Probabilistic Design of Multi-Dimensional Spatially-Coupled Codes

Canberk İrimağzı, Ata Tanrıkulu, Ahmed Hareedy Middle East Technical University

ISIT 2024

Athens, Greece

Presentation Outline

Motivation and technical vision

Preliminaries

- Spatially-Coupled (SC) codes
- Multi-Dimensional SC (MD-SC) construction

Novel framework for probabilistic MD-SC code design

- MD Solution form for short cycles
- Expected number of short cycles
- Multi-Dimensional gradient-descent distributor (MD-GRADE)
- Finite-length algorithmic optimizer (FL-AO)
- Comparison with previous MD-SC schemes

Conclusion and ongoing research

Presentation Outline

Motivation and technical vision

Preliminaries

- Spatially-Coupled (SC) codes
- Multi-Dimensional SC (MD-SC) construction

Novel framework for probabilistic MD-SC code design

- MD Solution form for short cycles
- Expected number of short cycles
- Multi-Dimensional gradient-descent distributor (MD-GRADE)
- Finite-length algorithmic optimizer (FL-AO)
- Comparison with previous MD-SC schemes

Conclusion and ongoing research

Motivation of the Research

We are in the era of big data.

- Modern data centers now have storage capacities in the exabyte range (10¹⁸ bytes) or higher.
- SSDs and HDDs are nearing storage densities of 10 terabits per square inch!
- These high storage densities increase and intensify error sources in modern storage devices.
 - □ Flash: Inter-cell interference (ICI) and wear-out.

Technical Vision

- Modern storage devices, including both Flash and magnetic recording devices, must operate at very low error rates.
 - Effective ECC techniques are essential for allowing storage engineers to confidently use these high-density devices.
 - Graph-based codes provide excellent performance in this regard!

Our mission is to develop effective ECC techniques that exploit the characteristics of the channels in underlying storage devices.

Presentation Outline

Motivation and technical vision

Preliminaries

- Spatially-Coupled (SC) codes
- Multi-Dimensional SC (MD-SC) construction

Novel framework for probabilistic MD-SC code design

- MD Solution form for short cycles
- Expected number of short cycles
- Multi-Dimensional gradient-descent distributor (MD-GRADE)
- Finite-length algorithmic optimizer (FL-AO)
- Comparison with previous MD-SC schemes

Conclusion and ongoing research

Reminder on SC Codes

Parameters: γ , κ , z, m, L *m*: memory, L: coupling length
Ingredients:

- □ A matrix **K** of size $\gamma \times \kappa$ whose entries are in $\{0, 1, ..., m\}$.
- □ A matrix **L** of size $\gamma \times \kappa$ whose entries are in $\{0, 1, ..., z 1\}$.
- Output: A parity-check matrix \mathbf{H}_{sc} of size $(\gamma z(m + L)) \times (\kappa zL)$
- An underlying block code is partitioned into a number of component matrices:

 $H_0, H_1, ..., H_m$

such that

 $\mathbf{H} = \sum_{i=0}^{m} \mathbf{H}_{i},$

and *L* copies of replicas are coupled together to make a chain of coupled block codes.

What is MD Construction?

Coupling copies of an SC code notably mitigates channel non-uniformity.

Parameters: γ , κ , z, m, L, M M: number of auxiliary matrices

The MD-SC code is obtained from M copies of H_{SC} on the diagonal by

- relocating some of its circulants from each replica of every copy of H_{SC} to the corresponding locations in X_l copies, and then by
- coupling them in a sliding manner as shown below.

➢ For convention, $X_0 ext{ ≜ } H'_{SC}$.

$$\mathbf{H}_{\mathrm{MD}} \triangleq \begin{bmatrix} \mathbf{H}_{\mathrm{SC}}' & \mathbf{X}_{M-1} & \mathbf{X}_{M-2} & \dots & \mathbf{X}_{2} & \mathbf{X}_{1} \\ \mathbf{X}_{1} & \mathbf{H}_{\mathrm{SC}}' & \mathbf{X}_{M-1} & \dots & \mathbf{X}_{3} & \mathbf{X}_{2} \\ \mathbf{X}_{2} & \mathbf{X}_{1} & \mathbf{H}_{\mathrm{SC}}' & \dots & \mathbf{X}_{4} & \mathbf{X}_{3} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{X}_{M-2} & \mathbf{X}_{M-3} & \mathbf{X}_{M-4} & \dots & \mathbf{H}_{\mathrm{SC}}' & \mathbf{X}_{M-1} \\ \mathbf{X}_{M-1} & \mathbf{X}_{M-2} & \mathbf{X}_{M-3} & \dots & \mathbf{X}_{1} & \mathbf{H}_{\mathrm{SC}}' \end{bmatrix},$$

where

$$\mathbf{H}_{\mathrm{SC}} = \mathbf{H}_{\mathrm{SC}}' + \sum_{\ell=1}^{M-1} \mathbf{X}_{\ell}.$$

What is an MD Protograph?

- > <u>DEFINITION</u>: The matrix H_{MD}^{g} obtained by replacing H_{SC}' with $H_{SC}'^{g}$ and $X_{l}'s$ with X_{l}^{g} 's is called the MD protograph.
 - □ X_l 's are obtained by replacing each nonzero (zero) entry in X_l^g with the $z \times z$ circulant $\sigma^{f_{i,j}}$ (the zero matrix $\mathbf{0}_{z \times z}$) that has the appropriate power $f_{i,j}$ from the lifting matrix **L**.
 - **D** The sum $\mathbf{H}_{SC}^{\prime g} + \sum_{l=1}^{M-1} \mathbf{X}_{l}^{g}$ gives the SC protograph.
- Relocations are represented by an MD mapping as follows:

 $F : \{C_{i,j} | 1 \le i \le \gamma, 1 \le j \le \kappa\} \rightarrow \{0, 1, \dots, M - 1\}, \text{ where }$

- C_{i,j} is the circulant corresponding to 1 at entry (i, j) of the all-one base matrix, and
- $F(C_{i,j})$ is the index of the auxiliary matrix to which $C_{i,j}$ is located.
- The percentage of relocated circulants is called the MD density.

Relocations Eliminate Short Cycles!

> **EXAMPLE 1** (effective relocation arrangement):

EXAMPLE 2 (ineffective relocation arrangement):

Design complexity increases as we have more degrees of freedom.

Solution: Probabilistic design!

Set-up for Probabilistic Framework

For $m \ge 1$ and $M \ge 2$, consider the matrix

$$\mathbf{P} = \begin{bmatrix} p_{0,0} & p_{0,1} & \dots & p_{0,M-1} \\ p_{1,0} & p_{1,1} & \dots & p_{1,M-1} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m,0} & p_{m,1} & \dots & p_{m,M-1} \end{bmatrix}_{(m+1) \times M}$$

where

probability of m^{th} component of the 1^{st} auxiliary matrix

$$\sum_{i=0}^{m} \sum_{j=0}^{M-1} p_{i,j} = 1$$

and each $p_{i,j} \in [0,1]$ specifies the probability that a non-zero circulant in the MD protograph is assigned to the i^{th} component of the j^{th} auxiliary matrix.

P is referred as the (joint) probability-distribution matrix.

Set-up for Probabilistic Framework

The coupling polynomial of an MD-SC code associated with the probabilitydistribution matrix P is

$$f(X, Y, \mathbf{P}) = \sum_{i=0}^{m} \sum_{j=0}^{M-1} p_{i,j} X^{i} Y^{j}$$

which is abbreviated as f(X, Y).

- The vector p^{con} obtained by concatenating the rows of P from top to bottom is called the probability-distribution vector.
- > We express the expected number of cycles-6 and cycles-8 candidates as a function of the probabilities $p_{i,j}$'s after partitioning and relocations.

Presentation Outline

Motivation and technical vision

Preliminaries

- Spatially-Coupled (SC) codes
- Multi-Dimensional SC (MD-SC) construction

Novel framework for probabilistic MD-SC code design

- MD Solution form for short cycles
- Expected number of short cycles
- Multi-Dimensional gradient-descent distributor (MD-GRADE)
- Finite-length algorithmic optimizer (FL-AO)
- Comparison with previous MD-SC schemes

Conclusion and ongoing research

MD-SC Solution Form for Cycles-6

THEOREM 1: The expected number N₆(p^{con}) of cycles-6 in the MD protograph is given by

$$6\binom{\gamma}{3}\binom{\kappa}{3}\sum_{M|b} [f^{3}(X,Y)f^{3}(X^{-1},Y^{-1})]_{0,b}$$

where $[\cdot]_{i,j}$ denotes the coefficient of $X^i Y^j$ in a two-variable polynomial.

> LEMMA 1: For $N_6(\mathbf{p}^{con})$ to be locally minimized subject to the constraints

$$p_{i,0} + p_{i,1} + \dots + p_{i,M-1} = p_i^*$$

for all $i \in \{0,1, ..., m\}$ and $j \in \{0,1, ..., M-1\}$, it is necessary that the following equations hold for some $c_i \in R$:

$$\sum_{M|b} [f^{3}(X,Y)f^{2}(X^{-1},Y^{-1})]_{i,b+j} = c_{i}.$$

> Here, p_i^* 's are obtained by GRADE-AO Algorithm in [R1].

Cycles-8 Candidates

THEOREM 2: The expected number N₈(p^{con}) of cycles-8 candidates in the MD protograph is given by

$$N_{8}(\mathbf{p}^{\mathrm{con}}) = \sum_{M|b} \left\{ w_{1} \left[f^{2}(X,Y) f^{2}(X^{-1},Y^{-1}) \right]_{0,b} \right. \right. \right.$$

$$+ w_{2} \left[f(X^{2},Y^{2}) f(X^{-2},Y^{-2}) f^{2}(X,Y) f^{2}(X^{-1},Y^{-1}) \right]_{0,b} \right.$$

$$+ w_{3} \left[f(X^{2},Y^{2}) f^{2}(X,Y) f^{4}(X^{-1},Y^{-1}) \right]_{0,b} \left. \right.$$

$$+ w_{4} \left[f^{4}(X,Y) f^{4}(X^{-1},Y^{-1}) \right]_{0,b} \right\},$$

$$P_{4}$$

$$P_{6}$$

$$P_{6}$$

$$P_{7}$$

$$P_{6}$$

$$P_{6}$$

$$P_{7}$$

$$P_{6}$$

$$P_{7}$$

$$P_{6}$$

$$P_{7}$$

$$P_{7$$

where
$$w_1 = \binom{\gamma}{2}\binom{\kappa}{2}$$
, $w_2 = 3\binom{\gamma}{2}\binom{\kappa}{3} + 3\binom{\gamma}{3}\binom{\kappa}{2}$, $w_3 = 18\binom{\gamma}{3}\binom{\kappa}{3}$,
 $w_4 = 6\binom{\gamma}{2}\binom{\kappa}{4} + 6\binom{\gamma}{4}\binom{\kappa}{2} + 36\binom{\gamma}{3}\binom{\kappa}{4} + 36\binom{\gamma}{4}\binom{\kappa}{3} + 24\binom{\gamma}{4}\binom{\kappa}{4}$ if
 $\gamma \ge 4$, and $w_4 = 6\binom{\gamma}{2}\binom{\kappa}{4} + 36\binom{\gamma}{3}\binom{\kappa}{4}$ if $\gamma = 3$, where $\kappa \ge 4$.

Expected Number of Cycles

- We compute the expected number of cycles-k, $k \in \{6,8\}$, under a specific MD probability distribution.
 - This gives an estimate of what the finite-length algorithmic optimizer (FL-AO) algorithm can produce.
 - These numbers inform us what to expect from incorporating the probability-distribution matrix in designing gradient-descent MD-SC (GD-MD) codes under random partitioning and lifting.
- > <u>THEOREM 3</u>: After random partitioning, relocations, and lifting based on p^{con} , the expected number of cycles-6 in the Tanner graph of H_{MD} is

$$\approx N_6(\mathbf{p}^{\mathrm{con}}) * \frac{2L-m}{2} * M$$

and the expected number of cycles-8 in the Tanner graph of H_{MD} is

$$\approx N_8(\mathbf{p}^{\mathrm{con}}) * (L-m) * M.$$

MD-GRADE Algorithm

The algorithm is designed to find

- the probability distribution matrix of an MD-SC code with arbitrary number of auxiliary matrices and memory,
- to estimate the expected number of short cycles along with their upper and lower bounds.
- A modified version of the gradient-descent algorithm is employed to handle the constraints outlined in Lemma 1, initiated with the locallyoptimal edge distribution of the underlying SC code, obtained as in [R1].

MD-GRADE provides a non-trivial solution where

- relocation percentages of component matrices are not necessarily the same;
- typically, more circulants need to be relocated from the middle component matrices of the SC code than from the side ones.

Finite-length Algorithmic Optimizer (FL-AO)

The algorithm to construct an MD-SC code starting from an underlying SC code through performing relocations is introduced in [R2] by Esfahanizadeh et al. and modified in [R3] to achieve more reduction in cycle counts.

Our FL-AO initially starts with

- a random relocation based on a locally-optimal GD distribution,
- performs relocations based on the majority rule, and makes random decisions between the best options if there are multiple options.
- The GD-MD distribution results in a significant reduction in the search space of all possible relocation arrangements that the FL-AO operates on.
 This remarkably reduces the framework complexity and latency.

FL-AO converges on excellent finite-length MD-SC designs in few iterations.

Parameters of Codes

- SC Code 1 is an SC code with parameters $(\gamma, \kappa, z, L, m) =$ (4, 17, 17, 10, 1) and girth 6 [R3].
- SC Code 1.1 is similar to SC Code 1, but with L = 30.
- GD-MD Code 1.1 with M = 3 has final MD density = 33.82% and is obtained after 12 iterations.
- SC Code 3 is an SC code with parameters $(\gamma, \kappa, z, L, m) =$ (3, 19, 23, 10, 2) and girth 8 [R3].
- SC Code 3.1 is similar to SC Code 3, but with L = 40.
- GD-MD Code 3.1 with M = 4 has final MD density = 31.58% after 11 iterations.

	Code name	Length	Rate	
	GD-MD Code 1.1	8,670	0.74	
	SC Code 1.1	8,670	0.76	
	GD-MD Code 2.1-2.2	210,250	0.81	
	MD-SC (NR)	210,250	0.81	
	GD-MD Code 3.1	17,480	0.81	
	SC Code 3.1	17,480	0.83	
	GD-MD Code 4.1	107,100	0.81	
	SC Code 4.1	107,100	0.82	
	GD-MD Code 4.2	154,700	0.81	
	SC Code 4.2	154,700	0.82	
	GD-MD Code 5	43,350	0.75	
	TC Code 1.1	43,350	0.76	

Remarkable Reduction in Cycle Counts!

The following table compares the population of cycles of interest in our proposed GD-MD codes with their 1D-SC counterparts and/or those in the literature [R3].

Code name	Cycle-6 count	
GD-MD Code 1.1	6,375	1
[R3]	9,078	
SC Code 1.1	79,917	
GD-MD Code 5	0	
TC Code 1.1	47,736	

Code name	Cycle-8 count	
GD-MD Code 2.2	2,768,485	
MD-SC (NR)	16,809,705	
GD-MD Code 3.1	239,752	
[R3]	249,320	
SC Code 3.1	1,397,319	
GD-MD Code 4.1	112,959	
SC Code 4.1	3,819,480	
GD-MD Code 4.2	92,001	
SC Code 4.2	5,530,280	

Better Cycle Counts with Higher Lengths!

Significant reduction in

the number of cycles-6 that ranges between 92% and 100% and
 the number of cycles-8 that ranges between 83% and 98% compared with 1D SC/TC codes of the same lengths.

- More intriguingly, our GD MD codes offer lower cycle counts compared with their underlying SC/TC codes, which have notably lower lengths.
- Despite that the final MD densities are in the range 25% 35%, the number of iterations is always below 20.

GD-MD codes are constructed in a computationally fast manner. In fact,

- □ [R3, Algorithm 2] (with no relocations initially) terminates at MD density 21% in ≥ 21 iterations, whereas
- our FL-AO terminates after 11 iterations only, to design our GD-MD
 Code 3.1, yielding fewer cycles-8.

Strength of Theorem 3

- The final number of cycles we obtain after FL-AO Algorithm is lower than the upper bound on the expected number of cycles obtained in Theorem 3.
- For GD-MD Code 3.1, however, Theorem 3 gives a good indicator of the outcome of FL AO Algorithm, where the (rounded) expected number of cycles-8 is 228,070 and the actual final number of cycles-8 is 239,752.

With Theorem 3 in hand, we are able to answer two major questions:

- What is the estimated percentage of relocations required to remove all instances of a cycle, assuming it can be removed entirely?
- What is the optimal approach to handling a cycle given a pre-specified maximum relocation percentage, imposed by decoding latency requirements?

Presentation Outline

Motivation and technical vision

Preliminaries

- Spatially-Coupled (SC) codes
- Multi-Dimensional SC (MD-SC) construction

Novel framework for probabilistic MD-SC code design

- MD Solution form for short cycles
- Expected number of short cycles
- Multi-Dimensional gradient-descent distributor (MD-GRADE)
- Finite-length algorithmic optimizer (FL-AO)
- Comparison with previous MD-SC schemes

Conclusion and ongoing research

Conclusion and Ongoing Research

- Our MD-GRADE algorithm provides us with a locally-optimal distribution matrix that guides the FL-AO by reducing its search space.
- When fed with a locally-optimal probability-distribution matrix, the FL-AO can converge on excellent finite-length MD-SC designs in a notably fast manner.
- Our GD-MD codes achieve notable reduction in the number of short cycles.

Future work includes

- simulating the codes' performance/density/lifetime gains and
- extending the analysis to objects that are more advanced than short cycles.

References

- [R1] S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Breaking the computational bottleneck: Probabilistic optimization of high-memory spatially-coupled codes," *IEEE Trans. Inf. Theory*, 2023.
- [R2] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, "Multi-dimensional spatially-coupled code design through informed relocation of circulants," in *Proc. 56th Annual Allerton Conf. Commun., Control, and Computing*, 2018.
- [R3] H. Esfahanizadeh, L. Tauz, and L. Dolecek, "Multi-dimensional spatially-coupled code design: Enhancing the cycle properties," *IEEE Trans. Commun.*, 2020.
- [R4] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, "Finite-length construction of high performance spatially-coupled codes via optimized partitioning and lifting," IEEE Trans. Commun., 2019.
- [R5] D. Truhachev, D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, "New codes on graphs constructed by connecting spatially coupled chains," in *Proc. ITA*, 2012.
- [R6] C. İrimağzı, A. Tanrıkulu, and A. Hareedy, "Probabilistic design of multi-dimensional spatially-coupled codes," 2024. [Online]. Available: https://arxiv.org/abs/2401.15166

Thank You!