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Motivation of the Research

 We are in the era of big data.

 Modern data centers now have storage capacities in the exabyte range 
(1018 bytes) or higher. 

 SSDs and HDDs are nearing storage densities of 10 terabits per square 
inch!

 These high storage densities increase and intensify error sources in 
modern storage devices.

 Flash: Inter-cell interference (ICI) and wear-out.
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Technical Vision 

 Modern storage devices, including both Flash and magnetic recording 
devices, must operate at very low error rates. 

 Effective ECC techniques are essential for allowing storage engineers to 
confidently use these high-density devices. 

 Graph-based codes provide excellent performance in this regard!

Our mission is to develop effective ECC techniques that 

exploit the characteristics of the channels in underlying storage devices.
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 Parameters: 𝛾, 𝜅, 𝑧, 𝑚, 𝐿 𝑚: memory, 𝐿: coupling length

 Ingredients:

 A matrix 𝐊 of size 𝛾 × 𝜅 whose entries are in {0,1, . . ,𝑚}.

 A matrix 𝐋 of size 𝛾 × 𝜅 whose entries are in {0,1, . . , 𝑧 − 1}.

 Output: A parity-check matrix 𝐇sc of size (𝛾𝑧(𝑚 + 𝐿)) × (𝜅𝑧𝐿)

 An underlying block code is partitioned 

into a number of component matrices: 

𝐇0 , 𝐇1 , . . ., 𝐇𝑚

such that

𝐇 = σ𝑖=0
𝑚 𝐇𝑖 ,

and 𝐿 copies of replicas are coupled 

together to make a chain of coupled block 

codes.

7

Reminder on SC Codes
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What is MD Construction?

 Coupling copies of an SC code notably mitigates channel non-uniformity.

 Parameters: 𝛾, 𝜅, 𝑧, 𝑚, 𝐿, 𝑀 𝑀: number of auxiliary matrices

 The MD-SC code is obtained from 𝑀 copies of 𝐇SC on the diagonal by

 relocating some of its circulants from each replica of every copy of 𝐇SC

to the corresponding locations in 𝐗𝑙 copies, and then by

 coupling them in a sliding manner as shown below. 

 For convention, 𝐗0 ≜ 𝐇SC
′ .
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What is an MD Protograph?

9

 DEFINITION:  The matrix 𝐇MD
g

obtained by replacing 𝐇SC
′ with 𝐇SC

′g
and 𝐗𝑙 ’s

with 𝐗𝑙
g

’s is called the MD protograph.

 𝐗𝑙 ’s are obtained by replacing each nonzero (zero) entry in 𝐗𝑙
g

with the 

𝑧 × 𝑧 circulant 𝜎𝑓𝑖,𝑗 (the zero matrix 𝟎𝑧×𝑧) that has the appropriate
power 𝑓𝑖,𝑗 from the lifting matrix 𝐋. 

 The sum 𝐇SC
′g
+ σ𝑙=1

𝑀−1𝐗𝑙
g

gives the SC protograph.

 Relocations are represented by an MD mapping as follows: 

𝐹 ∶ {𝐶𝑖,𝑗|1 ≤ 𝑖 ≤ 𝛾, 1 ≤ 𝑗 ≤ 𝜅} → {0,1,… ,𝑀 − 1}, where

 𝐶𝑖,𝑗 is the circulant corresponding to 1 at entry (𝑖, 𝑗) of the all-one base

matrix, and 

 𝐹(𝐶𝑖,𝑗) is the index of the auxiliary matrix to which 𝐶𝑖,𝑗 is located. 

 The percentage of relocated circulants is called the MD density. 
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Relocations Eliminate Short Cycles!

 EXAMPLE 1 (effective relocation arrangement):

 EXAMPLE 2 (ineffective relocation arrangement):

𝐇SC
′ 𝐗2 𝐗1

𝐗1 𝐇SC
′ 𝐗2

𝐗2 𝐗1 𝐇SC
′

Design complexity 
increases as we have 
more degrees of 
freedom.

Solution: Probabilistic 
design!
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Set-up for Probabilistic Framework

 For 𝑚 ≥ 1 and 𝑀 ≥ 2, consider the matrix

where 

σ𝑖=0
𝑚 σ𝑗=0

𝑀−1 𝑝𝑖,𝑗 = 1

and each 𝑝𝑖,𝑗 ∈ [0,1] specifies the probability that a non-zero circulant in 

the MD protograph is assigned to the 𝑖𝑡ℎ component of the 𝑗𝑡ℎ auxiliary 
matrix. 

 𝐏 is referred as the (joint) probability-distribution matrix. 

probability of𝑚𝑡ℎ component of the 1𝑠𝑡 auxiliary matrix
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Set-up for Probabilistic Framework

 The coupling polynomial of an MD-SC code associated with the probability-
distribution matrix 𝐏 is 

𝑓 𝑋,𝑌,𝐏 = σ𝑖=0
𝑚 σ𝑗=0

𝑀−1 𝑝𝑖,𝑗𝑋
𝑖𝑌𝑗

which is abbreviated as 𝑓 𝑋, 𝑌 .

 The vector 𝐩con obtained by concatenating the rows of 𝐏 from top to 
bottom is called the probability-distribution vector.

 We express the expected number of cycles-6 and cycles-8 candidates as a 
function of the probabilities 𝑝𝑖,𝑗 ’s after partitioning and relocations.
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 THEOREM 1: The expected number 𝑁6 𝐩con of cycles-6 in the MD 
protograph is given by

6
𝛾

3

𝜅
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𝑀|𝑏
[𝑓3 𝑋,𝑌 𝑓3 𝑋−1, 𝑌−1 ]0,𝑏

where [⋅]𝑖,𝑗 denotes the coefficient of 𝑋 𝑖𝑌𝑗 in a two-variable polynomial.

 LEMMA 1: For 𝑁6 𝐩con to be locally minimized subject to the constraints 

𝑝𝑖,0 + 𝑝𝑖,1 +··· +𝑝𝑖,𝑀−1 = 𝑝𝑖
∗

for all 𝑖 ∈ {0,1, … ,𝑚} and 𝑗 ∈ {0,1, … ,𝑀 − 1}, it is necessary that the
following equations hold for some 𝑐𝑖 ∈ 𝑅: 

σ𝑀|𝑏[𝑓
3 𝑋, 𝑌 𝑓2 𝑋−1, 𝑌−1 ]𝑖,𝑏+𝑗= 𝑐𝑖 .

 Here, 𝑝𝑖
∗’s are obtained by GRADE-AO Algorithm in [R1].

14

MD-SC Solution Form for Cycles-6
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 THEOREM 2: The expected number 
𝑁8 𝐩con of cycles-8 candidates in 
the MD protograph is given by

15

Cycles-8 Candidates
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 We compute the expected number of cycles-𝑘, 𝑘 ∈ 6,8 , under a specific
MD probability distribution.

 This gives an estimate of what the finite-length algorithmic optimizer 
(FL-AO) algorithm can produce.

 These numbers inform us what to expect from incorporating the
probability-distribution matrix in designing gradient-descent MD-SC (GD-
MD) codes under random partitioning and lifting.

 THEOREM 3: After random partitioning, relocations, and lifting based on
𝐩con, the expected number of cycles-6 in the Tanner graph of 𝐇MD is

≈ 𝑁6 𝐩con ∗
2𝐿 −𝑚

2
∗ 𝑀

and the expected number of cycles-8 in the Tanner graph of 𝐇MD is

≈ 𝑁8 𝐩con ∗ (𝐿 − 𝑚) ∗ 𝑀.

16

Expected Number of Cycles
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 The algorithm is designed to find

 the probability distribution matrix of an MD-SC code with arbitrary
number of auxiliary matrices and memory,

 to estimate the expected number of short cycles along with their upper 
and lower bounds.

 A modified version of the gradient-descent algorithm is employed to 
handle the constraints outlined in Lemma 1, initiated with the locally-
optimal edge distribution of the underlying SC code, obtained as in [R1].

 MD-GRADE provides a non-trivial solution where

 relocation percentages of component matrices are not necessarily the 
same;

 typically, more circulants need to be relocated from the middle 
component matrices of the SC code than from the side ones.

17

MD-GRADE Algorithm
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 The algorithm to construct an MD-SC code starting from an underlying SC 
code through performing relocations is introduced in [R2] by 
Esfahanizadeh et al. and modified in [R3] to achieve more reduction in 
cycle counts.

 Our FL-AO initially starts with 

 a random relocation based on a locally-optimal GD distribution, 

 performs relocations based on the majority rule, and makes random 
decisions between the best options if there are multiple options. 

 The GD-MD distribution results in a significant reduction in the search
space of all possible relocation arrangements that the FL-AO operates on.

 This remarkably reduces the framework complexity and latency.

 FL-AO converges on excellent finite-length MD-SC designs in few 
iterations.

18

Finite-length Algorithmic Optimizer (FL-AO)
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Parameters of Codes

 SC Code 1 is an SC code with 
parameters (𝛾, 𝜅, 𝑧, 𝐿, 𝑚) =
(4, 17,17,10,1) and girth 6 [R3].

 SC Code 1.1 is similar to SC Code 1, 
but with 𝐿 = 30. 

 GD-MD Code 1.1 with 𝑀 = 3 has 
final MD density = 33.82% and is 
obtained after 12 iterations.

 SC Code 3 is an SC code with 
parameters (𝛾, 𝜅, 𝑧, 𝐿, 𝑚) =
(3, 19,23,10,2) and girth 8 [R3]. 

 SC Code 3.1 is similar to SC Code 3, 
but with 𝐿 = 40. 

 GD-MD Code 3.1 with 𝑀 = 4 has 
final MD density = 31.58% after 
11 iterations. 

Code name Length Rate

GD-MD Code 1.1 8,670 0.74

SC Code 1.1 8,670 0.76

GD-MD Code 2.1-2.2 210,250 0.81

MD-SC (NR) 210,250 0.81

GD-MD Code 3.1 17,480 0.81

SC Code 3.1 17,480 0.83

GD-MD Code 4.1 107,100 0.81

SC Code 4.1 107,100 0.82

GD-MD Code 4.2 154,700 0.81

SC Code 4.2 154,700 0.82

GD-MD Code 5 43,350 0.75

TC Code 1.1 43,350 0.76
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 The following table compares the population of cycles of interest in our 
proposed GD-MD codes with their 1D-SC counterparts and/or those in the 
literature [R3].

20

Remarkable Reduction in Cycle Counts!

Code name Cycle-6 count

GD-MD Code 1.1 6,375

[R3] 9,078

SC Code 1.1 79,917

GD-MD Code 5 0

TC Code 1.1 47,736

Code name Cycle-8 count

GD-MD Code 2.2 2,768,485

MD-SC (NR) 16,809,705

GD-MD Code 3.1 239,752

[R3] 249,320

SC Code 3.1 1,397,319

GD-MD Code 4.1 112,959

SC Code 4.1 3,819,480

GD-MD Code 4.2 92,001

SC Code 4.2 5,530,280
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 Significant reduction in 

 the number of cycles-6 that ranges between 92% and 100% and

 the number of cycles-8 that ranges between 83% and 98%

compared with 1D SC/TC codes of the same lengths. 

 More intriguingly, our GD MD codes offer lower cycle counts compared 
with their underlying SC/TC codes, which have notably lower lengths.

 Despite that the final MD densities are in the range 25% − 35%, the 
number of iterations is always below 20. 

 GD-MD codes are constructed in a computationally fast manner. In fact, 

 [R3, Algorithm 2] (with no relocations initially) terminates at MD density 
21% in ≥ 21 iterations, whereas

 our FL-AO terminates after 11 iterations only, to design our GD-MD 
Code 3.1, yielding fewer cycles-8. 

21

Better Cycle Counts with Higher Lengths!
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 The final number of cycles we obtain after FL-AO Algorithm is lower than 
the upper bound on the expected number of cycles obtained in Theorem 3. 

 For GD-MD Code 3.1, however, Theorem 3 gives a good indicator of the 
outcome of FL AO Algorithm, where the (rounded) expected number of 
cycles-8 is 228,070 and the actual final number of cycles-8 is 239,752. 

 With Theorem 3 in hand, we are able to answer two major questions:

 What is the estimated percentage of relocations required to remove all 
instances of a cycle, assuming it can be removed entirely?

 What is the optimal approach to handling a cycle given a pre-specified 
maximum relocation percentage, imposed by decoding latency 
requirements?

22

Strength of Theorem 3
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 Our MD-GRADE algorithm provides us with a locally-optimal distribution 
matrix that guides the FL-AO by reducing its search space. 

 When fed with a locally-optimal probability-distribution matrix, the FL-AO 
can converge on excellent finite-length MD-SC designs in a notably fast 
manner. 

 Our GD-MD codes achieve notable reduction in the number of short cycles. 

 Future work includes 

 simulating the codes’ performance/density/lifetime gains and 

 extending the analysis to objects that are more advanced than short 
cycles.

24

Conclusion and Ongoing Research
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