
For safety reasons, we require that the conveyor belt has to

stop ( ) if a workpiece arrives at one of the pushers (
or ). If the conveyor belt is empty, it is desired to start
moving ( ) only if a workpiece is delivered from the stack
feeder ( ). Otherwise, if is not empty, a workpiece can
be delivered from the stack feeder only if the conveyor belt is
moving. Further on, we implement an (arbitrary) desired man-
ufacturing routine: The first two workpieces must always be
pushed by ( ) and then, one workpiece has to be pushed
by ( ), and so on.

The closed-loop behavior of c1 is represented by an au-
tomaton with 39 states. For hierarchical abstraction,
the shared events , and as well as the
events p1ar and p2ar are contained in the high-level alphabet

. The automaton
, representing the abstracted behavior is shown in Fig. 8(d).

The PCS is locally nonblocking, marked
string accepting and marked string controllable.

6) Conveyor Belts c2 and c3: The conveyor belts and
are used in the same mode of operation. Both conveyor belts re-

Fig. 9. (a) �� on level ���� ; Distribution system: (b) Specification��� (c)
Abstraction ��� .

ceive workpieces from the respective pusher and transport them
to the production part of the manufacturing system.

The shared events of with the other components of the
manufacturing system are �� . The
automata representation �� on level 1 is shown in Fig. 9(a).

7) Overall Distribution System: The overall distribution
system is constructed on level 2 of the hierarchy. To this
end, let the models of the stack feeder and the conveyor belts

and on level 2 be equal to the respective models on
level 1, i.e., , �� �� and .
Then, the automata representation of the distribution system
is �� . It has 144 states. We now
specify that always two workpieces leave the conveyor belt
before one workpiece can leave [see Fig. 9(b)].

The supervisor automaton on level 2 has 138 states.
We choose the set of shared events with the production
part of the manufacturing system as the high-level alphabet

. Abstracting the
distribution system to the third level results in the automaton

as depicted in Fig. 9(c). The projected control system
is locally nonblocking, marked string

accepting and marked string controllable. Thus, the level 3
model of the distribution system can be used as a subsystem in
the overall model of the manufacturing system.

The entire hierarchy for the distribution system is shown in
Fig. 10. The numbers next to the automata names represent the
respective number of states. Note that in this example, the it-
erative computation of low-level supervisors starting from the
highest-level supervisor, as described in Section V-A, does not
change the respective low-level closed-loop systems.

C. Performance Evaluation

The level 3 model of the distribution system has been con-
structed starting from low-level models of the different compo-
nents , , , con, and . To classify the efficiency of
our hierarchical and decentralized method, it is compared to the
monolithic approach. The composite plant automaton

�� has 360 000 states, and the

monolithic specification is represented by an automaton
with states. Applying standard supervisory control, the
closed-loop automaton has 400 000 states.

Different from that, the decentralized approach results in five
decentralized supervisors with a sum of 71 states on the low
level, one supervisor with 39 states on level 1 and one supervisor
with 69 states on the second level. Together, the hierarchical and
decentralized supervisors have 179 states. The considerable dis-
crepancy in the state sizes of the different supervisor implemen-
tations originates from the fact that the state sizes of the compo-
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Fig. 10. Hierarchical architecture for the distribution system.

nents have to be multiplied for the monolithic approach while
they are just summed up for the hierarchical and decentralized
method. It is also important to note that not only the number of
states of the decentralized supervisors is smaller, but also the
complexity for computing the supervisors is by far lower than
for the monolithic approach.

Analogous to the supervisor synthesis for the distribution
system, controllers for the remaining components of the man-
ufacturing system in Fig. 5 and an overall supervisor for the
compound plant have been designed (see [18]). While a mono-
lithic supervisor for the manufacturing system would have an
estimated number of states, synthesis in the hierarchical
and decentralized framework results in 39 individual supervi-
sors whose state count sums up to 5388 states. It can be verified
that none of the high-level closed-loop behaviors contains am-
biguous strings and that all projected control systems fulfill the
sufficient conditions for nonblocking low-level control. Correct
operation of the manufacturing system could be verified after
generating PLC-code from the hierarchical and decentralized
supervisors.

VI. CONCLUSION

The supervisory control of large-scale compound discrete
event systems involves computations on state spaces which
grow exponentially with the number of plant components. To
circumvent this limitation, we present a method for exploiting
the decentralized structure of compound systems in combina-
tion with hierarchical control.

We develop an abstraction procedure that makes it possible
to first abstract the decentralized low-level system components

and then compose the resulting decentralized high-level compo-
nents to the overall high-level model. We also determine a hier-
archically consistent decentralized low-level supervisor imple-
mentation and formulate sufficient conditions for nonblocking
closed-loop behavior of the original system. Furthermore, our
approach guarantees that the high-level model is less complex
than the low-level model. On the one hand, both the abstrac-
tion method and the low-level supervisor implementation do not
refer to the overall low-level model, and thus the possibly very
large state space need not be enumerated explicitly. On the other
hand, maximal permissiveness of the low-level supervisor might
be lost, i.e., in the worst case, it is possible that the closed-loop
language is empty while a maximally permissive monolithic su-
pervisor could yield non-empty closed-loop behavior.

The computational benefit of our method is illustrated by the
manufacturing system example in Section V. It comprises 28
components, and it has an estimated number of states. The
39 individual supervisors designed by using our hierarchical and
decentralized method with four levels of abstraction and control
have an average number of 140 states. In comparison, we would
expect a supervisor of order states for a monolithic imple-
mentation.

Ongoing work aims at automating the hierarchical abstrac-
tion process such that the sufficient conditions for nonblocking
low-level control are fulfilled. A first result in this direction
is provided in [29], where we present an algorithm that en-
forces the locally nonblocking and marked string accepting con-
dition by changing the high-level alphabet for each decentral-
ized system component.

APPENDIX A
PROOF OF LEMMA 4.2

Proof: There are two cases. First assume that
. Note that marked string

controllability implies that , and thus

there is no s.t. and . Next, we
show that also for there is no s.t.

and by contradiction. Let

be a shortest string s.t. and for some
, , for .

Thus, and . Also, it must be true
that , as otherwise

for all due to the construction
of . Observing that marked string controllability is valid,

because otherwise
.

Together, this implies that as defined above does not exist
for any .

Secondly, assume that . Then, the
same argument as above shows that there is no s.t.

and .
Hence, as and s.t.

and for any , it holds that
.
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APPENDIX B
PROOF OF LEMMA 4.3

Proof: Let and be given as in Lemma 4.3. Defining
, can be represented as

with for . First it is shown that there
exists a string with

for s.t. by induc-
tion. The base case is easily verified as .
For the induction step, let for

. Then, as is locally non-
blocking (Definition 4.6), there exists
s.t. . As this applies for all

, it holds that
and . Furthermore, because of the construction of

, . According to Lemma 4.2, ,
and hence .

Next, a string s.t. is
obtained. There are two cases. If , then
there exists a s.t.

because of marked string controllability. Otherwise,
because of marked string acceptance, there is a string

s.t. . In both cases, .
Again, as is controllable w.r.t , .
Finally, choosing , we have that
and .
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