From Devices to Clouds: Coding for Modern and Next Generation Storage Systems

Ahmed Hareedy Duke University

Seminar to the EEE Department at METU June 4th, 2021

Introducing Myself

- Postdoctoral Associate in the ECE Department at Duke University.
- Education:
 - □ Ph.D. in ECE from UCLA. M.S. and Bachelor from Cairo University.
- Industry experience:
 - □ Intel Corporation and Mentor Graphics Corporation (Siemens EDA).

Current collaborators in academia:

Connections in industry:

Western Digital, Nokia Bell Labs, IBM Research, Intel, and Siemens.

Research Interests and Contributions

Research interests:

- Questions in coding/information theory that are fundamental to opportunities created by unparalleled access to data and computing.
- Data storage, cloud storage, distributed computing, machine learning, DNA storage, quantum systems, and wireless communications.

Research contributions:

- □ Reconfigurable constrained (LOCO) codes for storage and transmission.
- Unequal error protection (UEP) for storage and communications.
- Non-binary graph-based code design and optimization.
- □ Spatially-coupled (SC) graph-based codes for data storage.
- Multi-dimensional (MD) graph-based codes.
- Performance prediction of LDPC codes over non-canonical channels.
- □ Algebraic codes for flexible and scalable distributed (cloud) systems.

Seminar Outline

- Motivation and technical vision
- Reconfigurable constrained codes for data storage
- High performance graph-based codes
- Coding solutions for cloud storage
- How coding and machine learning can cooperate
- Challenges in DNA storage and quantum systems
- Conclusion and additional directions

Today's Seminar in One Slide

What are we going to talk about?

Machine learning helps coding

Storage Densities Are Rapidly Growing

Modern applications (IoT) require storage densities to grow rapidly.

Data storage is a story where density increases as a result of advances in physics/architecture and innovations in signal processing.

Data storage types:

- □ Non-volatile, magnetic (HDD).
- Non-volatile, solid-state (Flash).
- Non-volatile, resistive (3D XPt).
- Volatile, solid-state (DRAM).
- The cold-warm-hot axis.
- > Densities approach 10 Tbpsi!
 - With the vertical NAND (3D NAND), Flash devices are already winning!

Understanding Flash Operation

The Flash cell is a MOSFET but with a floating gate (FG). Very hig

- Programming is performed via applying very high positive voltage to the gate (NPN).
- Electrons tunnel into the FG.
- □ The charge level in the FG controls threshold.

Advances in physics enabled more than two charge levels per cell (SLC vs. M/T/Q/P-LC).

Sources of Error in Flash Devices

Inter-cell interference (ICI):

□ Parasitic capacitances result in charge propagation (101 in SLC).

Programming (wear-out) errors:

□ Failed programming/erasing operations result in asymmetric errors.

Other sources of error:

Charge leakage over time and Gaussian electronic noise.

What about magnetic recording devices?

Inter-symbol interference (ISI), inter-track interference (in TDMR), jitter or timing problems, and Gaussian noise.

How Can We Take Full Advantage?

- Data storage devices operate at very low error rates.
- My technical vision is:
 - To devise efficient coding techniques that exploit the advances in physics to significantly improve performance.

Mitigating interference:

- Constrained codes prevent error-prone patterns from being written.
- □ LOCO codes forbid these patterns with minimal redundancy.
- LOCO codes can be easily reconfigured as the device ages.

Handling other sources of error:

- Graph-based (LDPC) codes correct the errors after reading.
- □ **OO/GRADE-AO techniques** generate powerful custom SC codes.
- Careful coupling of SC codes generates excellent MD codes.

These techniques result in significant lifetime and density gains!

Seminar Outline

- Motivation and technical vision
- Reconfigurable constrained codes for data storage
- High performance graph-based codes
- Coding solutions for cloud storage
- How coding and machine learning can cooperate
- Challenges in DNA storage and quantum systems
- Conclusion and additional directions

Introduction to Constrained Codes

- Constrained codes impose restrictions on written (transmitted) data.
 The set of forbidden patterns can be symmetric or asymmetric.
 The rate is (# of input bits)/(# of coded bits or symbols).
- The universe of constrained sequences is represented by an FSTD. The capacity, i.e., the highest achievable rate, is the graph entropy.

History and My LOCO Codes

Device Physics Determine Patterns to Forbid

> Consider Flash devices with q levels per cell:

□ SLC (q = 2), MLC (q = 4), TLC (q = 8), QLC (q = 16), PLC (q = 32).

□ Symbols in GF(q) = {0, 1, α , ..., α^{q-2} } are written as charge (threshold) levels in {0, 1, 2, ..., q - 1}.

What should we forbid?

- Patterns resulting in max charge at the outer cells but less at the inner ones [R9].
- □ Let δ be in GF(q)\{ α^{q-2} }. The set of forbidden patterns is:

 $\mathcal{Q}_x^q \triangleq \big\{ \alpha^{q-2} \boldsymbol{\delta}_d^y \alpha^{q-2}, \forall \boldsymbol{\delta}_d^y \in [\mathsf{GF}(q) \setminus \{\alpha^{q-2}\}]^y \mid 1 \le y \le x \big\}.$

- □ If q = 2 (binary), $Q_x^2 = \{101, 10^21, ..., 10^x1\}$.
- □ The codes are *q*-ary asymmetric LOCO (QA-LOCO) codes.
- □ Handling x > 1 can increase the lifetime and reduce the time to market.

Formal Definition and Group Structure

> A QA-LOCO code $QC_{m,x}^q$ is defined by:

- □ Each codeword $\mathbf{c} \in QC_{m,x}^q$ has symbols in GF(q) and is of length m.
- Codewords in $\mathcal{QC}_{m,x}^q$ are ordered lexicographically.
- □ Each codeword $\mathbf{c} \in \mathcal{QC}_{m,x}^q$ does not contain any pattern in \mathcal{Q}_x^q , $x \ge 1$.
- All codewords satisfying the above properties are included.

> Codewords in $QC_{m,x}^q$, $m \ge 2$, are partitioned into three groups:

- **Group 1:** Codewords starting with δ , $\forall \delta$, from the left.
- **Group 2**: Codewords starting with $\alpha^{q-2}\alpha^{q-2}$ from the left.
- **Group 3**: Codewords starting with $\alpha^{q-2} \delta_d^{x+1}$, $\forall \delta_d^{x+1}$, from the left.

What QA-LOCO codes offer [H3]:

- □ They mitigate ICI, and they are capacity-achieving.
- □ They have simple encoding-decoding, and they are reconfigurable.

QA-LOCO Codes With q = 2 and x = 1

Index	Codewords of the code $\mathcal{QC}^2_{m,1}$						
$g(\mathbf{c})$	m = 1	m = 2	<i>m</i> = 3	<i>m</i> =	4 Group 1		
0	0	00	000	0000			
1	1	01	001	0001			
2		10	010	0010			
3		11	011	0011	Group 1		
4			100	0100			
5			110	0110			
6			111	0111			
7				1000			
8				1001	Group 3		
9]			1100			
10				1110	Group 2		
11]			1111			

Enumerating the Codewords

Theorem: Let $N_q(m, x)$ be the cardinality of $QC_{m,x}^q$. Define: $N_q(m, x) \triangleq (q-1)^m, -x \leq m \leq 0, \text{ and } N_q(1, x) \triangleq q.$ Then, $N_q(m, x), m \geq 2$, is recursively given by: $N_q(m, x) = qN_q(m-1, x) - (q-1)N_q(m-2, x) + (q-1)^{x+1}N_q(m-x-2, x).$

• Example: For
$$q = 2$$
 and $x = 1$:
 $N_2(m, 1) = 2N_2(m - 1, 1) - N_2(m - 2, 1) + N_2(m - 3, 1)$.

Encoding-Decoding Rule of the Codes

Theorem: The index of a QA-LOCO codeword $\mathbf{c} \triangleq c_{m-1}c_{m-2} \dots c_0 \in \mathcal{QC}_{m,x}^q$, $m \ge 2$, is given by the rule:

$$g(\mathbf{c}) = \sum_{i=0}^{m-1} a_i (q-1)^{\gamma_i} N_q (i-\gamma_i, x),$$

where $a_i \triangleq \text{gflog}_{\alpha}(c_i) + 1$, $c_i \neq 0$, is the level equivalent of c_i , and $\gamma_i = x - k_i + 1$; k_i is the distance to the closest α^{q-2} symbol. \Box For example, if $c_6 c_5 = \alpha^{q-2} \alpha$, then $a_6 = q - 1$, $k_5 = 1$, and $\gamma_5 = x$.

For the binary case
$$(q = 2)$$
:
 $g(\mathbf{c}) = \sum_{i=0}^{m-1} a_i N_2 (i - a_{i+1}x, x).$

Example:
$$q = 2, m = 4$$
, and $x = 1$:
$$g(\mathbf{c} = 1110)$$

$$= \sum_{i=0}^{3} a_i N_2(i - a_{i+1}, 1)$$

$$= N_2(3, 1) + N_2(1, 1) + N_2(0, 1)$$

$$= 7 + 2 + 1 = 10.$$

Index $g(\mathbf{c})$	Codewords of	the code $\mathcal{QC}^2_{4,1}$
0	0000	
1	0001	Croup 1
2	0010	Group I
7	1000	Croup 2
8	1001	Group 5
9	1100	
10	1110	Group 2
11	1111	

Data Protection Almost for Free!

- Bridging is needed to prevent forbidden patterns across codewords.
 □ Bridge with x consecutive 0's or x consecutive α^{q-2}'s.
- Self-clocking is needed to maintain calibration of the system.
 - □ Just remove the all 0 and the all α^{q-2} codewords from $QC_{m,x}^q$.

The rate of a self-clocked QA-LOCO code in input bits/coded symbol is:

$$R_{\rm QA-LOCO}^{\rm c} = \frac{s^{\rm c}}{m+x} =$$

Codes are capacity-achieving.

- Rate examples for x = 1:
 - Exploiting physics: Less than 3% redundancy suffices for ICI mitigation!
 - Achieved at low complexity.

$$=\frac{\left\lfloor \log_2(N_q(m,x)-2)\right\rfloor}{m+x}$$

q=8 (TLC)		q = 16 (QLC)		
т	Norm rate	т	Norm rate	
26	0.9506	27	0.9554	
44	0.9704	45	0.9728	
71	0.9769	66	0.9813	
Capacity	0.9939	Capacity	0.9987	

Reconfigurability and Comparisons

- Encoding and decoding of QA-LOCO codes are performed via the rule.
 - Encoding: Mapping from index to codeword (subtractions).
 - Decoding: Demapping from codeword to index (additions).
- > The same hardware can support multiple constraints by updating N's.

QA-LOCO codes can be easily reconfigured [H3].

- □ As the device ages, the set of patterns to forbid becomes bigger (x > 1).
- Reconfiguration is as easy as reprogramming an adder!
- □ A small number of multiplexers pick the appropriate cardinalities.

Comparisons vs. other techniques:

Near-optimal LOCO solutions can help

- It is quite complicated to design capacity-achieving non-binary constrained codes based on FSMs.
- Other codes either do not exploit Flash physics [R2], incur higher complexity [R10], or designed only for x = 1 [R10, R11].

UEP Achieves Significant Density Gains

- I simulated three setups in an industry-recommended MR system.
- Setup 3 (LDPC + LOCO on parity bits only) achieves [H1]:
 - □ About 20% (16%) density gain compared with Setup 1 (Setup 2).
 - Investing the additional redundancy via LOCO is more beneficial!
 - Even the error floor performance in Setup 3 is better.
 - □ I theoretically demonstrated such UEP gains on canonical channels [H4].

Overall length 4270 bits Overall rate 0.645

The diffusion of more reliable information provides the LDPC decoder with a better channel.

Constrained Codes for TDMR

- The TDMR technology does not require new magnetic materials.
 - Shingled writing, squeezed tracks, and advanced signal processing are adopted to remarkably increase MR densities [H2].
- With wide read heads, error-prone patterns become two-dimensional.
 - □ They take the shape of a plus sign (+): Plus isolation patterns.

LOCO codes achieve significant performance gains in TDMR even before LDPC decoding [H2].

My Related Work (1 of 2)

- [H1] A. Hareedy and R. Calderbank, "LOCO codes: Lexicographically-ordered constrained codes," IEEE Trans. Inf. Theory, 2020.
- [H2] A. Hareedy, B. Dabak, and R. Calderbank, "The secret arithmetic of patterns: A general method for designing constrained codes based on lexicographic indexing," ArXiv and submitted to IEEE Trans. Inf. Theory, 2020.
- [H3] A. Hareedy, B. Dabak, and R. Calderbank, "Managing device lifecycle: Reconfigurable constrained codes for M/T/Q/P-LC Flash memories," IEEE Trans. Inf. Theory, 2021.
- [H4] B. Dabak, A. Hareedy, A. Ashikhmin, and R. Calderbank, "Unequal error protection achieves threshold gains on BEC and BSC via higher fidelity messages," *ArXiv*, 2021.
- B. Dabak, A. Hareedy, and R. Calderbank, "Non-binary constrained codes for twodimensional magnetic recording," *IEEE Trans. Magn.*, 2020.

My Related Work (2 of 2)

- J. Centers, X. Tan, A. Hareedy, and R. Calderbank, "Power spectra of constrained codes with level-based signaling: Overcoming finite-length challenges," IEEE Trans. Commun., 2021.
- A. Hareedy and R. Calderbank, "A new family of constrained codes with applications in data storage," in *Proc. IEEE ITW*, 2019.
- A. Hareedy and R. Calderbank, "Asymmetric LOCO codes: Constrained codes for Flash memories," in *Proc. Allerton*, 2019.
- A. Hareedy, B. Dabak, and R. Calderbank, "Q-ary asymmetric LOCO codes: Constrained codes supporting Flash evolution," in *Proc. IEEE ISIT*, 2020.

References (1 of 2)

- [R1] C. E. Shannon, "A mathematical theory of communication," Bell Sys. Tech. J., 1948.
- [R2] D. T. Tang and R. L. Bahl, "Block codes for a class of constrained noiseless channels," Inf. and Control, 1970.
- > [R3] T. Cover, "Enumerative source encoding," *IEEE Trans. Inf. Theory*, 1973.
- [R4] R. Adler, D. Coppersmith, and M. Hassner, "Algorithms for sliding block codes—An application of symbolic dynamics to information theory," *IEEE Trans. Inf. Theory*, 1983.
- [R5] R. Karabed and P. H. Siegel, "Coding for higher-order partial-response channels," in *Proc. SPIE 2605*, 1995.
- [R6] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, "Codes for digital recorders," IEEE Trans. Inf. Theory, 1998.

References (2 of 2)

- [R7] K. A. S. Immink, "A practical method for approaching the channel capacity of constrained channels," *IEEE Trans. Inf. Theory*, 1997.
- [R8] V. Braun and K. A. S. Immink, "An enumerative coding technique for DC-free runlength-limited sequences," *IEEE Trans. Commun.*, 2000.
- [R9] V. Taranalli, H. Uchikawa, and P. H. Siegel, "Error analysis and inter-cell interference mitigation in multi-level cell flash memories," in *Proc. IEEE ICC*, 2015.
- [R10] Y. M. Chee, J. Chrisnata, H. M. Kiah, S. Ling, T. T. Nguyen, and V. K. Vu, "Capacity-achieving codes that mitigate intercell interference and charge leakage in Flash memories," *IEEE Trans. Inf. Theory*, 2019.
- [R11] M. Qin, E. Yaakobi, and P. H. Siegel, "Constrained codes that mitigate intercell interference in read/write cycles for flash memories," *IEEE J. Sel. Areas Commun.*, 2014.

Seminar Outline

- Motivation and technical vision
- Reconfigurable constrained codes for data storage
- High performance graph-based codes
- Coding solutions for cloud storage
- How coding and machine learning can cooperate
- Challenges in DNA storage and quantum systems
- Conclusion and additional directions

Introduction to LDPC Codes

> Parity-check codes are a class of block error-correction codes (ECCs).

- **The code is defined by a parity-check matrix H.**
- **\Box** A codeword **v** satisfies $\mathbf{H}\mathbf{v}^{\mathrm{T}} = \mathbf{0}$.

$$\mathbf{H}_{(n-k)\times n} = \begin{bmatrix} \mathbf{P}_{(n-k)\times k}^{\mathrm{T}} \ \mathbf{I}_{(n-k)\times (n-k)} \end{bmatrix}, \mathbf{G}_{k\times n} = \begin{bmatrix} \mathbf{I}_{k\times k} \ \mathbf{P}_{k\times (n-k)} \end{bmatrix}.$$

Robert Gallager

	1	0	0	1	0	0	1	0	0	1	0	0
	0	1	0	0	1	0	0	1	0	0	1	0
	0	0	1	0	0	1	0	0	1	0	0	1
	1	0	0	0	0	1	0	1	0	1	0	0
=	0	1	0	1	0	0	0	0	1	0	1	0
	0	0	1	0	1	0	1	0	0	0	0	1
	1	0	0	0	1	0	0	0	1	1	0	0
	0	1	0	0	0	1	1	0	0	0	1	0
	0	0	1	1	0	0	0	1	0	0	0	1

Η

Columns represent bit or variable nodes (VNs). Rows represent check nodes (CNs). Non-zero values represent edges.

Systematic form

The corresponding bipartite graph: Circles represent VNs. Squares represent CNs.

Message Passing and Lifting

Decoding is iterative; via messages between VNs and CNs [R12].

□ Binary example: Gallager A decoding, and we receive $\begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$. □ CNs c_1 and c_2 are the only unsatisfied CNs. VN v_2 flips to 1 for $\mathbf{H}\mathbf{v}^{\mathrm{T}} = \mathbf{0}$.

Lifting a protograph (seed) to generate an LDPC code:

- $\square \gamma(\kappa)$ is the column (row) weight, i.e., VN (CN) degree.
- **u** \mathbf{H}^{p} is the protograph matrix. σ is the $z \times z$ circulant matrix, $\sigma^{0} = \mathbf{I}$.

Detrimental Objects in LDPC Codes

> Absorbing sets [R13, R14] result in decoding failure \rightarrow error floor.

- For an (a, b) absorbing set: The size of the set is a, the number of unsatisfied CNs connected to it is b, and each VN is connected to more satisfied than unsatisfied neighboring CNs.
- □ A (4, 4) binary absorbing set ($\gamma = 4$):
- More parameters are added for non-binary.
- Define an (a, d₁) <u>unlabeled</u> elementary trapping (absorbing) set (UTS) ((UAS)).
- Detrimental objects depend on the physics [H5].

 c_1 v_1 c_4 c_6 c_5 c_7 v_2 c_7 v_2 c_7 v_2 c_7 v_2 v_2 c_7 v_2 v_2 v_2 v_2 v_2 v_2 v_3 c_9 c_8

Circles represent VNs. White (grey) squares represent satisfied (unsatisfied) CNs.

Absorbing Sets Absorb the Decoder

How can an absorbing set (AS) cause a decoding error?

- □ Assume the all 0 codeword is transmitted.
- Assume errors occur only on the four VNs in the shown (4, 4) AS in the graph of the binary LDPC code.
- Thus, all these VNs are now 1's.
- Consider hard decision decoding.
- Each degree-2 CN now is satisfied (1 + 1 = 0), while degree-1 CNs are not.
- Each VN receives 3 stay and only 1 flip messages from the connected CNs.
- Despite being in error, all VNs stick to their wrong values.
- Consequently, the decoder is absorbed!

Construction of SC Codes

SC codes have excellent error-correction performance [R15].
 They offer additional degrees of freedom in the code design.

The construction steps are:

Partition **H** (size $\gamma z \times \kappa z$) into m + 1 components: \mathbf{H}_0 , \mathbf{H}_1 , ..., \mathbf{H}_m .

A replica

- Couple component matrices *L* times to construct \mathbf{H}_{SC} (size $\gamma z(L + m) \times \kappa zL$).
- □ If non-binary, assign weights \in GF(q)\{0}.

$$\mathbf{H} \triangleq \sum_{y=0}^{m} \mathbf{H}_{y}, \mathbf{H}^{p} \triangleq \sum_{y=0}^{m} \mathbf{H}_{y}^{p}$$
 (all 1's).

- My goal is to eliminate detrimental objects via optimized partitioning and lifting.
 - We know such objects in data storage systems (differ from AWGN) [H6].

What Techniques Do I Propose?

Previous work on partitioning includes [R16], [R17], and [H7].

Operate on the protograph then the unlabeled graph to design H_{SC}:

- **\Box** For low *m*, derive the optimal partitioning (OO) [H8, H9].
- □ For high *m*, derive a near-optimal partitioning (GRADE-AO) [H10].
- □ Next, optimize the lifting (CPO) [H8, H9]. Stop here if binary (the focus).
- □ If non-binary, optimize the edge weights (WCM) [H5, H6].

OO: What Are the Overlap Parameters?

- \succ The set of independent non-zero overlap parameters is $\mathcal{O}_{\mathrm{ind}}$.
- **Example:** For $\gamma = 3$ and m = 1:

 $\mathcal{O}_{\text{ind}} = \{t_{\{0\}}, t_{\{1\}}, t_{\{2\}}, t_{\{0,1\}}, t_{\{0,2\}}, t_{\{1,2\}}, t_{\{0,1,2\}}\}\$ (the ones in \mathbf{H}_0^p). \Box Other overlap parameters are functions of the ones in \mathcal{O}_{ind} .

I illustrate their definitions via an example:

Consider the case of $\kappa = 11$:

Building a Discrete Optimization Problem

➤ <u>Theorem</u>: The total number of cycle-6 instances in the protograph of an SC code with $\gamma \ge 3$, κ , m, and $L \ge m + 1$ is: $A(t_{\{i_1,i_2\}}, t_{\{i_1,i_3\}}, t_{\{i_2,i_3\}}, t_{\{i_1,i_2,i_3\}})$

$$F = \sum_{k=1}^{m+1} (L - k + 1) F_1^k,$$

 $\begin{aligned} \mathcal{A} \left(t_{\{i_1,i_2\}}, t_{\{i_1,i_3\}}, t_{\{i_2,i_3\}}, t_{\{i_1,i_2,i_3\}} \right) \\ &= t_{\{i_1,i_2,i_3\}} \left(t_{\{i_1,i_2,i_3\}} - 1 \right)^+ \left(t_{\{i_2,i_3\}} - 2 \right)^+ \\ &+ t_{\{i_1,i_2,i_3\}} \left(t_{\{i_1,i_3\}} - t_{\{i_1,i_2,i_3\}} \right) \left(t_{\{i_2,i_3\}} - 1 \right)^+ \\ &+ \left(t_{\{i_1,i_2\}} - t_{\{i_1,i_2,i_3\}} \right) t_{\{i_1,i_2,i_3\}} \left(t_{\{i_2,i_3\}} - 1 \right)^+ \\ &+ \left(t_{\{i_1,i_2\}} - t_{\{i_1,i_2,i_3\}} \right) \left(t_{\{i_1,i_3\}} - t_{\{i_1,i_2,i_3\}} \right) t_{\{i_2,i_3\}} \right) t_{\{i_2,i_3\}}. \end{aligned}$

 F_1^k is the number of instances starting from \mathbf{R}_1 and spanning k replicas.

$$F_1^1 = \sum_{\{i_1, i_2, i_3\} \subset \{0, \dots, (m+1)\gamma - 1\}} \mathcal{A}\left(t_{\{i_1, i_2\}}, t_{\{i_1, i_3\}}, t_{\{i_2, i_3\}}, t_{\{i_1, i_2, i_3\}}\right),$$

with $\overline{i_1} \neq \overline{i_2}$, $\overline{i_1} \neq \overline{i_3}$, $\overline{i_2} \neq \overline{i_3}$, and $\overline{i_x} \triangleq (i_x \mod \gamma)$.

The discrete optimization problem is described as follows.

Mathematical formulation:

$$F^* = \min_{\mathcal{O}_{\mathrm{ind}}} F.$$

Optimization constraints:

Interval constraints and the balanced (uniform) partitioning constraint.

\Box A solution to this problem is \mathbf{t}^* . \mathbf{t}^* is called an **optimal vector**.

The CPO then breaks the reflection condition [R18] for as many cycles in the optimal SC protograph (designed via t*) as possible.

Notable Performance Gains in Flash

- Channel: Normal-Laplace mixture (NLM) Flash [R19].
 - □ IBM MLC channel, with 3 reads and sector size 512 bytes.
 - □ RBER is raw BER. UBER is uncorrectable BER = $FER/(512 \times 8)$.

> All the codes have $\gamma = 3$, $\kappa = z = 19$, m = 1, L = 20, and q = 4.

□ Length 14440 bits and rate 0.834.

```
The OO-CPO-WCM approach 
outperforms existing methods:
```

- Code 6 outperforms Code 2
 by 2.5 orders of magnitude.
- Code 6 achieves 200% RBER gain compared with Code 2.
- Appropriately-designed SC codes outperform block codes [H9].

GRADE-AO: Gradient Descent Optimizer

- SC codes perform better as the memory becomes higher.
 The complexity of the OO technique grows rapidly with m and γ.
- GRADE-AO is a probabilistic technique that enables high memories.
 - □ Denote the probability (edge) distribution by $\mathbf{p} \triangleq [p_0 \ p_1 \ ... \ p_m]$.
 - □ Define the polynomial $f(X, \mathbf{p}) \triangleq \sum_{i=0}^{m} p_i X^i$. $[\cdot]_i$ is the coefficient of X^i .
- ➤ <u>Theorem</u>: A necessary condition to minimize the probability of a cycle-6 under random partitioning is $[f^3(X, \mathbf{p})f^2(X^{-1}, \mathbf{p})]_i = c_0, \forall i \in \{0, 1, ..., m\}.$
 - **D** This probability is $[f^3(X, \mathbf{p})f^3(X^{-1}, \mathbf{p})]_0$.
 - Consider $\mathcal{L}_6(\mathbf{p}) = [f^3(X, \mathbf{p})f^3(X^{-1}, \mathbf{p})]_0 + c[1 \sum_{i=0}^m p_i].$
 - □ Then, $\nabla_{\mathbf{p}} \mathcal{L}_6(\mathbf{p}) = 0$ leads to the necessary condition.

Gradient descent is then used to find p that satisfies the condition. GRADE-AO plus CPO give H_{SC}. Analysis is also done for cycles-8 [H10].

Uniform Partitioning Is Not the Answer!

Now, compare the gradient descent (GD) SC codes with high performance uniform (UNF) SC codes. Performance of (4, 29, 29, 19, 20)

$(\gamma, \kappa, z, m, L)$	Code	Cycles-6	Cycles-8
(2 7 12 F 100)	GD	0	0
(3, 7, 13, 5, 100)	UNF	0	6292
(4, 29, 29, 19, 20)	GD	0	528090
	UNF	0	1087268

- GD SC codes have superior performance in all regions.
 - They have potential in data storage and wireless communication systems.

SC codes over the AWGN channel

For high *m*, vastly skewed distributions give better thresholds!
 We are working on theoretical justification.

Alexei Ashikhmin

Construction of MD Graph-Based Codes

What is the idea of my technique?

Optimally couple multiple copies of a high performance OD code to mitigate (MD) system non-uniformity [R20] in storage devices.

Effective MD coupling removes detrimental objects.

Significant Lifetime and Density Gains!

Effective MD coupling [H11]:

- Eliminates all instances of certain detrimental objects.
- □ Achieves 1800 P/E cycles gain in Flash devices (left).
- □ Achieves 1.1 dB and 4 orders of magnitude gain in MR devices (right).
- These gains are vs. OD codes of the same parameters.

Observe threshold/waterfall gains: Opportunity in wireless.

My Related Work (1 of 2)

- [H5] A. Hareedy, C. Lanka, and L. Dolecek, "A general non-binary LDPC code optimization framework suitable for dense Flash memory and magnetic storage," *IEEE J. Sel. Areas Commun.*, 2016.
- [H6] A. Hareedy, C. Lanka, N. Guo, and L. Dolecek, "A combinatorial methodology for optimizing non-binary graph-based codes: Theoretical analysis and applications in data storage," *IEEE Trans. Inf. Theory*, 2019.
- [H7] H. Esfahanizadeh, A. Hareedy, R. Wu, R. Galbraith, and L. Dolecek, "Spatiallycoupled codes for channels with SNR variation," *IEEE Trans. Magn.*, 2018.
- [H8] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, "Finite-length construction of high performance spatially-coupled codes via optimized partitioning and lifting," *IEEE Trans. Commun.*, 2019.
- [H9] A. Hareedy, R. Wu, and L. Dolecek, "A channel-aware combinatorial approach to design high performance spatially-coupled codes," *IEEE Trans. Inf. Theory*, 2020.

My Related Work (2 of 2)

- [H10] S. Yang, A. Hareedy, S. Venkatasubramanian, R. Calderbank, and L. Dolecek, "GRADE-AO: Towards near-optimal spatially-coupled codes with high memories," ArXiv and accepted at IEEE ISIT, 2021.
- [H11] A. Hareedy, R. Kuditipudi, and R. Calderbank, "Minimizing the number of detrimental objects in multi-dimensional graph-based codes," *IEEE Trans. Commun.*, 2020.
- A. Hareedy, H. Esfahanizadeh, and L. Dolecek, "High performance non-binary spatially-coupled codes for Flash memories," in *Proc. IEEE ITW*, 2017.
- A. Hareedy, H. Esfahanizadeh, A. Tan, and L. Dolecek, "Spatially-coupled code design for partial-response channels: Optimal object-minimization approach," in *Proc. IEEE GLOBECOM*, 2018.
- A. Hareedy, R. Kuditipudi, and R. Calderbank, "Increasing the lifetime of Flash memories using multi-dimensional graph-based codes," in *Proc. IEEE ITW*, 2019.

References (1 of 2)

- [R12] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA, USA: MIT Press, 1963.
- [R13] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic, "Analysis of absorbing sets and fully absorbing sets of array-based LDPC codes," *IEEE Trans. Inf. Theory*, 2010.
- [R14] B. Amiri, J. Kliewer, and L. Dolecek, "Analysis and enumeration of absorbing sets for non-binary graph-based codes," *IEEE Trans. Commun.*, 2014.
- [R15] S. Kudekar, T. J. Richardson, and R. L. Urbanke, "Spatially coupled ensembles universally achieve capacity under belief propagation," *IEEE Trans. Inf. Theory*, 2013.
- [R16] D. G. M. Mitchell and E. Rosnes, "Edge spreading design of high rate arraybased SC-LDPC codes," in *Proc. IEEE ISIT*, 2017.

References (2 of 2)

- [R17] M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, and M. Baldi, "Design and analysis of time-invariant SC-LDPC convolutional codes with small constraint length," *IEEE Trans. Commun.*, 2018.
- [R18] M. P. C. Fossorier, "Quasi-cyclic low-density parity-check codes from circulant permutation matrices," *IEEE Trans. Inf. Theory*, 2004.
- [R19] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, "Modelling of the threshold voltage distributions of sub-20nm NAND flash memory," in *Proc. IEEE GLOBECOM*, 2014.
- [R20] S. Srinivasa, Y. Chen, and S. Dahandeh, "A communication-theoretic framework for 2-DMR channel modeling: Performance evaluation of coding and signal processing methods," *IEEE Trans. Magn.*, 2014.

Seminar Outline

- Motivation and technical vision
- Reconfigurable constrained codes for data storage
- High performance graph-based codes
- Coding solutions for cloud storage
- How coding and machine learning can cooperate
- Challenges in DNA storage and quantum systems
- Conclusion and additional directions

Types of Cloud Storage Systems

- Centralized cloud storage: A central cloud is connected to local clouds.
 Only the central cloud owner can rent storage spaces to customers.
 Examples: Amazon Web Services and Microsoft Azure.
- Decentralized cloud storage: No central cloud exists. No fixed topology.
 Clouds can directly communicate, and users can rent storage spaces.
 Examples: Blockchain-based cloud storage and Storj.
- A codeword is distributed over multiple servers of the cloud.
 - □ Failed servers (data erased) do not result in losing messages entirely.

Supporting Scalability and Flexibility

- Local and higher-level erasure-correction capabilities are provided.
 Higher-level capability via central cloud or via cooperation of clouds.
- > Our cloud storage solutions, which are based on algebraic coding, support:
 - Scalability: New clouds are added with minimal changes needed to the existing system (cost saving).
 - Flexibility: A cloud that has its data suddenly becoming hot (of higher demand) can split into smaller, faster clouds.
 - Heterogeneity: Data lengths in various clouds are allowed to differ.
 - Topology-awareness: In the decentralized case, the solution adapts to the network topology.

My Related Work

- S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Hierarchical coding for cloud storage: Topology-adaptivity, scalability, and flexibility," *ArXiv* and submitted to *IEEE Trans. Inf. Theory*, 2020.
- S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Hierarchical hybrid error correction for time-sensitive devices at the edge," ArXiv, 2021.
- S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Hierarchical coding to enable scalability and flexibility in heterogeneous cloud storage," in *Proc. IEEE GLOBECOM*, 2019.
- S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, "Topology-aware cooperative data protection in blockchain-based decentralized storage networks," in *Proc. IEEE ISIT*, 2020.

Seminar Outline

- Motivation and technical vision
- Reconfigurable constrained codes for data storage
- High performance graph-based codes
- Coding solutions for cloud storage
- How coding and machine learning can cooperate
- Challenges in DNA storage and quantum systems
- Conclusion and additional directions

New Storage Channels Are Hard to Model

Ultra dense, next-gen storage devices have underlying channels with various effects to model.

- **Examples on devices: V-NAND QLC/PLC Flash and TDMR devices.**
- **Examples on effects: All effects contributing to MD non-uniformity.**

Machine learning can help us break the barriers!

- The available mathematical models are quite complicated and do not capture everything.
- Thus, coding solutions based on them can be notably improved.
- I suggest using machine learning to direct the reconfiguration of LOCO codes and guide the design of LDPC codes.

Machine Learning to Help Coding

Regarding constrained codes:

- □ As the device ages, error-prone patterns change.
- We can learn the updated set of patterns to forbid from the LRs for errors collected at the output of the channel.
- □ Next, we respond by reconfiguring the LOCO code (online).

Regarding error-correction codes:

- We can learn the set of detrimental objects from the LRs for errors collected at the output of the EC decoder.
- Next, we design the LDPC code guided by that (offline).

Significant lifetime gains can be achieved through these ideas.

Machine learning can help improve detection and EC decoding as well.

> This is a research direction I am following (with Duke and UCSD).

A Framework for Computational Storage

- Distributed machine learning promises lower latency, higher accuracy, and better scaling with large datasets.
 - Computer architects have been searching for speed-up solutions, e.g., computing via GPUs.
 Raw input data
 SSD storage is Elash-based
 - One idea is to bring distributed computing units closer to data storage units.
- I want to develop coding solutions that enable low-latency computational storage without compromising the reliability.

Coding to Help Machine Learning

Writing to the storage module:

EC encoding can be performed distributively to speed up writing.

- Reading from the storage module:
 - Processing cores need not wait for an entire block to be decoded.
 - Message LRCs can significantly reduce the time to start computing.

Multi-level, adaptive EC capability

Speeding up distributed computing:

- □ If a worker straggles, the computation will not be completed.
- Straggler-resilient coding handles this problem and reduces latency.

The above ideas can be applied via graph-based codes (high reliability).

This is a research direction I am following (with Duke and UCLA).

Seminar Outline

- Motivation and technical vision
- Reconfigurable constrained codes for data storage
- High performance graph-based codes
- Coding solutions for cloud storage
- How coding and machine learning can cooperate
- Challenges in DNA storage and quantum systems
- Conclusion and additional directions

Data Processing for DNA Storage

> DNA storage can revolutionize data storage.

Orders of magnitude gains in density and lifetime.

Stages of storing information are:

- DNA synthesis to generate the strands, storing these strands in a container, and sequencing to read.
- □ All three stages suffer from errors.

External data processing includes:

Clustering, sequence reconstruction, and error correction.

> I want to develop novel data processing schemes for DNA data storage.

- Deep understanding of DNA characteristics is important.
- Collaboration with other faculty members is crucial.

Coding for Quantum Systems

- Quantum computers promise to solve problems remarkably faster than any classical computer.
 - They are now becoming a reality.
- Coding is required to ensure that computing and storage in quantum systems are performed reliably.

IBM quantum computing system

- I want to translate my classical results on high performance ECCs to the quantum world:
 - Quantum LDPC codes are important.
 - Quantum absorbing sets degrade performance!
- This is a direction I am following (with Duke and UA).
 Collaboration with other faculty members is crucial.

Seminar Outline

- Motivation and technical vision
- Reconfigurable constrained codes for data storage
- High performance graph-based codes
- Coding solutions for cloud storage
- How coding and machine learning can cooperate
- Challenges in DNA storage and quantum systems
- Conclusion and additional directions

Takeaways and More Directions

Conclusion:

- Storage densities are rapidly growing. Data require high protection.
- LOCO codes exploit physics to fortify devices with minimal redundancy.
- □ As the device ages, LOCO codes can be reconfigured to extend lifetime.
- □ High performance SC codes are designed via OO/GRADE-AO techniques.
- MD graph-based codes achieve significant lifetime and density gains.
- Our coding solutions for cloud storage achieve scalability and flexibility.
- Machine learning and coding can make the task of each other easier.
- Advanced data processing improves DNA storage and quantum systems.

Additional research directions:

- □ MD-LOCO codes with MD-LDPC codes for MD storage devices.
- Hierarchical algebraic codes for SSDs in multi-task systems.
- Data processing methods for in-memory computing and analytics.

Today's Seminar in One Slide

Thank You!