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Introduction

Let G be a finite solvable group and A be a finite group acting fixed point freely

on G. A longstanding conjecture is that if (|G|, |A|) = 1, then the Fitting length of G

is bounded by the length `(A) of the longest chain of subgroups of A. By an elegant

result due to Bell and Hartley [1], it is known that any finite nonnilpotent group A

can act fixed point freely on a solvable group G of arbitrarily large Fitting length with

(|G|, |A|) 6= 1. We expect that the conjecture is true when the coprimeness condition is

replaced by the assumption that A is nilpotent. This question is still unsettled except

for cyclic groups A of order pq and pqr for pairwise distinct primes p, q and r ([3], [5]).

In the present paper we establish the conjecture without the coprimeness condition

when A is a finite abelian group of square free odd exponent not divisible by 3 and |G|

is odd. This improves the bound given in Theorem 3.4 of [7]. We also improve some

bounds given in Theorems 8.4, 8.5 of [2].

Namely, we shall prove the following:

Theorem A. Let G be a finite group of odd order and A be a finite abelian group

of square free odd exponent not divisible by 3. If CG(A) = 1, then f(G) ≤ `(A).
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Theorem B. Let H be a group of odd order not divisible by 3. Suppose that its

Carter subgroups have a normal complement G. If C is a Carter subgroup of H, then

f(G) ≤ 2(2`(C) − 1).

Theorem C. Let G be a group of odd order not divisible by 3. If C is a Carter

subgroup of G, then f(G) ≤ 4(2`(C) − 1)− `(C).

Except for the following, the notation and terminology are as in [2].

For any group G, G̃ denotes the Frattini factor group of G.

Let K be a group acting on finite solvable groups H and G. We say (K on G) and

(K on H) are weakly equivalent if each nontrivial irreducible section of (K on G) is

K-isomorphic to an irreducible section of (K on H) and vice versa. We write (K on

H) ≡w (K on G) if (K on H) is weakly equivalent to (K on G).

Some Remarks

Let K, L, G and H be groups.

(a) If (K on G) ≡w (K on H), then (L on G) ≡w (L on H) for each L ≤ K.

(b) Let L act on K and K act on G and H. If (K on G) ≡w (K on H), then

(K on G)` ≡w (K on H)` for each ` ∈ L.

(c) Let V be a completely reducible kG-module for a field k and let L act on G.

Let ` ∈ L and V` denote the kG-module with respect to (G on V )`. Assume that (G on

V ) ≡w (G on V )`. Let M ≤ G such that M is < ` >-invariant, and W be the sum of all

irreducible kG-submodules of V on which M acts nontrivially. Then W = W# = W`

as subspaces where W# stands for the sum of all irreducible kG-submodules of V` on

which M acts nontrivially.

Note that W and W` need not be isomorphic as kG-modules.

Lemma 1: Let S < α > be a group where S C S < α >, S is an s-group for some

prime s, Φ(S) ≤ Z(S), < α > is cyclic of order p for an odd prime p. Suppose that V

is a kS < α >-module for a field k of characteristic different from s. Then CV (α) 6= 0

if one of the following is satisfied:

(i) [Z(S), α] is nontrivial on V .

(ii) [S, α]p−1 is nontrivial on V and p = s.
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Furthermore, if S < α > acts irreducibly on V or the characteristic of k is different

from p, then we also have (C on CV (α)) ≡w (C on V ) where C = CD(α)

for D =

 S when (i) holds

[S, α]p−1 when (ii) holds.

Proof: ([2], Proposition 3.10)

Lemma 2: (Lemma 5.30 in [2]). Let S C S < α > where < α > is cyclic of

prime order and let V be an irreducible kS < α >-module. If E is an < α >-invariant

subgroup of Z(S) and U is a nonzero E < α >-submodule of V , then Ker(E on V ) =

Ker (E on U).

Lemma 3: Let S < α > be a group such that SCS < α > where < α > is of prime

order p. Suppose that V is a kS < α >-module for a field k of characteristic different

from p, and Ω is an S < α >-stable subset of V ∗. Set V0 = ∩{Kerf |f ∈ Ω − CΩ(α)}.

If there exists a nonzero f in Ω and x ∈ S such that f(V0) 6= 0 and [x, a, α] 6∈ CS(f)

for each 1 6= a ∈< α >, then CV (α) 6⊆ V0.

Proof: Since f(V0) 6= 0, it follows that f ∈ CΩ(α) and so CS(f) is normalized

by < α >. The assumption [x, a, α] 6∈ CS(f) for each 1 6= a ∈< α > yields that

[x, a] 6∈ CS(f) for each 1 6= a ∈< α >. Then bxf 6∈ CΩ(α) for each b ∈< α >. Set g =∑
b∈<α>

bxf . It is clear that g ∈ CΩ(α) and so [V, α] ⊆ Kerg. Since V = [V, α]⊕ CV (α),

either g = 0 or CV (α) 6⊆ Kerg. If the latter holds, then CV (α) 6⊆ V0 as claimed,

because V0 ⊆Ker(bxf) for each b ∈< α >. Hence we may assume that g = 0. Now

0 = x−1g = f +
∑

1 6=b∈<α>

[x, b]f and then f = −
∑

1 6=b∈<α>

[x, b]f . Since [x, b, α] 6∈ CS(f)

by the hypothesis, we have [x, b]f 6∈ CΩ(α) for each 1 6= b ∈< α >. Then f(V0) = 0.

This contradiction completes the proof. �

The following result is a generalization of Theorem 2.1.A in [6].

Theorem 1: Let S < α > be a group such that S C S < α >, S is an s-group,

< α > is cyclic of order p for odd primes s and p with p ≥ 5, φ(φ(S)) = 1, φ(S) ≤ Z(S).

Suppose that k is a field of characteristic not dividing ps and V is a kS < α >-

module such that [S, α]p−1 acts nontrivially on each irreducible submodule of V |S.
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Let Ω be an S < α >-stable subset of V ∗ which linearly spans V ∗ and set

V0 = ∩{Kerf |f ∈ Ω− CΩ(α)}. Then CV (α) 6⊆ V0 and

(CD(α) on CV (α)/CV0(α)) ≡w (CD(α) on V ) where D =

 [S, α]p−1 when s = p

S otherwise.

Proof: Assume that the theorem is false and consider a counterexample with

dimV + |S < α > | minimal. Set X = CV (α)/CV0(α) and C = CD(α).

Claim 1. We may assume that S acts faithfully and S < α > acts irreducibly on V

and k is a splitting field for all subgroups of S < α >.

Put S = S/Ker(S on V ). By induction applied to the action of S < α > on V , we

get CV (α) 6⊆ V0 and (CD(α) on X) ≡w (CD(α) on V ). As C = CD(α) ≤ CD(α), we

have obtained (C on X) ≡w (C on V ). Thus we may assume that S is faithful on V .

Since V is completely reducible as an S < α >-module, we have a collection

{V1, · · · , V`} of irreducible S < α >-submodules of V such that V = ⊕`
i=1Vi. Now

[S, α]p−1 acts nontrivially on each irreducible constituent of Vi|S and hence [S, α]p−1 acts

nontrivially on each Vi for i = 1, · · · , `. It is easy to observe that Ω|Vi
is an S < α >-

stable subset of V ∗
i and < Ω|Vi

>= V ∗
i for each i = 1, · · · r. If V is not irreducible as an

S < α >-module, we apply induction to the action of S < α > on Vi for each i and get

CVi
(α) 6⊆ (Vi)0 and (C on CV (α)/C(Vi)0(α)) ≡w (C on Vi). Set Xi = CVi

(α)/CVi∩V0(α).

Now (C on Xi) ≡w (C on Vi) since (Vi)0 = ∩{ Kerg|g ∈ Ωi − CΩi
(α)} ⊇ Vi ∩ V0. As

V = ⊕`
i=1Vi and X ∼= ⊕`

i=1Xi, it follows that (C on X) ≡w (C on V ). Therefore we can

regard V as an irreducible S < α >-module.

Claim 2. [Z(S), α, α] = 1.

Assume the contrary. Set S1 = Z(S)C. Then S1 is an < α >-invariant subgroup

of S and V |S1<α> is completely reducible. Note that C C S1 < α >. Let Vi be an

irreducible S1 < α >-submodule of V and W be a homogeneous component of Vi|C.

Now Z(S) < α >≤ CS1<α>(C) ≤ NS1<α>(W ). This yields that Vi|C is homogeneous.

We also observe that Ker(Z(S) on Vi) =Ker(Z(S) on V ) = 1 by applying Lemma 2 to

the action of S < α > on V .

Since [Z(S), α] 6= 1, [Z(S1), α] is nontrivial on Vi. Applying Lemma 1 to the action
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of S1 < α > on Vi, we obtain CVi
(α) 6= 0. If CVi

(α) 6⊆ V0, it follows that

(C on CVi
(α)/CVi∩V0(α)) ≡w (C on Vi) as Vi|C is homogeneous. This forces that there

is an irreducible S1 < α >-submodule Vi of the completely reducible module V |S1<α>

such that CVi
(α) ⊆ V0. Since 0 6= CVi

(α), we have Vi ∩ V0 6= 0. Set Ωi = Ω|Vi
. Now

Ωi is an S1 < α >-stable subset of V ∗
i , and (Vi)0 = ∩{Kerh|h ∈ Ωi − CΩi

(α)} 6= 0

as Vi ∩ V0 ⊆ (Vi)0. Let f ∈ Ω be such that f((Vi)0) 6= 0. Then fi = f |Vi
∈ CΩi

(α).

Consider < fi >= {cfi|c ∈ k}, a CZ(S)(fi) < α >-submodule of V ∗
i . Appealing to

Lemma 2 together with < fi > and CZ(S) (fi), we get

CZ(S)(fi) = Ker(CZ(S)(fi) on V ∗
i ) = 1. On the other hand, there exists x ∈ Z(S) such

that [x, α, α] 6= 1, as [Z(S), α, α] 6= 1. It follows that [x, a, α] 6= 1 for any 1 6= a ∈< α >,

that is [x, a, α] 6∈ CS1(fi), for any 1 6= a ∈< α >. Now Lemma 3 applied to the action

of S1 < α > on Vi, together with fi and Ωi, gives that CVi
(α) 6⊆ (Vi)0. This is a

contradiction as Vi ∩ V0 ⊆ (Vi)0 and CVi
(α) ⊆ V0. Thus we have the claim.

Claim 3. s 6= p.

Assume that s = p. Since [S, α]p−1 6= 1, [S, α]p−3 6= 1. Set S1 = [S, α]p−3. We can

prove that [S1, [S, α]p−1] ≤ [φ(S), α]p−3 = 1 (see ([2] 5.37)). Hence [S, α]p−1 ≤ Z(S1).

We have a collection {V1, · · · , V`} of irreducible S1 < α >-modules such that V =

⊕`
i=1Vi. Fix i ∈ {1, · · · , `}. We notice that C = C[S,α]p−1(α) C S1 < α > implying V |C

is completely reducible. In particular, C ≤ Z(S1 < α >) and so Vi|C is homogeneous.

Set Xi = CVi
(α)/CVi∩V0(α) and assume that (C on Xi) 6≡w (C on CVi

(α)). If [S, α]p−1

is trivial on Vi, then C acts trivially on Vi, and this contradicts the assumption. Hence

[S, α]p−1 is not trivial on Vi. If Vi ∩ V0 = 0, then (C on Xi) ≡w (C on CVi
(α)), and

again we have a contradiction. Hence, Vi ∩ V0 6= 0, and there exists some f ∈ Ω such

that f(Vi ∩ V0) 6= 0. Now f ∈ CΩ(α). Set f |Vi
= fi. Now < fi >= {cfi|c ∈ k} is

a C[S,α]p−1(fi) < α >-submodule of V ∗
i . Appealing to Lemma 2, we get CZ(S1)(fi) =

Ker (CZ(S1)(fi) on V ∗
i ). We also have C[S,α]p−1(fi) ≤ CZ(S1)(fi). Thus C[S,α]p−1(fi) is

properly contained in [S, α]p−1, that is, there is 1 6= y ∈ [S, α]p−1 − C[S,α]p−1(fi), and

x ∈ [S, α]p−3 such that y = [x, α, α]. It follows that

1 6= [x, a, α] 6∈ C[S,α]p−1(fi) for any 1 6= a ∈< α >. Now we can apply Lemma 3 to the
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action of S1 < α > on Vi together with Ωi = Ω|Vi
and fi, and obtain that CVi

(α) 6⊆ V0.

As Vi|C is homogeneous, we already have (C on Xi) ≡w (C on CVi
(α)).

Therefore we conclude that (C on CV (α)/CV0(α)) ≡w (C on CV (α)). Appealing to

Lemma 1 together with V and S < α >, we also see that CV (α) 6= 0 and

(C on CV (α)) ≡w (C on V ) hold. Thus (C on V ) ≡w (C on CV (α)/CV0(α)). Since

[S, α]p−1 6= 1 and s = p, C 6= 1. Hence C is nontrivial on V and so is on CV (α)/CV0(α).

This supplies CV (α) 6⊆ V0, a contradiction

Claim 4. The theorem follows.

Now s 6= p and [φ(S), α] = 1. Then φ(S) ≤ Z(S < α >) and so S is a central

product of [S, α] and CS(α). As C = CS(α) C S < α >, V |C is completely reducible.

In fact, V |C is homogeneous, because any homogeneous component is stabilized by

S < α > as C is centralized by [S, α] < α >. It follows that

(C on CV (α)/CV0(α)) ≡w (C on V ) if CV (α) 6⊆ V0 holds. Hence CV (α) ⊆ V0. Note that

CV (α) 6= 0, because otherwise we would have obtained s = 2 as [S, α] is nontrivial on

V . Then there exists 0 6= f ∈ CΩ(α) with f(V0) 6= 0. Now CZ(S)(f) =Ker(CZ(S)(f)

on V ∗) = 1 by Lemma 2. If follows that CZ([S,α])(f) = 1, as [CS(α), [S, α]] = 1. Then

C[S,α](f) is properly contained in [S, α]. Let M be a maximal α-invariant subgroup of

[S, α] containing C[S,α](f). The abelian group [S, α]/M = [S, α] forms an irreducible

< α >-module on which < α > acts fixed point freely. Thus we have [x, a] 6= 0

for any 0 6= x ∈ [S, α]. It follows that [x, a, α] 6= 0 for each 1 6= a ∈< α >. Put

x = xM for x ∈ [S, α]. Then [x, a, α] 6∈ M . In particular, [x, a, α] 6∈ C[S,α](f) for each

1 6= a ∈< α >. Recall that V |C is homogeneous. Then Lemma 3 applied to the action

of S < α > on V gives that CV (α) 6⊆ V0. This contradiction completes the proof of

Theorem 1. �

Theorem 2: Let S < α > be a group such that S C S < α >, S is an s-group,

< α > is cyclic of order p for distinct primes s and p, φ(φ(S)) = 1, φ(S) ≤ Z(S).

Suppose that V is an irreducible kS < α >-module on which [S, α] acts nontrivially

where k is a field of characteristic different from s. Then

[V, α]p−1 6= 0 and (CS(α) on V ) ≡w (CS(α) on [V, α]p−1)
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unless p is a Fermat prime, s = 2 and [S̃, α] is an irreducible < α >-module.

Proof: ([2], Proposition 3.10)

Now we are ready to prove our key result, which improves Theorem 3.1 in [6]

obtained by pursuing the idea in Dade’s work [2].

Theorem 3: Let G C GA and < z > EA of prime order p with p ≥ 5. Suppose

that P1, · · · , Pt is an A-Fitting chain of G such that [P1, z] 6= 1, Pi is a pi-group where

pi is an odd prime for each i = 1, · · · , t, and t ≥ 3. Then there are sections Di0 , · · · , Dt

of Pi0 , · · · , Pt, respectively, forming an A-Fitting chain of G such that z centralizes each

Dj for j = i0, · · · , t where i0 =

 2 if p1 6= p

3 if p1 = p
.

Proof: Let pt+1 be a prime different from pt and let Pt+1 stand for the regular

Zq[PtPt+1A]-module. We shall add Pt+1 to the given chain and define subspaces Ei of

Pi for each i = 1, · · · , t + 1 as follows: E1 = P1, Ei = [Xi, Ei−1] for i = 2, · · · , t + 1,

where Xi/φ(Pi) is the sum of all ample 1 irreducible Ei−1 < z >-submodules of P̃i: It

is easy to observe that for each i = 2, · · · , t + 1, Ei are all Ei−1A-invariant subgroups

of Pi and Ẽi is a direct sum of ample irreducible Ei−1 < z >-submodules.

We now define subgroups Fi of Ei for i = 1, · · · , t + 1 as follows:

F1 = {1}

Fi = CEi
(z) if pi 6= p and i ≥ 2

F2 = C[E2,z]p−1(z) if p2 = p

Fi = [[Ei, z]p−1, Fi−1] if pi = p and i ≥ 3

It can also be easily seen that for each i = 2, · · · , t + 1, Fi is Fi−1A-invariant and is

centralized by z.

We next define the sections Di by Di = Fi/Ker(Fi on Ẽi+1) for i = 2, · · · , t and

claim that they form an A-chain each of its sections is centralized by z, as desired.

1Let V be an irreducible G < α >-module where G C G < α > and < α > is cyclic of prime order

p. We say V is an ample G < α >-module if [G, α]p−1 acts nontrivially on V . Notice that when |G|

is odd, this coincides with the definition of an ample module given in [2].

7



We proceed from this point by assuming that we can prove the following two claims

whose proofs will follow later.

Claim 1: Assume that i ≥ 2 and pi 6= p. If Ei 6= 1, then Di is a nontrivial

Fi−1-invariant section such that (Fi−1 on Ẽi) ≡w (Fi−1 on D̃i)

Claim 2: Assume that i ≥ 2 and pi = p. If either i = 2 or Di−1 6= 1, then

Ker(Fi on Ẽi+1) = 1, Di = Fi 6= 1 and (Fi−1 on Ẽi) ≡w (Fi−1 on F̃i).

We first prove the theorem in the case p1 6= p.

Now E1 = P1 and [E1, z]p−1 = [E1, z] 6= 1. Then the faithful action of P1 on

P̃2 = [P̃2, [E1, z]] ⊕ CP̃2
([E1, z]) forces that Ẽ2 6= 0, that is, P̃2 contains an irreducible

ample E1 < z >-submodule. If p2 6= p, we apply Claim 1 to the action of E1 < z > on

Ẽ2 and obtain that D2 is a nontrivial section of E2. If p2 = p, we also have D2 = F2 6= 1

by Claim 2. Thus we have seen that D2 6= 1 in any case.

Suppose that Di−1 6= 1 for some i ≥ 3. Then Ei 6= 1. Appealing again to Claim

1 and Claim 2, respectively, when pi 6= p and pi = p, we see that Di is a nontrivial

Fi−1-invariant section and (Fi−1 on Ẽi) ≡w (Fi−1 on D̃i) for each i ≥ 2. It follows that

Di−1 = Fi−1/Ker(Fi−1 on D̃i) normalizes Di = Fi/Ker(Fi on Ẽi+1) and

Ker(Di−1 on Di) = 1 for each i = 3, · · · , t.

We also have φ(Di) ≤ Z(Di), φ(φ(Di)) = 1 and [φ(Di), Di−1] = 1 for i = 2, · · · , t.

It remains to prove that (Di−1 on D̃i) is weakly Di−2-invariant for i = 4, · · · , t.

Since (Pi−1 on P̃i) is weakly Pi−2-invariant, (Ei−1 on P̃i) is weakly Fi−2-invariant by

Remark (a), that is, (Ei−1 on P̃i) ≡w (Ei−1 on P̃i)
x for each x ∈ Fi−2. Then Xi/φ(Pi) =

(Xi/φ(Pi))x by Remark (c) and so (Ei−1 on Ẽi) ≡w (Ei−1 on Ẽi)
x. Hence (Ei−1 on Ẽi)

is weakly Fi−2-invariant. This gives that (Fi−1 on Ẽi) is weakly Fi−2-invariant, too. As

(Fi−1 on Ẽi) ≡w (Fi−1 on D̃i) holds, it also follows that (Fi−1 on D̃i) is weakly Fi−2-

invariant by Remark (b). Consequently we have obtained that (Di−1 on D̃i) is weakly

Di−2-invariant, proving the theorem when p1 6= p.

Finally we assume that p1 = p, and consider the chain P2, · · · , Pt. Note that

[P2, z] 6= 1, because otherwise [P1, z] = 1 by the three subgroup lemma. Since p2 6= p,

the above argument gives an A-Fitting chain D3, · · · , Dt whose terms are all centralized
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by z. This completes the proof of Theorem 3. �.

Proof of Claim 1.

We have Ei−1 6= 1 as [Ei, Ei−1] = Ei. Also Ker(Ei on Xi+1/φ(Pi+1)) =Ker(Ei on

Ei+1) =Ker(Ei on Ẽi+1). Appealing to Remark (c) together with V = P̃i+1, G = Pi,

L = Fi−1 and M = [Ei, z], we see that Ker(Ei on Ẽi+1) is Fi−1-invariant. This yields

that Di = Fi/Ker(Fi on Ẽi+1) is Fi−1-invariant, as Fi−1 normalizes Fi.

We know that Ẽi = ⊕`
j=1Wij where Wi1 , · · · , Wi` are irreducible ample Ei−1 < z >-

submodules. Set Wij = Uj/φ(Ei) for each j = 1, · · · , `. Since P̃i+1|Ei
is completely

reducible and Ei is faithful on P̃i+1, there exists at least one irreducible component of

P̃i+1|Ei
on which Uj acts nontrivially. Let Nj denote the set of all such components of

P̃i+1|Ei
.

There are two cases:

Either (I) there is at least one N in Nj on which φ(Ei) acts trivially,

or

(II) there is no N in Nj on which φ(Ei) acts trivially.

In the latter case, a closer look at the members of Nj gives the following:

Let N be an irreducible component of Ẽi+1|Ei
. Then N ∈ Nj iff φ(Ei) acts nontriv-

ially on N .

This is an immediate consequence of a more general fact stated as follows:

Lemma. Assume pi 6= p and let W be an irreducible submodule of P̃i+1|Ei
. If φ(Ei)

acts nontrivially on W , then so does [Ei, z].

To prove this lemma, let W be an irreducible submodule of P̃i+1|Ei
on which φ(Ei)

acts nontrivially and [Ei, z] acts trivially. Then there exists an EiA-submodule X of

P̃i+1 such that W is isomorphic to an irreducible Ei-submodule of X. Since X|Ei
is

completely reducible, there is a collection {U1, · · · , Us} of homogeneous Ei-modules

such that X = ⊕s
i=1Ui. Assume that U1 is a sum of isomorphic copies of W . Then

Ker(Ei on X) = ∩a∈AKer(Ei on U1)
a = ∩a∈AKer(Ei on W )a.

Put K =Ker(φ(Ei) on X). K is an A-invariant normal subgroup of Ei. Further-

more, K is Ei−1-invariant because [φ(Ei), Ei−1] = 1. Set Ei = Ei/K and
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Ei = Ei/Ker(Ei on X). Note that E ′
i = φ(Ei) since CEi/E′

i
(Ei−1) = 0. Now Ei is

nonabelian, because otherwise E ′
i = φ(Ei) = K, which is not the case. It follows

that V = Ei/Z(Ei) 6= 0. Obviously we have Z(Ei) ⊆ Z(Ei) On the other hand if

Z(Ei) = C = C/Ker(C on X), then [C, Ei] ≤Ker(Ei on X) ∩ φ(Ei) = 1, because

φ(Ei) = φ(Ei/K) is faithful on X. Therefore C ≤ Z(Ei), that is, Z(Ei) = Z(Ei).

Also note that Ker(Ei on X) ⊂ Z(Ei): Because otherwise there is x ∈Ker(Ei on

X) − Z(Ei) and so there is y ∈ Ei such that 1 6= [x, y]. Now [x, y] is a nontrivial

element of φ(Ei) acting trivially on X. This contradicts the fact that φ(Ei) is faithful

on X.

Thus Z(Ei) = Z(Ei)/Ker(Ei on X). We conclude that Ei/Z(Ei) and Ei/Z(Ei)

are < z >-isomorphic modules. Since < z > is trivial on Ei, it is trivial on V also.

An application of the three subgroup lemma supplies that [Ei−1, z] is also trivial on

V . It follows that [Ei−1, z] is trivial on each of the Ei−1 < z >-composition factors of

V . Note that V is a nonzero quotient module of Ẽi. Since Ẽi is a direct sum of ample

irreducible Ei−1 < z >-submodules, so is V , that is, [Ei−1, z]p−1 and hence [Ei−1, z] is

nontrivial on V , a contradiction completing the proof of Lemma.

Now we can proceed with the proof. Recall that we are studying the case (II), that

is, φ(Ei) is nontrivial on each member of Nj. Thus Uj is trivial on each irreducible

component N of P̃i+1|Ei
lying outside Ẽi+1, because otherwise N ∈ Nj implying that

φ(Ei) and hence [Ei, z] is nontrivial on N , a contradiction. It follows that

1 =Ker(Uj on P̃i+1) =Ker(Uj on Ẽi+1) when (II) holds.

Now suppose that Ker(Uj on Ẽi+1) = 1 for each j = 1, · · · , s and Ker(Uj on Ẽi+1) 6=

1 for each j = s + 1, · · · , `.

For each j = s + 1, · · · `, set Ωj = {f ∈ W ∗
ij
| There exists N in Nj on which φ(Ei)

acts trivially and Ker(Uj on N)/φ(Ei) ⊆Kerf}. Now for each N in Nj on which φ(Ei)

acts trivially, Ker(Uj on N)/φ(Ei) is proper in Wij and hence is contained in a maximal

subspace M . Therefore Ωj 6= {0}. Also Ωj is Ei−1 < z >-invariant. This yields that

< Ωj >= W ∗
ij
, by the irreducibility of W ∗

ij
as an Ei−1 < z >-module.

Now for each j = 1, · · · , `, we set Kj =Ker(Uj on Ẽi+1). Then Kjφ(Ei)/φ(Ei) ⊆
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(Wij)0: If not, then

j ∈ {s + 1, · · · , `} and there exist x ∈ Kj, f ∈ Ωj − CΩj
(z) such that f(xφ(Ei)) 6= 0.

By the definition of Ωj, we can find an irreducible submodule N of P̃i+1|Ei
on which

Uj is nontrivial, φ(Ei) is trivial and Ker(Uj on N)/φ(Ei) ⊆ Kerf . Then

x 6∈Ker(Uj on N). As x ∈Ker(Uj on Ẽi+1), N lies outside Ẽi+1|Ei
, that is, [Ei, z]p−1 =

[Ei, z] acts trivially on N . Thus [Uj, z] is trivial on N and so f ∈ CΩj
(z), a contradic-

tion.

Since Wij is an irreducible Ei−1 < z >-module, Wij |Ei−1
decomposes into a direct

sum of homogeneous Ei−1-modules which are permuted transitively by < z >. Since

[Ei−1, z]p−1 is nontrivial on at least one of these components, it is nontrivial on all of

them. It follows that [Ei−1, z]p−1 acts nontrivially on each irreducible component of

Wij |Ei−1
for each j = 1, · · · , `.

Let Ωj denote the whole of W ∗
ij

when j ∈ {1, · · · , s}. Appealing to Theorem 1 for

each j = 1, · · · , ` together with the action of

Ei−1 < z > on Wij and the corresponding Ωj, we see that CWij
(z) * (Wij)0 and

(Fi−1 on CWij
(z)/C(Wij

)0(z)) ≡w (Fi−1 on Wij).

We shall now observe that for each j = 1, · · · , `, (Fi−1 on Wij) ≡w (Fi−1 on CWij
(z)):

If pi−1 = p or [Z(Ei−1), z] is nontrivial on Wij , this holds by Lemma 1. Assume that

pi−1 6= p and [Z(Ei−1), z] ≤ K =Ker(Ei−1 on Wij). Since [Ei−1, z] is nontrivial on

Wij and pi−1 is odd, it can be easily seen that CWij
(z) 6= 0. Put Ei−1 = Ei−1/K. As

φ(Ei−1) = φ(Ei−1) ≤ Z(Ei−1 < z >), Ei−1 is a central product of [Ei−1, z] < z > and

CEi−1
(z). Then CEi−1

(z) C Ei−1 < z > and Wij |CEi−1
(z) is homogeneous. We have

F i−1 ≤ CEi−1
(z) yielding that (F i−1 on Wij) ≡w (F i−1 on CWij

(z)). Thus

(Fi−1 on Wij) ≡w (Fi−1 on CWij
(z)).

Now (Fi−1 on CWij
(z)) ≡w (Fi−1 on CWij

(z)/C(Wij
)0(z)) ≡w (Fi−1 on Wij) holds,

for each j = 1, · · · , `.

Set Lj =Ker(CUj
(z) on Ẽi+1). Notice that any nontrivial irreducible Fi−1-submodule

of CWij
(z)/C(Wij

)0(z) is Fi−1-isomorphic to an irreducible Fi−1-submodule of CUj
(z)/Lj.

Therefore any nontrivial irreducible Fi−1-submodule of Wij is Fi−1-isomorphic to an
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irreducible Fi−1-submodule of CUj
(z)/Lj. On the other hand any nontrivial irreducible

Fi−1-submodule of CUj
(z)/Lj is Fi−1-isomorphic to an irreducible Fi−1-submodule of

CUj
(z) and hence to an irreducible Fi−1-submodule of Wij . This shows that

(Fi−1 on Wij) ≡w (Fi−1 on CUj
(z)/Lj) for each j = 1, · · · , `.

As Ẽi = ⊕`
j=1Wij and CẼi

(z) = ⊕`
j=1CWij

(z) = ⊕`
j=1CUj

(z)φ(Ei)/φ(Ei),

we have (Fi−1 on Ẽi) ≡w (Fi−1 on CEi
(z)/Ker(CEi

(z) on Ẽi+1)). Notice that Di =

CEi
(z)/Ker(CEi

(z) on Ẽi+1). Hence (Fi−1 on Ẽi) ≡w (Fi−1 on Di) ≡w (Fi−1 on D̃i),

because [φ(Di), Fi−1] = 1. Since CWij
(z) * (Wij)0 we have

Fi = CEi
(z) *Ker(Ei on Ẽi+1) and so Di 6= 1, completing the proof of Claim 1. �

Proof of Claim 2.

Suppose that pi = p for some i ≥ 2. If i 6= 2, assume that Di−1 6= 1. Now

Ker([Ei, z]p−1 on Ẽi+1) =Ker([Ei, z]p−1 on P̃i+1) = 1. Since Fi ≤ [Ei, z]p−1, we have

Ker(Fi on Ẽi+1) = 1, that is Di = Fi.

We first consider the case i = 2. Then p2 = p and so p1 6= p. Since E1 = P1 and

[E1, z] 6= 1, we see that Ẽ2 6= 0. Applying Theorem 2 to the action of E1 < z > on

each irreducible E1 < z >-component of Ẽ2, we get [Ẽ2, z]p−1 6= 0. This yields that

[E2, z]p−1 6= 1 and so F2 = C[E2,z]p−1(z) 6= 1. As F1 = 1, this completes the proof of

Claim 2 when i = 2.

We next assume that i > 2. Now pi−1 6= p and Fi−1 = CEi−1
(z). Since Di−1 6= 1,

Fi−1 6= 1 and Ẽi 6= 0. We apply Theorem 2 to the action of Ei−1 < z > on each

irreducible Ei−1 < z >-component of Ẽi to get [Ẽi, z]p−1 6= 0 and (Fi−1 on Ẽi) ≡w

(Fi−1 on [Ẽi, z]p−1). This gives that (Fi−1 on Ẽi) ≡w (Fi−1 on [[Ẽi, z]p−1, Fi−1]) as

[Ẽi, z]p−1 = [[Ẽi, z]p−1, Fi−1]⊕C[Ẽi,z]p−1(Fi−1). Now (Fi−1 on Ẽi) ≡w (Fi−1 on F̃i) holds,

because [φ(Ei), Fi−1] = 1. This finishes the proof of Claim 2. �

Now we can prove the main result of this paper:

Theorem A: Let A be a finite abelian group with square free odd exponent not

divisible by 3. Suppose that it acts fixed point freely on a finite group G of odd order.

Then f(G) ≤ `(A).

Proof: Set f = f(G). By Lemmas 8.1 and 8.2 in [2], there is an A-Fitting chain of
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length f in G. Since A is nilpotent, it is a Carter subgroup of any semidirect product

of it with a section of G. Thus A acts fixed point freely on any section of this chain.

Hence once the following assertion referring only to A-Fitting chains is proved, the

theorem will follow immediately.

Let A be finite abelian group of square free odd exponent not divisible by 3, and let

P1, · · · , Pt be an A-Fitting chain of a finite solvable group G such that Pi has odd order

and A acts fixed point freely on Pi for each i = 1, · · · , t. Then t ≤ `(A).

We shall use induction on t. We may assume that P1 is an irreducible A-module.

As A acts fixed point freely on P1, there exists z ∈ A of prime order p such that

[P1, z] 6= 1. Then [P1, z] = P1 and so p1 6= p. Also p ≥ 5. Theorem 3 applied to the

chain P1, · · · , Pt gives us an A-Fitting chain D2, · · · , Dt such that z centralizes each Di,

for i = 2, · · · , t. Hence D2, · · · , Dt is an A/ < z >-Fitting chain on each of its sections

A/ < z > acts fixed point freely. By induction, it follows that t− 1 ≤ `(A)− 1. Then

t ≤ `(A), as desired.

Lemma 4: Let a finite group A act on a Fitting chain P1, · · · , Pt where each

Pi has odd order, in such a way that A centralizes no nontrivial section of any Pj,

j = 1, · · · , t. Assume that A is supersolvable of odd order which is not divisible by 3.

Then t ≤ 2(2`(A) − 1).

Proof: We shall use induction on `(A). If `(A) = 0, then A = 1 and hence the

theorem follows. Assume that `(A) > 0, and that the theorem is true for all smaller

values of `(A). Let B be a normal subgroup of A such that |B| is the largest prime

dividing |A|. We may assume that B centralizes P1, · · · , Pk where k ∈ {1, · · · , t}, and

k is the largest such positive integer.

Now A/B acts on P1, · · · , Pk and by induction we have k ≤ 2(2`(A/B) − 1). Since

t = k + (t− k), we may assume that t > 2`(A). Then t− k, the length of Pk+1, · · · , Pt,

is at least 3. Then by Theorem 3 applied to Pk+1, · · · , Pt, we get a chain Dk+3, · · · , Dt

of sections such that each Dj is centralized by B.

Since A/B and Dk+3, · · · , Dt fulfill the hypothesis, we see that

t−(k+3)+1 ≤ 2(2`(A)−1−1) and so t ≤ k+2`(A) ≤ 2(2`(A)−1−1)+2`(A) = 2(2`(A)−1),
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as desired. �

Theorem B: Let H be a finite group of odd order which is not divisible by 3.

Suppose that its Carter subgroups have a normal complement G. If C is a Carter

subgroup of H, then f(G) ≤ 2(2`(C) − 1).

Proof: Set f = f(G). By Lemmas 8.1 and 8.2 in [2], there is a C-Fitting chain

Pf , · · · , P1. Since C is a Carter subgroup of H with G ∩ C = 1, it centralizes no

nontrivial section of G. By Lemma 4, we obtain that f ≤ 2(2`(C) − 1). �

Theorem C: Let C be a Carter subgroup of G where G is a finite group of odd

order which is not divisible by 3. Then f(G) ≤ 4(2`(C) − 1)− `(C).

Proof: Set f = f(G). We use induction on `(C). If `(C) = 0, then C = 1, G = 1

and so the theorem follows. Assume that `(C) > 0 and that the theorem is true for

all smaller values of `. Fix a Carter subgroup C of G. There is an integer k ≥ 0 such

that Fk(G) ∩ C = 1 and Fk+1(G) ∩ C 6= 1. Put G = G/Fk+1(G). Since C is a Carter

subgroup of G and Fk+1(G) ∩ C 6= 1, `(C) < `(C). So by induction

f(G) = f − k − 1 ≤ (2`(C) − 1)− `(C) ≤ 4(2`(C)−1 − 1)− (`(C)− 1)

Now C is a Carter subgroup of K = CFk(G) and Fk(G) is a normal complement

to each Carter subgroup of K. Thus k = f(Fk(G)) ≤ 2(2`(C) − 1) by Theorem B.

It follows that

f = 1+k+(f−k−1) ≤ 1+2(2`(C)−1)+4(2`(C)−1−1)−(`(C)−1) = 4(2`(C)−1)−`(C).
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