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➢ Research interests:

❑ Questions in coding/information theory that are fundamental to 
opportunities created by unparalleled access to data and computing.

❑ Data storage, cloud storage, distributed computing, machine learning, 
DNA storage, quantum systems, and wireless communications.

➢ Research contributions:

❑ Reconfigurable constrained (LOCO) codes for storage and transmission.

❑ Unequal error protection (UEP) for storage and communications.

❑ Non-binary graph-based code design and optimization.

❑ Spatially-coupled (SC) graph-based codes for data storage.

❑ Multi-dimensional (MD) graph-based codes.

❑ Performance prediction of LDPC codes over non-canonical channels.

❑ Algebraic codes for flexible and scalable distributed (cloud) systems.
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Research Interests and Contributions
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Seminar Outline

➢ Motivation and technical vision

➢ Reconfigurable constrained codes for data storage

➢ High performance graph-based codes

➢ Coding solutions for cloud storage

➢ How coding and machine learning can cooperate

➢ Challenges in DNA storage and quantum systems

➢ Conclusion and additional directions



➢ What are we going to talk about?
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➢ Modern applications (IoT) require storage densities to grow rapidly.

❑ Data storage is a story where density increases as a result of advances in 
physics/architecture and innovations in signal processing.

➢ Data storage types:

❑ Non-volatile, magnetic (HDD).

❑ Non-volatile, solid-state (Flash).

❑ Non-volatile, resistive (3D XPt).

❑ Volatile, solid-state (DRAM).

➢ The cold-warm-hot axis.

➢ Densities approach 10 Tbpsi!

❑ With the vertical NAND

(3D NAND), Flash devices

are already winning!
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Storage Densities Are Rapidly Growing
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➢ The Flash cell is a MOSFET but with a floating gate (FG).

❑ Programming is performed via applying very

high positive voltage to the gate (NPN).

❑ Electrons tunnel into the FG.

❑ The charge level in the FG controls threshold.

➢ Advances in physics enabled more than two charge

levels per cell (SLC vs. M/T/Q/P-LC).

➢ How to read Word 3 in

NAND Flash:

❑ Apply ON voltage to all

word lines except 3,

and read voltage to 3.
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➢ Inter-cell interference (ICI):

❑ Parasitic capacitances result in charge propagation (101 in SLC).

➢ Programming (wear-out) errors:

❑ Failed programming/erasing operations result in asymmetric errors.

➢ Other sources of error:

❑ Charge leakage over time and Gaussian electronic noise.

➢ What about magnetic recording devices?

❑ Inter-symbol interference (ISI), inter-track interference (in TDMR), jitter 
or timing problems, and Gaussian noise.
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Sources of Error in Flash Devices
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➢ Data storage devices operate at very low error rates.

➢ My technical vision is:

❑ To devise efficient coding techniques that exploit the advances in 
physics to significantly improve performance.

➢ Mitigating interference:

❑ Constrained codes prevent error-prone patterns from being written.

❑ LOCO codes forbid these patterns with minimal redundancy.

❑ LOCO codes can be easily reconfigured as the device ages.

➢ Handling other sources of error:

❑ Graph-based (LDPC) codes correct the errors after reading.

❑ OO/GRADE-AO techniques generate powerful custom SC codes.

❑ Careful coupling of SC codes generates excellent MD codes.

➢ These techniques result in significant lifetime and density gains!
9

How Can We Take Full Advantage?
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➢ Constrained codes impose restrictions on written (transmitted) data.

❑ The set of forbidden patterns can be symmetric or asymmetric.

❑ The rate is (# of input bits)/(# of coded bits or symbols).

➢ The universe of constrained sequences is represented by an FSTD. The 
capacity, i.e., the highest achievable rate, is the graph entropy.

➢ Example: 𝒮1 = {010, 101} constraint.

❑ The adjacency matrix of this FSTD is:

❑ The capacity is log2(𝜆max(𝐅)),

which is 0.6942 here.
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Introduction to Constrained Codes
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History and My LOCO Codes

1948 Shannon: FSTD of constrained codes [R1]

1970 Tang and Bahl: RLL codes [R2]

Cover: Enumerative source coding [R3]

1980 Adler, Coppersmith, and Hassner: State 
splitting and merging to produce FSMs [R4]

1990 Karabed, Immink, Siegel, and Wolf: 
Optimization of FSMs [R5, R6]

2000 Immink and Braun: Constrained codes 
based on lexicographic indexing [R7, R8]

LOCO codes: Constrained codes that are capacity-
achieving, simple, and reconfigurable [H1, H2]
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➢ Consider Flash devices with 𝑞 levels per cell:

❑ SLC (𝑞 = 2), MLC (𝑞 = 4), TLC (𝑞 = 8), QLC (𝑞 = 16), PLC (𝑞 = 32).

❑ Symbols in GF(𝑞) = {0, 1, 𝛼, … , 𝛼𝑞−2} are written as charge (threshold) 
levels in {0, 1, 2,… , 𝑞 − 1}.

➢ What should we forbid?

❑ Patterns resulting in max charge at the outer

cells but less at the inner ones [R9].

❑ Let 𝛿 be in GF(𝑞)\{𝛼𝑞−2}. The set of

forbidden patterns is:

𝒬𝑥
𝑞
≜ 𝛼𝑞−2𝜹d

𝑦
𝛼𝑞−2, ∀𝜹d

𝑦
∈ GF(𝑞)\{𝛼𝑞−2} 𝑦 | 1 ≤ 𝑦 ≤ 𝑥 .

❑ If 𝑞 = 2 (binary), 𝒬𝑥
2 = 101,1𝟎21,… , 1𝟎𝑥1 .

❑ The codes are 𝑞-ary asymmetric LOCO (QA-LOCO) codes.

❑ Handling 𝑥 > 1 can increase the lifetime and reduce the time to market.
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Device Physics Determine Patterns to Forbid

𝑞 − 1 < 𝑞 − 1 𝑞 − 1



➢ A QA-LOCO code 𝒬𝒞𝑚,𝑥
𝑞

is defined by:

❑ Each codeword 𝐜 ∈ 𝒬𝒞𝑚,𝑥
𝑞

has symbols in GF(𝑞) and is of length 𝑚.

❑ Codewords in 𝒬𝒞𝑚,𝑥
𝑞

are ordered lexicographically.

❑ Each codeword 𝐜 ∈ 𝒬𝒞𝑚,𝑥
𝑞

does not contain any pattern in 𝒬𝑥
𝑞

, 𝑥 ≥ 1.

❑ All codewords satisfying the above properties are included.

➢ Codewords in 𝒬𝒞𝑚,𝑥
𝑞

, 𝑚 ≥ 2, are partitioned into three groups:

❑ Group 1: Codewords starting with 𝛿, ∀𝛿, from the left.

❑ Group 2: Codewords starting with 𝛼𝑞−2𝛼𝑞−2 from the left.

❑ Group 3: Codewords starting with 𝛼𝑞−2𝜹d
𝑥+1, ∀𝜹d

𝑥+1, from the left.

➢ What QA-LOCO codes offer [H3]:

❑ They mitigate ICI, and they are capacity-achieving.

❑ They have simple encoding-decoding, and they are reconfigurable.

14

Formal Definition and Group Structure
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QA-LOCO Codes With 𝑞 = 2 and 𝑥 = 1

Index 
𝑔(𝐜)

Codewords of the code 𝒬𝒞𝑚,1
2

𝑚 = 1 𝑚 = 2 𝑚 = 3 𝑚 = 4

0 0 00 000 0000

Group 1

1 1 01 001 0001

2 10 010 0010

3 11 011 0011

4 100 0100

5 110 0110

6 111 0111

7 1000
Group 3

8 1001

9 1100

Group 210 1110

11 1111



➢ Theorem: Let 𝑁𝑞(𝑚, 𝑥) be the cardinality of 𝒬𝒞𝑚,𝑥
𝑞

. Define:

𝑁𝑞 𝑚, 𝑥 ≜ 𝑞 − 1 𝑚, −𝑥 ≤ 𝑚 ≤ 0, and 𝑁𝑞 1, 𝑥 ≜ 𝑞.

Then, 𝑁𝑞(𝑚, 𝑥), 𝑚 ≥ 2, is recursively given by:

𝑁𝑞 𝑚, 𝑥 = 𝑞𝑁𝑞 𝑚− 1, 𝑥 − 𝑞 − 1 𝑁𝑞 𝑚− 2, 𝑥

+ 𝑞 − 1 𝑥+1𝑁𝑞(𝑚 − 𝑥 − 2, 𝑥).

➢ Example: For 𝑞 = 2 and 𝑥 = 1:

𝑁2 𝑚, 1 = 2𝑁2 𝑚 − 1, 1 − 𝑁2 𝑚− 2, 1 + 𝑁2(𝑚 − 3,1).

❑ 𝑁2 −1,1 ≜ 1,𝑁2 0, 1 ≜ 1,𝑁2 1, 1 ≜ 2.

❑ 𝑁2 2, 1 = 2𝑁2 1, 1 − 𝑁2 0, 1 + 𝑁2 −1,1 = 4.

❑ 𝑁2 3, 1 = 2𝑁2 2, 1 − 𝑁2 1, 1 + 𝑁2 0,1 = 7.

❑ 𝑁2 4, 1 = 2𝑁2 3, 1 − 𝑁2 2, 1 + 𝑁2 1,1 = 12.

❑ The numbers are consistent with the table.

16

Enumerating the Codewords



➢ Theorem: The index of a QA-LOCO codeword 𝐜 ≜ 𝑐𝑚−1𝑐𝑚−2…𝑐0 ∈ 𝒬𝒞𝑚,𝑥
𝑞

, 

𝑚 ≥ 2, is given by the rule:

𝑔 𝐜 = σ𝑖=0
𝑚−1𝑎𝑖 𝑞 − 1 𝛾𝑖𝑁𝑞 𝑖 − 𝛾𝑖 , 𝑥 ,

where 𝑎𝑖 ≜ gflog𝛼(𝑐𝑖) + 1, 𝑐𝑖 ≠ 0, is the level equivalent of 𝑐𝑖, and

𝛾𝑖 = 𝑥 − 𝑘𝑖 + 1; 𝑘𝑖 is the distance to the closest 𝛼𝑞−2 symbol.

❑ For example, if 𝑐6𝑐5 = 𝛼𝑞−2𝛼, then 𝑎6 = 𝑞 − 1, 𝑘5 = 1, and 𝛾5 = 𝑥.

➢ For the binary case (𝑞 = 2):

𝑔 𝐜 = σ𝑖=0
𝑚−1𝑎𝑖𝑁2 𝑖 − 𝑎𝑖+1𝑥, 𝑥 .

➢ Example: 𝑞 = 2, 𝑚 = 4, and 𝑥 = 1:

❑ 𝑔 𝐜 = 1110

= σ𝑖=0
3 𝑎𝑖𝑁2 𝑖 − 𝑎𝑖+1, 1

= 𝑁2 3, 1 + 𝑁2 1, 1 + 𝑁2(0, 1)

= 7 + 2 + 1 = 10.
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Encoding-Decoding Rule of the Codes

Index 𝑔(𝐜) Codewords of the code 𝒬𝒞4,1
2

0 0000

Group 1
1 0001

2 0010

... ............

7 1000
Group 3

8 1001

9 1100

Group 210 1110

11 1111



➢ Bridging is needed to prevent forbidden patterns across codewords.

❑ Bridge with 𝑥 consecutive 0’s or 𝑥 consecutive 𝛼𝑞−2’s.

➢ Self-clocking is needed to maintain calibration of the system.

❑ Just remove the all 0 and the all 𝛼𝑞−2 codewords from 𝒬𝒞𝑚,𝑥
𝑞

.

➢ The rate of a self-clocked QA-LOCO code in input bits/coded symbol is:

𝑅QA−LOCO
c =

𝑠c

𝑚 + 𝑥
=

log2 𝑁𝑞 𝑚, 𝑥 − 2

𝑚 + 𝑥
.

❑ Codes are capacity-achieving.

➢ Rate examples for 𝑥 = 1:

❑ Exploiting physics: Less than 

3% redundancy suffices for

ICI mitigation!

❑ Achieved at low complexity.
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Data Protection Almost for Free!

𝑞 = 8 (TLC) 𝑞 = 16 (QLC)

𝑚 Norm rate 𝑚 Norm rate

26 0.9506 27 0.9554

44 0.9704 45 0.9728

71 0.9769 66 0.9813

Capacity 0.9939 Capacity 0.9987



➢ Encoding and decoding of QA-LOCO codes are performed via the rule.

❑ Encoding: Mapping from index to codeword (subtractions).

❑ Decoding: Demapping from codeword to index (additions).

➢ The same hardware can support multiple constraints by updating 𝑁’s.

➢ QA-LOCO codes can be easily reconfigured [H3].

❑ As the device ages, the set of patterns to forbid becomes bigger (𝑥 > 1).

❑ Reconfiguration is as easy as reprogramming an adder!

❑ A small number of multiplexers pick the appropriate cardinalities.

➢ Comparisons vs. other techniques:

❑ It is quite complicated to design capacity-achieving non-binary 
constrained codes based on FSMs.

❑ Other codes either do not exploit Flash physics [R2], incur higher 
complexity [R10], or designed only for 𝑥 = 1 [R10, R11].
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Reconfigurability and Comparisons

Near-optimal LOCO solutions can help



➢ I simulated three setups in an industry-recommended MR system.

➢ Setup 3 (LDPC + LOCO on parity bits only) achieves [H1]:

❑ About 20% (16%) density gain compared with Setup 1 (Setup 2).

❑ Investing the additional redundancy via LOCO is more beneficial!

❑ Even the error floor performance in Setup 3 is better.

❑ I theoretically demonstrated such UEP gains on canonical channels [H4].
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UEP Achieves Significant Density Gains

The diffusion of more 
reliable information 
provides the LDPC 
decoder with a better 
channel.

Overall length 4270 bits
Overall rate 0.645



➢ The TDMR technology does not require new magnetic materials.

❑ Shingled writing, squeezed tracks, and advanced signal processing are 
adopted to remarkably increase MR densities [H2].

➢ With wide read heads, error-prone patterns become two-dimensional.

❑ They take the shape of a plus sign (+): Plus isolation patterns.

➢ LOCO codes achieve significant 

performance gains in TDMR even

before LDPC decoding [H2].
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Constrained Codes for TDMR

Message length 67 bits
LOCO rate 0.9306
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➢ Parity-check codes are a class of block error-correction codes (ECCs).

❑ The code is defined by a parity-check matrix 𝐇.

❑ A codeword 𝐯 satisfies 𝐇𝐯T = 𝟎.

𝐇 𝑛−𝑘 ×𝑛 = 𝐏 𝑛−𝑘 ×𝑘
T 𝐈 𝑛−𝑘 × 𝑛−𝑘 , 𝐆𝑘×𝑛 = 𝐈𝑘×𝑘 𝐏𝑘× 𝑛−𝑘 .
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Introduction to LDPC Codes

Systematic form

𝐇 =

Columns represent bit or variable nodes (VNs).
Rows represent check nodes (CNs).
Non-zero values represent edges.

The corresponding bipartite graph:
Circles represent VNs.
Squares represent CNs.

Robert
Gallager



➢ Decoding is iterative; via messages between VNs and CNs [R12].

❑ Binary example: Gallager A decoding, and we receive [0 0 1 1 0 0 0].

❑ CNs 𝑐1 and 𝑐2 are the only unsatisfied CNs. VN 𝑣2 flips to 1 for 𝐇𝐯T = 0.

➢ Lifting a protograph (seed) to generate an LDPC code:

❑ 𝛾 (𝜅) is the column (row) weight, i.e., VN (CN) degree.

❑ 𝐇p is the protograph matrix. 𝜎 is the 𝑧 × 𝑧 circulant matrix, 𝜎0 = 𝐈.
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Message Passing and Lifting

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7
𝑐1
𝑐2
𝑐3
𝑐4

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

𝐇p with 𝛾 = 3 and 𝜅 = 5

𝜎3 𝜎2 𝜎0 𝜎4 𝜎1

𝜎1 𝜎0 𝜎2 𝜎3 𝜎4

𝜎1 𝜎2 𝜎4 𝜎0 𝜎3

𝐇

Lifting with 𝑧 = 5



➢ Absorbing sets [R13, R14] result in decoding failure → error floor.

❑ For an (𝑎, 𝑏) absorbing set: The size of the set is 𝑎, the number of 
unsatisfied CNs connected to it is 𝑏, and each VN is connected to more 
satisfied than unsatisfied neighboring CNs.

❑ A (4, 4) binary absorbing set (𝛾 = 4):

❑ More parameters are added for non-binary.

➢ Define an (𝑎, 𝑑1) unlabeled elementary

trapping (absorbing) set (UTS) ((UAS)).

➢ Detrimental objects depend on the physics [H5].
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Detrimental Objects in LDPC Codes

Circles represent 
VNs. White (grey) 
squares represent 
satisfied 
(unsatisfied) CNs.

MLC Flash
Channel asymmetry



Absorbing Sets Absorb the Decoder
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➢ How can an absorbing set (AS) cause a decoding error?

❑ Assume the all 0 codeword is transmitted.

❑ Assume errors occur only on the four VNs in the shown (4, 4) AS in the 
graph of the binary LDPC code.

❑ Thus, all these VNs are now 1’s.

❑ Consider hard decision decoding.

❑ Each degree-2 CN now is satisfied

(1 + 1 = 0), while degree-1 CNs are not.

❑ Each VN receives 3 stay and only 1

flip messages from the connected CNs.

❑ Despite being in error, all VNs

stick to their wrong values.

❑ Consequently, the decoder is absorbed!

S

S

S

F



Construction of SC Codes

➢ SC codes have excellent error-correction performance [R15].

❑ They offer additional degrees of freedom in the code design.

➢ The construction steps are:

❑ Partition 𝐇 (size 𝛾𝑧 × 𝜅𝑧) into 𝑚 + 1 components: 𝐇0, 𝐇1, …, 𝐇𝑚.

❑ Couple component matrices 𝐿 times to

construct 𝐇SC (size 𝛾𝑧(𝐿 + 𝑚) × 𝜅𝑧𝐿).

❑ If non-binary, assign weights ∈ GF(𝑞)\{0}.

➢ My goal is to eliminate detrimental objects

via optimized partitioning and lifting.

❑ We know such objects in data storage

systems (differ from AWGN) [H6].
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A replica

𝐇 ≜ σ𝑦=0
𝑚 𝐇𝑦, 𝐇p ≜ σ𝑦=0

𝑚 𝐇𝑦
p

(all 1’s).



What Techniques Do I Propose?

➢ Previous work on partitioning includes [R16], [R17], and [H7].

➢ Operate on the protograph then the unlabeled graph to design 𝐇SC:

❑ For low 𝑚, derive the optimal partitioning (OO) [H8, H9].

❑ For high 𝑚, derive a near-optimal partitioning (GRADE-AO) [H10].

❑ Next, optimize the lifting (CPO) [H8, H9]. Stop here if binary (the focus).

❑ If non-binary, optimize the edge weights (WCM) [H5, H6].

➢ Common

substructures:

❑ Minimize #

of cycles-6

and cycles-8.
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➢ The set of independent non-zero overlap parameters is 𝒪ind.

➢ Example: For 𝛾 = 3 and 𝑚 = 1:

𝒪ind = {𝑡 0 , 𝑡 1 , 𝑡 2 , 𝑡 0,1 , 𝑡 0,2 , 𝑡 1,2 , 𝑡 0,1,2 } (the ones in 𝐇0
p

).

❑ Other overlap parameters are functions of the ones in 𝒪ind.

➢ I illustrate their definitions via an example:

❑ Consider the case of 𝜅 = 11:

❑ 𝑡 0 = 5.

❑ 𝑡 1 = 5.

❑ 𝑡 2 = 6.

❑ 𝑡 0,1 = 1.

❑ 𝑡 0,2 = 1.

❑ 𝑡 1,2 = 3.

❑ 𝑡 0,1,2 = 0.

OO: What Are the Overlap Parameters?
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Define a degree-𝜇
overlap and a degree-𝜇
overlap parameter.



Building a Discrete Optimization Problem

➢ Theorem: The total number of cycle-6 instances in the protograph of an SC 
code with 𝛾 ≥ 3, 𝜅, 𝑚, and 𝐿 ≥ 𝑚 + 1 is:

𝐹1
𝑘 is the number of instances starting from 𝐑1 and spanning 𝑘 replicas.

➢ The discrete optimization problem is described as follows.

❑ Mathematical formulation:

❑ Optimization constraints:

Interval constraints and the balanced (uniform) partitioning constraint.

❑ A solution to this problem is 𝐭∗. 𝐭∗ is called an optimal vector.

➢ The CPO then breaks the reflection condition [R18] for as many cycles in 
the optimal SC protograph (designed via 𝐭∗) as possible.
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Notable Performance Gains in Flash

➢ Channel: Normal-Laplace mixture (NLM) Flash [R19].

❑ IBM MLC channel, with 3 reads and sector size 512 bytes.

❑ RBER is raw BER. UBER is uncorrectable BER = FER/(512 × 8).

➢ All the codes have 𝛾 = 3, 𝜅 = 𝑧 = 19, 𝑚 = 1, 𝐿 = 20, and 𝑞 = 4.

❑ Length 14440 bits and rate 0.834.

➢ The OO-CPO-WCM approach

outperforms existing methods:

❑ Code 6 outperforms Code 2

by 2.5 orders of magnitude.

❑ Code 6 achieves 200% RBER

gain compared with Code 2.

➢ Appropriately-designed SC codes

outperform block codes [H9].
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➢ SC codes perform better as the memory becomes higher.

❑ The complexity of the OO technique grows rapidly with 𝑚 and 𝛾.

➢ GRADE-AO is a probabilistic technique that enables high memories.

❑ Denote the probability (edge) distribution by 𝐩 ≜ [𝑝0 𝑝1… 𝑝𝑚].

❑ Define the polynomial 𝑓(𝑋, 𝐩) ≜ σ𝑖=0
𝑚 𝑝𝑖𝑋

𝑖. ⋅ 𝑖 is the coefficient of 𝑋𝑖.

➢ Theorem: A necessary condition to minimize the probability of a cycle-6
under random partitioning is 𝑓3 𝑋, 𝐩 𝑓2 𝑋−1, 𝐩 𝑖 = 𝑐0, ∀𝑖 ∈ {0, 1,… ,𝑚}.

❑ This probability is 𝑓3 𝑋, 𝐩 𝑓3 𝑋−1, 𝐩 0.

❑ Consider ℒ6(𝐩) = 𝑓3 𝑋, 𝐩 𝑓3 𝑋−1, 𝐩 0 + 𝑐 1 − σ𝑖=0
𝑚 𝑝𝑖 .

❑ Then, ∇𝐩 ℒ6 𝐩 = 0 leads to the necessary condition.

➢ Gradient descent is then used to find 𝐩 that satisfies the condition.

❑ GRADE-AO plus CPO give 𝐇SC. Analysis is also done for cycles-8 [H10].

36

GRADE-AO: Gradient Descent Optimizer



➢ Now, compare the gradient descent (GD) SC codes with high performance 
uniform (UNF) SC codes.

➢ GD SC codes have superior performance 

in all regions.

❑ They have potential in data storage

and wireless communication systems.

➢ For high 𝑚, vastly skewed distributions give better thresholds!

❑ We are working on theoretical justification.
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Uniform Partitioning Is Not the Answer!

Alexei Ashikhmin

(𝛾, 𝜅, 𝑧,𝑚, 𝐿) Code Cycles-6 Cycles-8

(3, 7, 13, 5, 100)
GD 0 0

UNF 0 6292

(4, 29, 29, 19, 20)
GD 0 528090

UNF 0 1087268

Performance of (4, 29, 29, 19, 20)
SC codes over the AWGN channel

0.25 dB

Below 
𝑥/105



➢ What is the idea of my technique?

❑ Optimally couple multiple copies of a high performance OD code to 
mitigate (MD) system non-uniformity [R20] in storage devices.

➢ Effective MD coupling removes detrimental objects.
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Construction of MD Graph-Based Codes



➢ Effective MD coupling [H11]:

❑ Eliminates all instances of certain detrimental objects.

❑ Achieves 1800 P/E cycles gain in Flash devices (left).

❑ Achieves 1.1 dB and 4 orders of magnitude gain in MR devices (right).

❑ These gains are vs. OD codes of the same parameters.
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Significant Lifetime and Density Gains!

1200 P/E cycles

1800 P/E cycles

1.1 dB
𝑥/104

Observe threshold/waterfall gains: Opportunity in wireless.

Length 15162 bits
Rate 0.825

Length 5202 bits
Rate 0.740

Flash MR
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➢ Centralized cloud storage: A central cloud is connected to local clouds.

❑ Only the central cloud owner can rent storage spaces to customers.

❑ Examples: Amazon Web Services and Microsoft Azure.

➢ Decentralized cloud storage: No central cloud exists. No fixed topology.

❑ Clouds can directly communicate, and users can rent storage spaces.

❑ Examples: Blockchain-based cloud storage and Storj.

➢ A codeword is distributed over multiple servers of the cloud.

❑ Failed servers (data erased) do not result in losing messages entirely.
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Types of Cloud Storage Systems



➢ Local and higher-level erasure-correction capabilities are provided.

❑ Higher-level capability via central cloud or via cooperation of clouds.

➢ Our cloud storage solutions, which are based on algebraic coding, support:

❑ Scalability: New clouds are added with minimal changes needed to the 
existing system (cost saving).

❑ Flexibility: A cloud that has its data suddenly

becoming hot (of higher demand) can split

into smaller, faster clouds.

❑ Heterogeneity: Data lengths in various clouds

are allowed to differ.

❑ Topology-awareness: In the decentralized case,

the solution adapts to the network topology.
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➢ Ultra dense, next-gen storage devices have underlying channels with 
various effects to model.

❑ Examples on devices: V-NAND QLC/PLC Flash and TDMR devices.

❑ Examples on effects: All effects contributing to MD non-uniformity.

➢ Machine learning can help us break the barriers!

❑ The available mathematical models are quite complicated and do not 
capture everything.

❑ Thus, coding solutions based on them

can be notably improved.

❑ I suggest using machine learning to

direct the reconfiguration of LOCO codes

and guide the design of LDPC codes.
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New Storage Channels Are Hard to Model

TDMR [R20]



➢ Regarding constrained codes:

❑ As the device ages, error-prone patterns change.

❑ We can learn the updated set of patterns to forbid from the LRs for 
errors collected at the output of the channel.

❑ Next, we respond by reconfiguring the LOCO code (online).

➢ Regarding error-correction codes:

❑ We can learn the set of detrimental objects from the LRs for errors 
collected at the output of the EC decoder.

❑ Next, we design the LDPC code guided by that (offline).

➢ Significant lifetime gains can be achieved through these ideas.

❑ Machine learning can help improve detection and EC decoding as well.

➢ This is a research direction I am following (with Duke and UCSD).
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➢ Distributed machine learning promises lower latency, higher accuracy, and 
better scaling with large datasets.

❑ Computer architects have been searching for speed-up solutions, e.g.,

computing via GPUs.

❑ One idea is to bring

distributed computing

units closer to data

storage units.

➢ I want to develop 

coding solutions that

enable low-latency

computational storage

without compromising

the reliability.
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➢ Writing to the storage module:

❑ EC encoding can be performed distributively to speed up writing.

➢ Reading from the storage module:

❑ Processing cores need not wait for an entire block to be decoded.

❑ Message LRCs can significantly reduce the time to start computing.

➢ Speeding up distributed computing:

❑ If a worker straggles, the computation will not be completed.

❑ Straggler-resilient coding handles this problem and reduces latency.

➢ The above ideas can be applied via graph-based codes (high reliability).

➢ This is a research direction I am following (with Duke and UCLA).
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Coding to Help Machine Learning

Multi-level, adaptive EC capability
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➢ DNA storage can revolutionize data storage.

❑ Orders of magnitude gains in density and lifetime. 

➢ Stages of storing information are:

❑ DNA synthesis to generate the strands, storing these

strands in a container, and sequencing to read.

❑ All three stages suffer from errors.

➢ External data processing includes:

❑ Clustering, sequence reconstruction, and error correction.

➢ I want to develop novel data processing schemes for DNA data storage.

❑ Deep understanding of DNA characteristics is important.

❑ Collaboration with other faculty members is crucial.
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➢ Quantum computers promise to solve problems remarkably

faster than any classical computer.

❑ They are now becoming a reality.

➢ Coding is required to ensure that computing and storage

in quantum systems are performed reliably.

➢ I want to translate my classical results on high

performance ECCs to the quantum world:

❑ Quantum LDPC codes are important.

❑ Quantum absorbing sets degrade performance!

➢ This is a direction I am following (with Duke and UA).

❑ Collaboration with other faculty members is crucial.
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IBM quantum 
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➢ Conclusion:

❑ Storage densities are rapidly growing. Data require high protection.

❑ LOCO codes exploit physics to fortify devices with minimal redundancy.

❑ As the device ages, LOCO codes can be reconfigured to extend lifetime.

❑ High performance SC codes are designed via OO/GRADE-AO techniques.

❑ MD graph-based codes achieve significant lifetime and density gains.

❑ Our coding solutions for cloud storage achieve scalability and flexibility.

❑ Machine learning and coding can make the task of each other easier.

❑ Advanced data processing improves DNA storage and quantum systems.

➢ Additional research directions:

❑ MD-LOCO codes with MD-LDPC codes for MD storage devices.

❑ Hierarchical algebraic codes for SSDs in multi-task systems.

❑ Data processing methods for in-memory computing and analytics.

57

Takeaways and More Directions



➢ What did we talk about?
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Thank You!


