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GROUP THEORY EXERCISES AND
SOLUTIONS

M. Kuzucuoglu

1. SEMIGROUPS

Definition A semigroup is a nonempty set S together with an
associative binary operation on S. The operation is often called mul-
tiplication and if z,y € S the product of x and y (in that ordering) is
written as zy.

1.1. Give an example of a semigroup without an identity element.

Solution Z* = {1,2,3,...} is a semigroup without identity with
binary operation usual addition.

1.2. Giwe an example of an infinite semigroup with an identity
element e such that no element except e has an inverse.

Solution N= {0,1,2,...} is a semigroup with binary operation
usual addition. No non-identity element has an inverse.

1.3. Let S be a semigroup and let x € S. Show that {x} forms a
subgroup of S (of order 1) if and only if x> = x such an element x is
called idempotent in S.

Solution Assume that {z} forms a subgroup. Then {z} = {1}

and x? = x.
1
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Conversely assume that 22 = z. Then associativity is inherited
from S. So Identity element of the set {z} is itself and inverse of x is
also itself. Then {z} forms a subgroup of S.

2. GROUPS

Let V be a vector space over the field F'. The set of all linear in-
vertible maps from V' to V is called general linear group of V and
denoted by GL(V).

2.1. Suppose that F is a finite field with say |F| = p™ = q and
that V' has finite dimension n over F. Then find the order of GL(V).

Solution Let F' be a finite field with say |F| = p™ = ¢ and

that V' has finite dimension n over F'. Then |V| = ¢" for any base
wy, Wa, ..., w, of V' there is unique linear map 6 : V — V such that
v;0 = w; fort=1,2,...,n.
Hence |GL(V)| is equal to the number of ordered bases of V', in form-
ing a base wy, ws, ..., w, of V we may first choose w; to be any nonzero
vector of V' then ws be any vector other than a scalar multiple of wy.
Then ws to be any vector other than a linear combination of w; and
w9 and so on. Hence

IGL(V)| = (¢" — 1)(¢" — q)(¢" — ¢*)...(¢" — ¢" ).

2.2. Let G be the set of all matrices of the form ( 8 b ) where
c

a, b, c are real numbers such that ac # 0.
(a) Prove that G forms a subgroup of GLs(R).
Indeed

a b d e ad ae+bf
= eG
ac # 0,df # 0, implies that acdf # 0 for all a,c,d, f € R. Since

determinant of the matrices are all non-zero they are clearly invertible.
(b) The set H of all elements of G in which a = ¢ = 1 forms a subgroup

of G isomorphic to R*. Indeed H = {( (1) ll) ) | beR }
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1 b Loby\ (1 bi+b
0 1 o 1) \o 1
1

1 b\ 1 —b
— . <G.
(10) (5 ) emseo

Moreover H = Rt

o:H — R

<1b1>—>b1
0 1

1 b 1oby (1w 1 by
¢(0 1)(0 1y_m+@_¢<o 1)¢<0 1)

KGTSOZ{(é 511 )|90<(1) 511 ) =0="0b} = Id. So ¢ is one-to-

one.
Then for all b € R, there exists h € H such that p(h) = b, where h =

1 b
( 0 1 ) Hence ¢ is an isomorphism.

2.3. Let o € Aut G and let H = {g € G : g¢* = g}. Prove that H
s a subgroup of G, it is called the fixed point subgroup of G under c.

Solution Let g1, 92 € H. Then ¢ = g, and g3 = ¢g». Now
(9192) = 9795 = 192
(g51)=(g3)' =g;' € H. So H is a subgroup.

2.4. Letn be a positive integer and F' a field. For any n X n matrix
y with entries in F let y' denote the transpose of y. Show that the map

¢:GL,(F) — GL,(F)
r = (z7h)!
for allz € GL,(F) is an automorphism of GL,(F) and that the corre-

sponding fixed point subgroup consist of all orthogonal n x n matrices
with entries in F. ( That is matrices y such that y'y = 1)
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Solution

P(ziw) = [(x122)7"]'
= loz'a]

= ($f1)t<x§1)t = ¢(x1)P(x2)

Now if ¢(x1) = 1 = (27")!, then 27! = 1. Hence z; = 1. So ¢ is a
monomorphism. For all z € GL,(F) there exists 1 € GL,(F) such
that ¢(x;) = x. Let 1 = (z7!)". So we obtain ¢ is an automorphism.
Let H = {z € GL,(F) : ¢(x) = x}. We show in the previous exercise
that H is a subgroup of GL,(F). Now for x € H ¢(z) = x = (x~1)
implies xz! = 1. That is the set of the orthogonal matrices.

Recall that if G = G x G5, then the subgroup H of G may not
be of the form H; x Hy as H = {(0,0), (1,1)} is a subgroup of Zy X Z
but H is not of the form H; x Hy where H; is a subgroup of GG;. But
the following question shows that if |G| and |G| are relatively prime,
then every subgroup of G is of the form H; x H,.

2.5. Let G = Gy x Gy be a finite group with ged(|G1|, |Ga])) = 1.
Then every subgroup H of G is of the form H = Hy X Hy where H; is
a subgroup of G; fori=1,2.

Solution: Let H be a subgroup of GG. Let m; be the natural
projection from G to G;. Then the restriction of m; to H gives homo-
morphisms from H to G, for i = 1,2. Let H; = m;(H) fori = 1,2. Then
clearly H < Hy; x Hy and H; < G; for i = 1,2. Then H/Ker(m ) = H;
implies that |H;| | |H| similarly |Hs| | |H|. But ged(|Hl, |Hz|) =1
implies that |H,||Hs| | |H|. So H = Hy x Ha.

2.6. Let HLG and K <A G. Then HN K <G, Show that we can
define a map
¢ : G/IHNK — G/H x G/K
g(HNK) — (9H, gK)
for all g € G and that ¢ is an injective homomorphism. Thus

G/(H N K) can be embedded in G/H x G/K. Deduce that if G/H and
G/K or both abelian, then G/H N K abelian.
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Solution As H and K are normal in G, clearly H N K is normal
in G.
¢:G/HNK — G/H x G/K

pg(HNK)J(HNK)) = ¢(gg(HNK))
= (99'H,99'K)
= (9H,9K)(¢'H,¢'K)

= p(g(H N K))p(g'(HNK)).

So ¢ is an homomorphism. Kerg = {g(HNK) : p(g(HNK)) =
(e,e) = (gH,gK)}. Then g € H and g € K implies that g € HNK. So
Kerp = HNK.If G/H and G/ K are abelian, then gy Hgo H = g1g2H =
g1 H. Similarly g1goK = g291 K for all gi1,90 € G, g5'91 ' 291 €
H, gy'97'901 € K. So for all g1,9, € G, g5'97'921 € HNK.
9 97 e (HNK) = HN K. So 291 (HNK) = g1g2(H N K).

2.7. Let G be finite non-abelian group of order n with the property
that G has a subgroup of order k for each positive integer k dividing n.
Prove that G is not a simple group.

Solution Let |G| = n and p be the smallest prime dividing |G].
If G is a p-group, then 1 # Z(G) < G. Hence G is not simple. So
we may assume that G has composite order. Then by assumption G
has a subgroup M of index p in G. ie. |G : M| = p. Then G acts
on the right cosets of M by right multiplication. Hence there exists
a homomorphism ¢ : G < Sym(p). Then G/Ker¢ is isomorphic
to a subgroup of Sym(p). Since p is the smallest prime dividing the
order of G we obtain |G/Ker¢|| p! which implies that |G/Ker¢| = p.
Hence Kerg # 1 otherwise Ker ¢ = 1 implies that G is abelian and
isomorphic to Z,. But by assumption G is non-abelian.

2.8. Let M < N be normal subgroups of a group G and H a
subgroup of G such that [N, H] < M and [M, H] = 1. Prove that for
allh € H and x € N

(i) [h,x] € Z(M)
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(ii) The map

0, H — Z(M)
h — |h,z]

1s a homomorphism.

(tii) Show that H/Cy(N) is abelian.

Solution: Let h € H and x € N. Then [h,z] = h™ 'z he €
[N, H] < M. Moreover for any m € M, we need to show m[h,z]| =
[h, z]m if and only if m~'h~ 'z~ ham = h~'z~'hx if and only if
m~th7 e thamaz~'h~'zh = 1ifand only if m~*h~tx=Y(wma—)hhlzh =

1 . That is true as mh = hm and M is normal in G we have,

xmz~!' € M and zmax'h = hamax ™!

(ii)
ew(hlhg) = [hlhg, J]]
= [hb x]hQ [h27 JJ]
= [hla :L‘] [h27 ZL’]

as [hy,z] € Z(M) and so hy 'mhy = m.

(iii) It is easy to see that Kerf, = Cy(x). Then we can define a
map

v H— Z(M)x Z(M)x...xZ(M)...
h— [hyz]x  [hyxo] X ... X [hyx] ...

where all z; € N . Then the kernel of ¢ is NCy(z;) = Cy(N). Then
z;€EN
the map from H/Cy(N) to the right hand side is into and the right

hand side is abelian we have H/Cy(N) is abelian.
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2.9. Let G be a finite group and ®(G) the intersection of all maz-
imal subgroups of G. Let N be an abelian minimal normal subgroup of

G. Then N has a complement in G if and only if N 4 ®(G)

Solution Assume that N has a complement H in G. Then
G = NH and N N H = 1. Since G is finite there exists a maximal
subgroup M > H. Then N is not in M which implies N is not in ®(G).
Because, if N < M, then G = HN < M which is a contradiction.
Conversely assume that N £ ®(G). Then there exists a maximal
subgroup M of G such that N £ M. Then by maximality of M
we have G = NM. Since N is abelian N normalizes N N M hence
G=NM < Ng(NNM)ie NNM isan abelian normal subgroup of
G. But minimality of N implies NN M = 1. Hence M is a complement
of N in G.

2.10. Show that F(G/¢(G)) = F(G)/é(G).

Solution: (i) F(G)/#(G) is nilpotent normal subgroup of G/¢(G)
so F(G)/6(G) < F(G/9(G)).
Let K/¢(G) = F(G/¢(G)). Then K/¢(G) is maximal normal nilpotent
subgroup of G/¢(G). In particular K <4 G and K/¢(G) is nilpotent.
It follows that K is nilpotent in G. This implies that K < F(G).
K/8(G) < F(G)/(G) which implies F(G/6(G)) = F(G)/(G).

2.11. If F(Q) is a p-group, then F(G/F(G)) is a p'- group.

Solution: Let K/F(G) = F(G/F(G)), maximal normal nilpotent
subgroup of G/F(G). So K/F(G) = Dr Oy K/F(G)) = P/F(G) x
en(a
P,/F(G) x...x P, /F(G). Since F(G)q is (a )p—group so one of P;/F(G)
is a p-group, say P;/F(G) is a p-group.

Now P; is a p-group, Pi/F(G)charK/F(G)charG/F(G) implies
that P, /F(G)charG/F(G) implies P; <G. This implies P; is a p-group
and hence nilpotent and normal implies P, < F(G). So P1/F(G) = id
ie K/F(G) = F(G/F(Q)) is a p'’-group.

Observe this in the following example. S5, F/(S3) = As. F(S3/As) =
S3 /A3 = Zs is a 2-group.

2.12. Let G = {(a;j) € GL(n,F) | a;j =0 ifi > j and a; =
a, i = 1....,n} where F is a field, be the group of upper triangular
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matrices all of whose diagonal entries are equal. Prove that G = D x U
where D is the group of all non-zero multiples of the identity matrix
and U is the group of upper triangular matrices with 1’s down diagonal.

Solution
d: G — F*
a Ci2 €13 Cig ... Cin
0 a c3 co4 Con
— a
0O 0 0 0 a cpin

It is clear that d is a homomorphism and Ker d = U. So U is
normal DNU = 1. Since F'is a field and «a is a non-zero element every
element g € GG can be written as a product g = cu where ¢ € D and
u € U. So DU = G. Moreover D is normal in G in fact D is central in
G.SoG=DU=DxU.

2.13. Prove that if N is a normal subgroup of the finite group G
and
(IN|,|G : N|) =1, then N is the unique subgroup of order |N|.

Solution If M is another subgroup of G of order |N|. Then NM
is a subgroup of G as N < G. Now |[NM| = \‘%Iflf‘f\ﬁl' If N # M, then
INM| > |N| and if 7 is the set of primes dividing |N|, then N is a
maximal 7m-subgroup of G. But M N is also a m-group containing N

properly. Hence MN = N. i.e M < N.

2.14. Let F be a field. Define a binary operation x on F by axb =
a+b—ab forall a,be F.
Prove that the set of all elements of F distinct from 1 forms a group
F* = F\ {1} with respect to the operation * and that F* = F* where
F* is the multiplicative group on F \ {0} with respect to the usual
multiplication in the field.



GROUP THEORY EXERCISES AND SOLUTIONS 9

Solution x* is a binary operation on F* as a + b — ab = 1 implies
(a—1)(1—=0b) =0but @ # 1 and b # 1 implies image of x is in 7.
Indeed * is a binary operation and * : F* x F* — F*

(1) associativity of *: We need to show a * (b*c) = (a*b) * ¢
Indeed a % (bxc) =ax* (b+c—bc) and (a*xb)*xc= (a+b—ab) *xc
Then ax(bxc)= a+b+c—bc—(ab+ac—abc) = a+b—ab+c—ac—bc+abe =
(a x b) * ¢ So associativity holds.

(ii) For the identity element, let a xb = a for all a € F implies b is
the identity element. The equality implies that a + b — ab = a. Hence
b—ab=01ieb(l—a)=0. Since this is true for all @ and a # 1 we
obtain b = 0 and 0 is the identity element.

(iii) a* b =bx*a if and only if a + b — ab = b+ a — ba if and only if
—ab = —ba since we are in a field for all a,b € F' we have ab = ba. So
axb=>bxaforall ae€F.

(iv) Now for all a € F\{0}, there exists a’ € F such that a*a’ =0
=a+d —ad implies a+a’ = ad’. So @’ = a(1 —a)~'. Hence F” is an
abelian group with respect to *. Let

¢:F* — F*

a— 1—a

dlaxb)=¢a+b—ab)=1—a—b+ab=(1—a)(l—>b) = ¢(a)p(b).

Then Kerp ={a € F* : ¢(a) =1} ={a € F* : 1—a=1} = {0}.
¢ is onto as for any b € F* so b # 0,  ¢(xr) = b implies that

l—xz=bsox=1-—0band z # 1. Hence ¢ is an isomorphism.

2.15. Consider the direct square G x G of G. Let G = {(g,9) :
g€ G CGExG.
(i) Show that G is a subgroup of G x G which is isomorphic to G.

G is called the diagonal subgroup of G x G.
(i1) Show also that G <G x G if and only if G is abelian.

Solution i) G is a subgroup of G. Indeed (91,01), (92,92) € G.

(91,91>(92,92) = (9192,9192) € G! (gl_l,gl_l) € G which implies G is a
subgroup of G x G.
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G = G. Indeed define
v : G— G
9—1(9,9)

el99) = (99'.99") = (9.9)(d",9') = ¢(9)¢(g’). So ¢ is a homomor-
phism.

©(g) =1 =(g,g). This implies g = 1. So ¢ is a monomorphism.
For all (g;,g;) € G there exists g; € G such that ©(g;) = (gi, ;). So ¢
is onto. Hence ¢ is an isomorphism.

ii) G 9@ x G if and only if G is abelian.

Assume G is a normal subgroup of G X GG. Then for any g1, g2 € G,

(91, 92) (. 2) (91, 92) = (91 'xg1, 95 'wg2) € G. In particular g, = 1
implies for all gy, and for all z € G, g, 'xg, = x. Hence G is abelian.

Conversely if G is abelian, then G x GG is abelian and every subgroup
of G x G is normal in G, in particular G is normal in G.

2.16. Suppose H A G. Show that if x,y elements in G such that
xy € H, then yxr € H.

Solution H <G, implies that every left coset is also a right coset
Hx=xH,yH = Hy, xy € H so H = xyH.
xH = Hz implies xyxH = vyHx = Hx. Then yoH = v 'Hx = H.
Hence yzr € H.

2.17. Give an example of a group such that normality is not tran-
sitive.

Solution Let us consider A4 alternating group on four letters.
Then V = {1, (12)(34), (13)(24), (14)(23)} is a normal subgroup of A,.
Since V' is abelian any subgroup of V' is a normal subgroup of V. But
H = {1,(12)(34)} is not normal in A,.

Another Solution Let’s consider G = S3x S5, A3 = {1, (123), (132)}.
Az < S3. Let

A= (1,1),((123),(123)),((132),(132)) } < G, A is diagonal
subgroup of A3 x Az and A = A3. A< A3 x A3<G. But A is not normal
in G as ((12),1)71((123), (123))((12), 1) = ((132), (123)) ¢ A.
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2.18. If o € AutG and x € G, then |z%| = |z|.

Solution First observe that (z*)" = (2™)®. If 2 has finite order
say n, then (z*)" =1 = (2™)* = 1*. Hence z™ = 1 as « is an automor-
phism. Hence z has finite order dividing n. If order of z is less than
or equal to n, say m. Then we obtain ™ = 1. Then (z™)* = 1% = 1.
Hence (z*)™ = 1. It follows that n = m, ie. |z% = |z| when the
order is finite. But the above proof shows that if order of z® is infinite
then order of z must be infinite. In particular conjugate elements of
a group have the same order. We can consider the semidirect product
of G with the Aut(G). Then in the semidirect product the elements x
and ¢ becomes conjugate elements.

2.19. Let H and K be subgroups of G and x,y € G with Hx = Ky.
Then show that H = K.

Solution Hr = Ky implies Hry™' = K. As H is a subgroup,
1€ H and so xzy~! € Hry ' = K. Then yz~! € K. It follows that
K = Kyz!. Then K = Koy ' = Kyz~' = H. Hence K = H.

2.20. Prove that if K is a normal subgroup of the group G, then
Z(K) is a normal subgroup of G. Show by an example that Z(K) need
not be contained in Z(G).

Solution: Let z € Z(K), k € K and g € G. Then g 'zg €
K as K < G and (g '29)k(g 27 g)k™ = g7'2(gkg™)271gk™! =
g Y (gkg1)zz71gk™ = 1. Hence Z(K) < G.

Now as an example consider Az in S3. Z(A3) = A3 but Z(S3) = 1.

2.21. Let x,y € G and let xy = z if z € Z(G), then show that x
and y commute.

Solution: zy = z € Z(G) implies for all g € G, (zy)g = g(xy).
This is also true for z, hence (xy)z = z(zy). Now multiply both side

1

by 7", we obtain yr = xy. Then z and y are commute.

2.22. Let UT(3, F) be the set of all matrices of the form

1 a b
01 ¢
0 01
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where a, b, c are arbitrary elements of a field F, moreover 0 and 1 are
the zero and the identity elements of F' respectively. Prove that
(1)) UT(3,F) < GL(3, F)
(1)) ZWUT3,F)) 2 F* and UT(3,F)/Z(UT(3,F)) 2 F* x Ft
(111) If |F| = p™, then UT(3,p™) € Syl,(GL(3,p™))
Solution: (i) Let

b

1 a 1 vy
A=101 ¢ |, B=|101 2 |, ab,cz,yz€F

0 01 0 01

1 2+a y+az+>b
Then AB=1| 0 1 z+c eUT(3,F)

0 0 1
1 —a —b+ac

Atlt=10 1 —c cUT(3,F).

0 0 1
Hence UT'(3, F') is a subgroup of GL(3, F).

(ii) Now if
1 a b
A= 0 1 ¢ | € Z(UT(3,F)), then AB = BA for all B € UT(3, F') implies
0 01
1 00
A=101 0
0 01
and every element of this type is contained in the center so
10 b
ZUTB,F)={] 0 1 0 || beF }
0 01
Let
p: Ft— Z(UT(3,F))
1 00
b — 010
0 01
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 is an isomorphism.

Now to see that UT'(3, F)/Z(UT(3,F)) = F* x F*.
Let 0 : UT(3, F)/Z(UT(3,F)) — F* x F*.

b
¢ | Z— (a,c¢)
1

O O =
S =

0 is well defined and, moreover 6 is an isomorphism.

(iii) Now all we need to do is to compare the order of UT'(3,p™) and
the order of the Sylow p-subgroup of GL(3,p™). It is easy to see that
[UT(3,p™) = p*™. And |GL(3,p™)| = (p*"—1)(p*"—p™) (p*" —p*™) =
PP ((p>™ — 1)(p*™ — 1)(p™ — 1)). Hence p part are the same and we
are done.

2.23. Letx € G, D:={29 : g€ G} and U; < G fori= 1,2.
Suppose that (D) = G and D C Uy UUs. Then show that Uy = G or
U, =0@G.

Solution: Assume that U; # G. Then there exists g € G such that
x9 ¢ Uy otherwise all conjugates of x is contained in U; and so D C Uy
which implies U; = G. Then 29 ¢ U; implies 29 € Uy as D C Uy U Us.
Now for any uy; € Uy, (z9)"“ ¢ U; otherwise 29 will be in U; which is
impossible. Then for any u; € U; we obtain (z9)"* € U,. Now Uy is
a subgroup and 29 € U, so we have (29)"2 € U, for all uy € Uy. As
(U1 UUy) = G we obtain (29)" € U, for all t € G, i.e, D C U, this
implies (D) < U, but (D) = G < U, which implies U; = G.

2.24. Let g1, 90 € G. Then show that |g192| = |g291].

Solution: We will show that if |g;1go| = k < oo, then |gag1| = k.
Let |g192| = k. (9192)(9192)----(9192) = 1. Then multiplying from left

N S

TV
k—times

by g1" and from right by g5 ' we have (g291)(g291) - - - (9291) = 1 92

N /

-1

-~

(k—1)—times
Now multiply from right first by g, and then g¢;, we obtain

(gzgl)(gggl)...(gzglz = ((g291))* = 1. It cannot be less than k since we

k—times
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may apply the above process and then reduce the order of (g1¢92) less
than k.

2.25. Let H < G, g1,90 € G. Then Hg, = Hgs if and only if
g 'H=g,"H.

Solution: (=) If Hg; = Hg,, then H = Hgog; ! hence g9, 7! €
H. Then H is a subgroup implies (g2g1')"' € H ie. g1go"t € H. Tt
follows that g1go"*H = H. Hence ¢y 'H = g, 'H.

() If gy 'H = go7'H, then g1g,"! € H by the same idea in the
first part we have (g1go" )"t € H, gog1 ' € H i.e. Hgogy ' = H. This
implies Hg, = Hgs.

2.26. Let H < G, g € G if |g| =n and g™ € H where n and m
are co-prime integers. Then show that g € H.

Solution: The integers m and n are co-prime so there exists
a,b € 7 satisfying an + bm = 1. Then g = ¢»tm = gmghm =
(g™)*(g™)" = g™ € H. As H is a subgroup of G, ¢™ € H implies
¢"™ € H and ¢"* = 1. Hence g™ =g € H.

2.27. Let g € G with |g| = nine where ny,ny co-prime positive
integers. Then there are elements g1, 92 € G such that g = g1g2 = G201
and |g1| = n1, |g2| = no.

Solution: As n; and ny are relatively prime integers, there exist
a and b in Z such that an; + bny = 1. Observe that a¢ and b are
also relatively prime in Z. Then g = ¢' = g¥™ 2 = gamghn2 et
g1 = g"* and go = g™ Then gi" = (¢")™ = 1, gy = (9")™ =1
g = gi1gp = gimttne = ghnatami — g, Indeed |gi| = ny. If g = 1,

bnam — 1. Tt follows that nins|bnym. Then ni|bm

then m|n; and g* = ¢
but by above observation n; and b are relatively prime as an;+bns = 1,

so ny|m. It follows that ny = m. Similarly |gs| = na.

2.28. Let g1, g2 € G with |g1] = ny < 00, |ga| = ne < 00, if ny and
ny are co-prime and g1 and go commute, then |gigs| = nins.

Solution: The elements g; and g, commute. Therefore
ning

(9192)™" = g1 g5
(9192)™ = ¢7"g5* = 1. Then m|niny and g" = g5 ™.
(g™ = (g3 ™)™ = 1. Then ne|mny but ged(ny,ne) = 1. We obtain

= (g7")"(g5%)" = 1. Assume [g1g2| = m. Then
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na|lm. Similarly ni|m but ged(ni,ns) = 1 implies nyns|m. Hence

m = niny.

2.29. I[f H < K <G and N < G, show that the equations HN =
KN and HNN = KN N imply that H = K.

Solution: HNNK = KN N K = K. On the other hand by
Dedekind law HN N K = H(NNK) = H(NN H) = H. Hence
H=K.

2.30. Given that Hy < Ky < G for all A € A, show that ﬂH,\ <

() K

A

Solution: Let x € ﬂH,\ and g € ﬂK,\ Then consider g~ 'zg.

Since, for any A € A, g¢ E Ky and z € HA and Hy < Ky, we have
g lzge Hy forall \ € A. i.e g7 lag € mHA'
AEA
2.31. If a finite group G contains exactly one maximal subgroup,
then G is cyclic.

Solution: Let M be the unique maximal subgroup of G. Then
every proper subgroup of GG is contained in M. Since M is maximal
there exists a € G\ M. Then (a) = G

2.32. Let H be a subgroup of order 2 in G. Show that No(H) =
Cq(H). Deduce that if No(H) = G, then H < Z(G).

Solution: Let H = {1,h} be a subgroup of order 2. Clearly
Ce(H) < Ng(H). We need to show that if |[H| = 2, then Ng(H) <
Co(H). Let g € Ng(H). Then g 'hg is either 1 or h. If g7'hg = 1,
then h = 1 which is a contradiction. So g~thg = hi.e g € Co(H). So
Ca(H) = Ng(H). Moreover if Ng(H) = G then Cq(H) = Ng(H) =
G. This implies H < Z(G).

2.33. Let a € AutG. Suppose that x1x* € Z(G) for all x € G.
Then x* = x for all x € G'.

Solution: Observe that z7'2% € Z(G) implies that z°z~! € Z(G)
as Z(@) is a subgroup and x is an arbitrary element in G. Take an
arbitrary generator a 'b"lab € G’ where a,b € G. Then
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(a v tab)® = (a )b ") *(a)*(b)*
)

For any generator x € G' we have 2% = x. Hence for any g € G’ we
have g =g

2.34. Let G = AAY for some g € G. Then G = A.

Solution: It is enough to show that the specific element ¢ € G
is contained in A. For every element = € G, there exist a,, b, in A
such that z = a,bf. In particular g = a,b9 = a9 'byg. It follows that
agg by =1 and g7' = a;'b, ", then g =bya, € A as a, and by in A.

2.35. Let G be a finite group and A < G and B < A. If
T1,%a... T, 18 a transversal of A in G and y1,Ys...Ym 1S a transver-
sal of Bin A, then{y;x;} ,1=1,2,...,n andj =1,2,...,m is a transver-
sal of B in G.

Solution: Let G = U?:l Azx; and Az; N Az; = for all ¢ # j and
A =", By; and By; N By; = 0 for all i # j. Then we have,

G =UL Av = UL, (U;nzl Byi) z; = Uiz Ui, By
If By;x; N By,x,, # 0, then Az; N Az, # 0 implying that z; = x,,.
Then By,x; N By,x; # 0 . Hence y, = y;,

2.36. Suppose that G # 1 and |G : M| is a prime number for
every mazximal subgroup M of G. Then show that G contains a normal
mazximal subgroup. (Mazimal subgroups with the above properties exist
by assumption).

Solution: Let ¥ be the set of all primes p; such that |G : M;| = p;
where p; is a prime.
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So X ={p;i : |G: M| =p; M, is a maximal subgroup of G}. Let p
be the smallest prime in ¥. Let M be a maximal subgroup of G such
that |G : M| = p. Then G acts on the right to the set of right cosets
of M in G. Let Q = {Mz : z € G}. Then || = p and there exists a
homomorphism
¢: G — Sym(Q)

such that Ker ¢ = NyegM® < M. Then G/Ker ¢ is isomorphic to
a subgroup of Sym(Q)) and |Sym(Q)| = p!. Then G/Ker(¢) is a finite
group and there exists a maximal subgroup of G containing Ker(¢) and
index of subgroup divides p!. But p was the smallest prime |G : M| = p
so this implies that M = Ker (¢) is a normal subgroup of G.

2.37. If G acts transitively on §, then Ng(G,) acts transitively
on Cq(Gy), « €.

Solution G, ={g€ G| a.g=a } and
Ca(G,) ={€Q | Bg=p forall ge G, }. Clearly a € Cq(G,).
We will show that the orbit of Ng(G,,) containing « is Cqo(Gl,).

Observe first that if § € Cq(G,) and x € Ng(G,), then Sz €
Ca(G,). Indeed for any g, € Ga, 87.95 = frger 'z = Byz for some
y € G,. Hence frg, = fz. ie. fr € Cq(G,). Let 5 € Cq(G,). Since
G is transitive on (2, there exists g € G such that a.g = 5. Then for
any t € Gy, a.gt = ag. i.e gtg7! € G, forallt € G,. i.e. g € Ng(G,).
Therefore the orbit of N¢(G,) containing « contains the set Co(G,,).

2.38. Let G be a finite group.

(a) Suppose that A # 1 and AN A9 =1 for all g € G\ A.
Then |U,eq A% > 5 +1

(b) If A# G, then G # J,cq A

Solution: (a) If A = G, then the statement is already true.
So assume that A is a proper subgroup of GG. The number of distinct
conjugates of A in G is the index |G : Ng(A)| = k.
Observe first that asNg(A) > Aand ANA9=1forallge G\ A
we have Ng(A) = A. Then A% N A% =1 for all : # j as A% N A% # 1
implies A N A%9; ' £ 1. Tt follows that A = A%9 ' This implies
A% = A% and we obtain i = j.

|G - Na(A)] = mlodgy = G = k. Then |G| = K| A|.
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Now

k
Jat = 1Ja%
i=1

geG

= k(JAl—-1)+1

= klAl—-k+1

= |G| —-k+1

> |G\—@+1ask§@
G|

= — 41
5 +

(b) By above if A # G, then [{J,qA?l = |G| —k + 1. Then
Gl =k =14 |U,cq A7 as k > 2 we obtain G # |, A”.

2.39. If H < G, then G\ H s finite if and only if G is finite or
H=G.

Solution: Assume that H < G and G\ H is finite. If G\ H = ¢
then, G = H. So assume that G\ H # ¢. If v € G\ H, then the left
coset xH has the same cardinality as H and xH N H = ¢, it follows
that *tH C G\ H. Hence H is finite. Similarly U t;H C G\ H finite

ti#1
where t; belongs to the left transversal of H in G. But G = U t,HUH.

tiF#l
Union of two finite set is finite. Hence G is a finite group.

Converse is trivial.

2.40. Let d(G) be the smallest number of elements necessary to
generate a finite group G. Prove that |G| > 24%)
(Note: by convention d(G) =0 if |G| = 1).

Solution: By induction on d(G). If d(G) = 0, then |G| = 1. The
result is also true if d(G) = 1. Since the non-identity element has order
at least 2. Hence |G| > 2. Let d(G) = n. Assume that if a group H is
generated by n — 1 elements, then |H| > 271

Let the generators of G be {xy,z2, -+ ,x,}. Then the subgroup
T =< uxy,29, -+ ,x,_1 > is a proper subgroup of G and by assumption
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IT| > 2", Since x, € T we obtain z,,T is a left coset of T' in G and
z,TNT = ¢. Moreover x, 7 UT C G. Hence |G| > |z,TUT| =
|z, T| + |T) =2|T| > 22" =2",

2.41. A group has exactly three subgroups if and only if it is cyclic
of order p* for some prime p.

Solution: Let G be a cyclic group of order p?. Every finite cyclic
group has a unique subgroup for any divisor of the order of G. Hence
G has a unique subgroup H of order p. Hence H is the only nontrivial
subgroup of G. Then the subgroups are {1}, H and G.

Conversely let G be a group which has exactly three subgroups.
Since every group has {1} and itself as trivial subgroups, G must have
only one non-trivial subgroup, say H. So H has no nontrivial sub-
groups. This implies H is a cyclic group of order p for some prime p.
Let z € G. Then o~ 'Hx is again a subgroup of order p but G has only
one subgroup of order p implies that v~ 'Hx = H for all z € G i.e. H
is a normal subgroup of G. So we have the quotient group G/H. Since
there is a 1 — 1 correspondence between the subgroups of G/H and the
subgroups of G containing H we obtain G/H has no nontrivial sub-
group i.e. G/H is a group of order ¢ for some prime ¢q. Then |G| = pq
so G has a proper subgroup of order p and of order ¢q. This implies

p=gq and |G|=p*

Every group of order p? is abelian. Then either G is cyclic of order
p?or G = Z, x Z, Butif G is isomorphic to Z, x Z, then G has
5 subgroups but this is impossible as we have only three subgroups.
Hence G is a cyclic group of order p?.

Another Solution: Let G be a group with exactly 3 subgroups.
Since {1} and {G} are subgroups of G we have only one nontrivial
proper subgroup H of GG. Since H has no nontrivial subgroup. It is a
group of order p for some prime p, say H = (z), since G # H there
exists y € G\ H. Then (y) is a subgroup of G different from H. Hence
(y) = G. So G is a cyclic group, and has a subgroup H of order p. This
implies G is a finite cyclic group. Since for any divisor of the order of
a cyclic group, there exists a subgroup, the only prime divisor of |G|
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must be p. And |G| must be p? otherwise G has a subgroup for the
other divisors.

2.42. Let H and K be subgroups of a finite group G.

(a) Show that the number of right cosets of H in HAK equals |K :
HIN K|

(b) Prove that

> R = R S AR
y |[HIN K| |H||K] y |H N K4
where d runs over a set of (H, K)-double coset representatives.

Solution: (a) The function a : HIK — HdKd ™!
hdk — hdkd™*
is a bijective function. Hence |HdK| = |HdKd | = |H- K. Similarly
B: HIK — d"'HdK is bijective. Hence

|HdK| = |HK®| = |d'HdK| = |H'K|

Since H and K? are subgroups of G we have |HdK| = |HK?Y.

H| K] |H]|K]

HdK| = |HK®| = =

| = | |[HN K  |HNKY

|HdK| _ |H'K| _ [HY|K|] _  |K]

= [H]  [HIHINEK|  [HINK]
=|K: KnHY

(b)

el |HdK| K] 1

[H| K] ZIHHK! ZIHdﬂK\IK! %:IHC’WK\
similarly

Gl HAK] H K 1
!HHK\_%:IHHK!_%:\HWWI-IHIIKI_%:!HWKd\

2.43. Find some non-isomorphic groups that are direct limits of

cyclic groups of order p,p?,p3, - --
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Solution: Let the finite cyclic group G; of order p* be generated
by x;. Recall that a cyclic group has a unique subgroup for any divisor
of the order of the group.

ot Gi = Gip
i p
XT; — Tiq1

The homomorphisms a‘™ is a monomorphism. So direct limit is
the locally cyclic (quasi-cyclic or Prufer) group denoted by Cpe.

i+l Gz — Gi+1

(b) a; . Then D = lim G, = {1}.

2.44. If H < G, prove that H® = (H%| g € G) and Hg = (e H.

Solution: Recall that H® is the intersection of all normal sub-
groups containing H. Let M = (HY g € G) we need to show that
M = HY Every element x € M is of the form = = h{'h$*- .- hi*.
Then for any element

gEG, %= (h{---h$)9 = h{RPI .. B € M.

Hence M is a normal subgroup of GG. If we choose g = 1 in h? we obtain
H < M. Hence M is a normal subgroup containing H i.e. M D H¢.
On the other hand H¢ is a normal subgroup of G containing H. Hence
HC contains all elements of the form h?, ¢ € G. In particular H% D M.
Hence M = HC.

Hg is the join of normal subgroups of G contained in H. Recall
that H¢ is the largest normal subgroup, contained in H.

For the second part, let, T = ﬂgeG HY.

If we choose g =1 we obtain HY = H. Hence T' C H. Intersection
of subgroups is a subgroup, hence 7' is a subgroup of G.

Let x € T. Then z € HY for all y € G. It follows that 29 € HY
for all y € G. But ﬂ HY = ﬂ HY9 since the function « : G=G

yeG yeG Yy—yg

is 1 — 1 and onto. Hence T is a normal subgroup of G contained in H.
It follows that T' C Hg.

On the other hand H¢ is a normal subgroup of G' contained in H.
Then HY < H9 for all g € G. But H, = Hg implies Hg < ﬂ HI=T.

geG

Hence T'= Hg.
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2.45. If H is abelian, then the set of homomorphisms Hom (G, H)

from G into H is an abelian group, if the group operation is defined by
gt = g°g".

Solution: Let «, 5,7+ € Hom (G, H). Then for any g € G

gt = g g = g (gP 7).
= (9°¢")g
= ga+6 . g"/ . g(a"'ﬁ)""'y

By associativity in H.

Hence a + (8 +7) = (a+ 8) +v

The zero homomorphism, namely the map which takes every ele-
ment g in G to the identity element in H.

For any o € Hom (G, H)

gfa — (gfl)a
ga—a — gO — 1
Hence —« is the inverse of a.

g™t B — gagﬁ =g°g% since H is abelian

= ¢’ Hence a+f8=0+a
for all o, 8 € Hom (G, H) g**# = g°¢” , then o+ 3 is a homomorphism.
(gh)**? = (gh)*(gh)” = g¢*h* ¢°D”
= ¢%¢” - h°h® since H is abelian.
ga+ﬁha+ﬁ

Observe that commutativity of H is used in order to have a+ [ € Hom
(G,H).

2.46. If G is n-generator and H 1is finite, prove that
| Hom(G, H)| < |H]"

Solution: Let GG be generated by ¢1, g2, , g, and a be a homo-
morphism. « is uniquely determined by the n tuple g7, g5, - , go. For
this if 5 is another homomorphism from G into H, such that ¢ = giﬂ :
Then for any element g € G

ni1 152

9=09."927 g
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where g;; € {g1,-- ,gn} for alli; € {1,2,--- ,n} and n;; € Z. Since «
and 8 are homomorphisms from G into H.

o = (o) (o) (o)
B iy g Tig g Mig g
g = (gzl ) (gzg ) “'<gik >

It follows that for any g € G, g® = ¢°. Hence a = 3. H is finite and
there are at most |H|", n-tuple. Hence the number of homomorphisms
from G into H is less than or equal to |H|".

2.47. Show that the group T = {5t |m,n € Z} is a direct limit of
infinite cyclic groups.

Solution Let GG; be an infinite cyclic group generated by z;. Define
Gi — G;

a homomorphism o/ : " 2Z+1

Ty — Ty

Jo_ il 2 g
Qi = Qg Qg

and
G — G,

J
T — 1

ol

1 7

Then the set Z = {(Gi7 o) i< j} is a direct system.
Let D be the direct limit of the above direct system. Then
Gi = {l]| jezZ}<D
Gy = {l3]| jeZ}<D

Gy < Gy. Because

[#1] = [(21) i) = [27'] € Ge

Let D = U@. Then D is an abelian group. Indeed assume

i=1

that i < 5 . [fay] = [af(edap) = [ ) = fap a7 =
][5> ] = ][],
Claim: D =T = {%|n,i € Z} < (Q,+)
p:D—=T
k k
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Let [z}] and [z]'] be elements of D. Assume that i < j. Then

[yl = (e}

Now

n m n-27" m  n2iTi4m

2 2i 2i 29
So ¢ is a homomorphism from D into T'. Clearly ¢ is onto.

m

=5 =

Ker o = { [i"] | olai"]

0} ={l7]y = {1y e D
S0 (¢ is an isomorphism.
2.48. Show that Q is a direct limit of infinite cyclic groups.

Solution: Recall that for any two infinite cyclic groups generated
by x and y the map

(r) > = (y)
x—=>y™m

for any m defines a homomorphism. Moreover this map is a monomor-
phism. Observe that the set of natural numbers N is a directed set
with respect to natural ordering. Let G; be an infinite cyclic group
generated by z;,1 =1,2,3,---

i1 Gi— G

Define a homomorphism «; " : i1

where a} is identity.
i+l iH2 L it2 i+1 i+2) (i+1
Qp Qi = Qg i = 2 = (i) PO
J o i+l 2 J
Qp = Q; Qg QG
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The set {(Gi, o) i < j} is a direct system. The equivalence class of

21 contains the following set

['Il] = {x17xgvxg’xi4axg'a"' 7'IZ!7"'}
[x2] - {‘r27 «Tg, x41127 Ig43, e 7:),;:'(]“_1)"'3’ e }
[ZL‘3] = {ZE37 xiu xgoa $g o 47 5 le(k_l)(k_mm{ e }
[T,_1] = {xn_l,x;‘,ﬁﬁﬁl)”, )
n n N k k}—l (M 1
[z, = {fmxnﬂa%i% +oL. >$k( ) (n+ )7...}
[952]2 = [za][xo] = [74]
[I3]3 = [ws][xs][ws] = [22]
[za]t = [w4][za])[za][z4] = [23]
[2,]" = [21]
since G; = (x;), the direct limit D = lim G; = ([z;] |i = 1,2,3,---)
n—oo
Define a map
. — (Q,+)
2 1
ifm>n
[wa)[em] = (257 ][]
= [zl g ]
— [:L'E:LLH)(”H) m+1]
[n][am] = [zl
Tp — =
Ty — =
LD () mt 1 (n+ )(”+2) om+1
Tm m)!
For m > n.

1 I (n+1)(n+2)---m 1 (n+1)---(m)+1

n!  ml! m! m! m)!
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so  is a homomorphism. For any e Q we have ([z,]™D'™m) =
n

n—1)lm .
i,( '™ m Hence © 1s onto
n: n

Ker ¢ = {[%]kl [2:,)% - [2,]% € D | o([zi]™ - - [2]") = 1}

Since the index set is linearly ordered this corresponds to, there
ki, .. [xl}kj =
J

[2,]™ for some m. Then ¢[[x,]"] = 5% = 0. It follows that m = 0.

exists n € N such that n = max{iy,---,4;}. Hence [x;]

Then [x,]° = [21]° = [20] which is the identity element in D. Hence
© is an isomorphism.

Remark: On the other hand observe that ¢([z,]™) = % = 1 im-

1
plies m = n!. Then [z,|" = [21] and o([z,]) = = 1.

2.49. If G and H are groups with coprime finite orders, then Hom
(G, H) contains only the zero homomorphism.

Solution: Let « in Hom (G, H). Then by first isomorphism the-
orem G/Kera = Im(a).
By Lagrange theorem |Ker(a)| divides the order of |G|. Hence

\Kfr‘(a” is coprime with |H|. Similarly Im(a) < H and [Im(a)| divides
the order of H. Hence \KleGI“(a” = |Im(a)| = 1. Hence |Ker(a)| = |G|.
This implies that « is a zero homomorphism i.e. a sends every element

g € G to the identity element of H.

2.50. If an automorphism fizes more than half of the elements of
a finite group, then it is the identity automorphism.

Solution Let o be an automorphism of G which fixes more than
half of the elements of G. Consider the set H = {g € G | g* = g }
We show that H is a subgroup of G. Indeed if g1, g2 € H then gf =
g1, 99 = go. Hence (g192)* = 9295 = g1 i.e. gigo € H. Moreover
(g7 = (¢8)7' = g;'. Hence g;* € H. So H is a subgroup of G
containing more than half of the elements of G. By Lagrange theorem
|H| divides |G|. It follows that H = G.

2.51. Let G be a group of order 2m where m is odd. Prove that G
contains a normal subgroup of order m.
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Solution Let p be a right regular permutation representation of GG .
By Cauchy’s theorem there exists an element g € G such that |(g)| = 2.
We write g as a permutation ¢* = (z1,219”)(x2, X29”) ... (Tm, Tmg").
Since G” is a regular permutation group it does not fix any point .
It follows that any orbit of g” containing a point x is of the form
{z,zg”}. Hence we have m transpositions. Since m is odd ¢” is an odd
permutation. Then the map

Sign : G — {1,—-1}

is onto. Hence Ker(Sign) < G? and |G/Ker(Sign)| = 2. It follows
that |Ker(Sign)| = m.

2.52. Let G be a finite group and x € G. Then |Ce(z)| > |G /G|
where G' denotes the derived subgroup of G.

Solution G acts on G by conjugation. Then stabilizer of a point

is Cg(z). Hence |G : Cg(x)| = [{z9 | ¢ € G}|= length of the orbit

containing x. It follows that % = [{g7'zg | g € G}|. The function

¢: {9 'vg | g€ G} = {27 g7 zg |g € G}
is a bijective function. But G’ is generated by the elements y~ ¢ tyg =
[y, g] where y and g lies in G. It follows that

{z g 2g lge G} < {y g 'yg | y.g € G} < |G

Hence 5 < |G| Then |G/@| < [Co(x)].

2.53. If H, K, L are normal subgroups of a group, then [HK, L] =
[H, L][K, L].

Solution The group [H, L] is generated by the commutators [h, ] =
h='17'hl where h € H and | € L. Of course every generator [h, (] of
[H, L] is contained in [HK, L]. Hence [H, L] is a subgroup of [HK, L.
Similarly [K, L] is contained in [HK, L] hence [H, L]|[K, L] C [HK, L].
On the other hand generators of [HK, L] are of the form [hk,l] =
[h,[]*[k,l] where h € H and [ € L. The right hand side is an element
of [H, L|[K, L] since H, K, L are normal subgroups, hence [H, L] is nor-
mal in G and so [h, | € [H, L]. Tt follows that [HK, L] < [H, L]|K, L].
Then we have the equality [HK, L] = [H, L|[K, L].
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2.54. Let « be an automorphism of a finite group G. Let

S={9eG|lg*=g"}

If |S| > 3|G|, show that o inverts all the elements of G and so G is
abelian.

Solution Let x € S. Then |SUzS| = |S|+ |zS| — |[SNaS|. Since
SUzS C G, we obtain [SUzS| < |G|. On the other hand the function

S —zS

S — IS

O

is a bijective function. Hence |zS| = |S]|. It follows that |G| > |S U
zS| = |S|+ |S| = |[SNaS|. Then |G| > 2|G| + 2|G| — |S N =S|
It follows that |S N zS| > 2|G| — |G| = §|G|. This is true for all
xr € S. Let xs; and xsy, be two elements of S N xS, then zs; € S

V= sla™! = 2%s¢ = 27151 Tt follows

implies (xs;)* = x%s¢ = (vs;)~
that = and s; commute. Since there are more than |G| elements in
|SNzS| we obtain |Cg(z)| > 3|G|. But Ce(z) is a subgroup. Hence by
Lagrange theorem we obtain |Cg(x)| = |G| which implies G = Cg(x)
i.e z € Z(G). But this is true for all x € S. Hence S C Z(G).
So 3|G| < |S] < |Z(G)] and Z(G) is a subgroup of G implies that
Z(G) = G. Hence G is abelian. Then S becomes a subgroup of G.
Hence S is a subgroup of GG of order greater than %]G |. It follows by

Lagrange theorem that S = G.

2.55. Show that no group can have its automorphism group cyclic
of odd order greater than 1.

Solution Recall that if an element of order 2 in G exists, then by
Lagrange theorem 2 must divide the order of the group.

We first show that the group in the statement of the question can
not be an abelian group. If G is abelian, then the automorphism x —

2~ ! is an automorphism of G of order 2 unless x = 2~ ! forallz € G. By

assumption the automorphism group is cyclic of odd order so z = 27!
for all x € G. It follows that GG is an elementary abelian 2-group.
Then G can be written as a direct sum of cyclic groups of order 2.

This allows us to view G as a vector space over the field Z;. Then

Aut(G) = GL(n, Zo). As |GL(2, Zo)| = (22 — 1)(22 —2) = 3.2 = 6.
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The group Aut(G) = GL(2,Zs) is cyclic of odd order. This group is
cyclic if and only if n = 1 in that case G = Z, and Aut(G) = 1 which
is impossible by the assumption. So we may assume that G is non-
abelian. Then there exists z € G\ Z(G). The element = induces a
nontrivial inner automorphism of G. Moreover G/Z(G) = Inn(G) <
Aut(G). So G/Z(G) is a cyclic group But this implies G is abelian.
This is a contradiction. Hence such an automorphism does not exist.

2.56. If N <G and G/N is free, prove that there is a subgroup H
such that G = HN and H N N = 1. (Use projective property).

Solution Let 7 be the projection from G into G/N. Then by the
projective property of the free group the diagram

G/N

G T G/N

commutes.

Since [ is a homomorphism, I'm(/3) is a subgroup of G. Let H =
Im(p). Let w € HN N. Since w € N, wN = N. The map 3 is a
homomorphism implies (wN)S = (N)f = idg so w = id.

Let g be an arbitrary element of G. Now gN € G/N and (gN)S €
H, since the diagram is commutative (gN)fm = gN. By the projec-
tion m we have (¢N)B = gn for some n € N. Hence g = (¢gN)B.n"*
where (gN)B € H andn™! € Nie. G=HN.

2.57. Prove that free groups are torsion free.

Solution Let F' be a free group on a set X. We may consider the
elements of F' as in the normal form. i.e. every element w in F' can be
written uniquely in the form w = xlf .. :cif where z; € X and [; € Z
forall i =1,2,...,k and x; # x; for i # j. Observe first that the
elements z; or ;' have infinite orders.

Let w = :Elll . xi’“ be an arbitrary non-identity element of F. w? =

Iy I 11 Ik I —l n s . .
it ooxfay ook I 2 # %, then for any n, w” is nonidentity and
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—1 .
we are done. If 2} = x, *, then in w? these two elements cancel and

—lk—1

gives identity. But it may happen that a:lzz =z, . Then the element

w is of the form %2 .. 27227". Then continuing like this we reach

l1,.02 l

l; —lp,
to an element zi'zs5 ...z 2" 2yt

‘x; .. .xy Pxy . But this implies that w is
identity. So there exists ¢ such that when we take powers of w then
the powers of z; increase. Since x; has infinite order we obtain, w has
infinite order.

2.58. Prove that a free group of rank greater than one has trivial
center.

Let w = ! ... z!l» be an element of a center of a free group of rank
> 1. If xy # x,,. Then 2% ... aba, # 22 .. 2!, Since every element
of F' can be written uniquely and any two elements are equal if the
corresponding entries are equal.

If z1 = z,, then consider wxsx1. By uniqueness of writing wxox; #
xozqw. This also shows that even if w contains only one symbol if rank
of F'is greater than one, then center of F' is identity.

2.59. Let F' be a free group and suppose that H is a subgroup with
finite index. Prove that every nontrivial subgroup of F' intersects H
nontrivially.

Solution The group H has finite index in F' implies that F' acts
on the right to the set Q@ = {Hxy,...,Hx,} of the right cosets of
H in F. Then there exists a homomorphism ¢ : F' — Sym(2) such
that Ker¢ = (;_, H*. Hence F/Ker(¢) is a finite group. Let K
be a nontrivial subgroup of F and let 1 # w € K. Then w™ # 1
since every nontrivial element of F' has infinite order by 2.57. But
w" € Ker¢ < H. Hence 1 # w™ € K N Ker(¢).

2.60. If M and N are nontrivial normal nilpotent subgroups of a
group. Prove from first principals that Z(MN) # 1. Hence give an
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alternative proof of Fittings Theorem for finite groups.

Solution Consider M N N. If MN N =1, then MN = M x N
and Z(MN) = Z(M) x Z(N) # 1. As M and N are nilpotent. If
M NN # 1, then [[M N N,M|,M]...] = 1 implies there exists a
subgroup K <i(MNN) such that 1 # K < Z(M). Since K <N we have
[[K,N],N..]=1. It follows that there exists a subgroup 1 # L < K
such that L < Z(N). Hence we obtain 1 # L < Z(M)N Z(N). But
14 L < Z(M)NZ(N) < Z(MN).

Let Z = Z(MN)CharMN < G implies Z < G. Hence MZ/Z and
NZ/Z are normal nilpotent subgroups of G/Z. Then MN/Z has a
nontrivial center in G/Z. Continuing like this if M N is finite we ob-
tain a central series of M N. Hence M N is a nilpotent group in the
case that M N is a finite group.

2.61. Let A be a nontrivial abelian group and set D = A x A.
Define § € Aut(D) as follows: (ay,a3)’ = (a1,a1a). Let G be the
semidirect product (0) X D.

(a) Prove that G is nilpotent of class 2 and Z(G) = G = A

(b) Prove that G is a torsion group if and only if A has finite
exponent.

(¢) Deduce that even if the center of a nilpotent group is a torsion
group, the group may contain elements of infinite order.

Solution Let A be a nontrivial abelian group. Define § on D =
A x A such that §(a1,as) = (a1,a1a2). Then § is an automorphism
of D. Indeed §((ay,as)(b1,b2)) = 0(aiby,azbs) = (a1by, arbiashy) =
(a1, a1a2)(by,b1by) as A is an abelian group. So § is a homomorphism
from D into D.

Ker(0) = {(a1,a2)|  0(a1,a2) = (a1, mas) = (1, 1)} = {(1, 1)}

Moreover for any (a;,az) € D, 6(ay,a;'az) = (a1,az). Hence &
is an automorphism of D. Therefore we may form the group G as a
semidirect product of D and () and obtain G = D % ()

(a) Now we show that Z(G) = G' = A.
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An element of G is of the form (&% (ay,az)) for some i € Z and
ai,as in A. Let (0™, (z1, 22)) be an element of the center of G. Then
(0%, (ay,az)) "1 (0", (21, 22)) (0%, (a1, as) = (6", (21,29)) for any i € Z
and for any (a1, a2) € A x A.
Then
(0%, (a1, a2)) (0™, (21, 22) (a1, a2)) = (8, (a1, @2)) (0™, (21, 2 22) (a1, a2))
= (6%, (ay, az)) (6™ " (z1a4, 24 20a0).

Observe that (47, (al,aQ)) = (077, (a;t, alayt)),

we obtain (677, (a;', alay ') (6", (z1ay, 22 20as)

= (6", (ay 7al1a2_1)6 (Z1a172i22a2)
= (0", (a7, a7 "ay (2100, 21 2205))
= (0", (a7", (a7 ")"a3") (2101, 21 2202))
= (5 ) (Zlv al_nzi.ZQ)
= (0", (21, 22))
implies that a;"2} = 1. So z} = a for any i and for any a; € A. In
particular a; = 1 implies that z; = 1. It follows that af = 1 for any
a; € A. Then (a1,a2)’" = (a1, atas) = (a1, az).
Hence §™ is an identity automorphism of D. It follows that (6™, (1, z3)) =
(Zd, (1, 22)).
Hence Z(G) ={(1,(1,2)): z€ A} = A.
The group G’ is generated by commutators. The form of a general
commutator is:

[ (52’ (ah a’2))7 (5n’ (21’ ZQ)) ] = (52 (alv a2>)—1(5n, (Zh 22))_1(517 (a’h a2))<5n7 (Zla ZQ))

Since (0%, (ay,a2)) ™t = (67, (a;*, ata; ")) we obtain
= (07", (a ", a1ay ) (07" (21 212y 1)) (67, (a1, a2)”" (21, 22))
(5 (o a2 )0 (e, )

= (0", (ay 21 "z, (ay 2y ) Ay M ay oy 2y a aszo)
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= ((1,(1, 27%a?) € Z(G). Hence G' < Z(G). In particular choosing
i =1 and a; = 1 we obtain every element of Z(G) is in G'. Hence
Z(G) =G = A. Tt follows that G/Z(G) is abelian.

Z(G]Z(Q)) = Z2(G)/Z(G) = G/Z(G) and G is clearly not abelian,
it follows that G is nilpotent of class 2.

(b) Assume that G is a torsion group. Then (&%, (a;, as)) has finite
order for any i € Z and (a1, a2) € A. Then

(0%, (ay,az))™ = (1,(1,1)). Then

(6i7 (ah a2))(5i7 (_ab a2))<5i7 (ah a2)> cee (617 (alv a2))

= (52i7 (alv a2))617 (ah a’2))<5i7 (ab a2>> cee (617 (ab a2))

= (6%, (ay, alas)) (a1, az)) (0%, (a2, ata?)) ... (8% (a1, as)) implies that
6" =1 and a} = 1. If order of § is m, then for any (a,b) € A x A

(a,b)’" = (a,b) = (a,a™b) implies @™ = 1 for all a € A. In particu-
lar A has finite exponent and this exponent is bounded by the order of 4.

Conversely if A has finite exponent say m then (a,b)°” = (a,a™b) =
(a,b) for any (a,b) € A x A. Hence ¢™ is the identity automorphism
of Ax A. This implies G = (0) x D is a torsion group as D = A x A is
a torsion group. In particular (8%, (a,b))™ is an element in A X A since
A has finite exponent we obtain ((6%, (a,b)™)" = (1, (1,1)).

(c) Let A be the direct product of cyclic groups Z,, for any n € N.
Then by the above observation G = (§) x D is a nilpotent group of
class 2 .

Since exponent of A is not finite by (b) we obtain that G is not a
torsion group. Hence G contains elements of infinite order.

3. SOLUBLE AND NILPOTENT GROUPS

3.1. Suppose that G is a finite nilpotent group. Then the following
statements are equivalent

(1) G is cyclic.

(ii) G/G" is cyclic.

(iii) Every Sylow p-subgroup of G is cyclic.

Solution: (i) = (i7): Homomorphic image of a cyclic group is
cyclic.
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(1) = (d17): Assume that G /G’ is cyclic. G is nilpotent so every
maximal subgroup of G is normal in G. As G is nilpotent G' < G.
For any maximal subgroup M, G/M = Z, for some prime p. G' < M
It follows that G' < (M = ®(G). Now G/G = (zG'). Then

Mmaz in G

(x,G") = G so (x,P(G)) = G. Hence (z) = G as Frattini subgroup is
a non-generator group in G. This implies that G is cyclic hence every
Sylow subgroup is cyclic.

(7i1) = (i) Now assume every Sylow subgroup is cyclic. G is
nilpotent hence it is a direct product of its Sylow subgroups G =
Op (G) X Opy(G) X ... x O,,(G). Since direct product of Cyclic p-
groups of different primes is cyclic we have G is cyclic.

3.2. Let G be a finite group. Prove that G is nilpotent if and only
if every maximal subgroup of G is normal in G.

Solution: Assume that G is nilpotent. Then every maximal sub-
group is normal in GG as nilpotent satisfies normalizer condition.

Assume every maximal subgroup of G is normal in G. Let My, M, . ..

be the maximal subgroups of G. M;<G. G/M, = Z, for some prime p.
Then G/ M; = G/P(G) — G/M; x G/Ms x ... x G/M, is abelian.
Hence G/®(G) is abelian hence G/®(G) is nilpotent. It follows that G
is nilpotent.

3.3. Let p,q,r be primes prove that a group of order pqr is soluble.

Solution If p = ¢ = r, then the group becomes a p-group and
hence it is nilpotent so soluble. If p = ¢, then the group has order p%q
these groups are soluble .

So we may assume that p, ¢, r are distinct primes and p > ¢ > r.

Let |G| = pgr. Assume that G is the minimal counter example. i.e
G is the smallest insoluble group of order pgr. So G has no nontrivial
normal subgroup. Because any group of order product of two primes is
soluble and extension of a soluble group by a soluble group is soluble.
Hence we may assume that G is simple. Let P,Q, R be the Sylow
D, q, 7 subgroups of G respectively and n, denotes the number of Sylow
p-subgroups of G. n, =1 ( mod p) and n, divides gr. Since G is
simple n, # 1 so either n, = ¢, or n, =1 or n, = qr.
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If n, = ¢ = |G : Ng(P)| we obtain |[Ng(P)| = pr. Then G acts
on the cosets of Ng(P) from right. Then G over kernel of the action
say Ker(¢) is isomorphic to a subgroup of Sym(q). It follows that
|G/Ker(¢)| divides ¢l. Since p > ¢ we obtain 1 # Ker(¢) < G con-
tradiction. Similarly n, # r. Hence n, = ¢r. So we have (p — 1)qr
nontrivial elements of order p.

Now consider Sylow g-subgroups of G. n, = 1 ( mod g¢) and
divides pr. So n, = r is impossible because if |G : Ng(Q)| = r and r is
the smallest prime in p,q,r. So kernel of the action of G' on the right
cosets of Ng(Q) is nontrivial and our group is simple.

Now we have (p — 1)qr = pqr — qr p-elements.

(g —1)p=pq—p at least pg —p  g-elements.

r r-elements and identity. So at least pgr —gr+pg—p-+r elements.
But this number is greater than pgr. This is a contradiction. Hence G
is soluble.

3.4. A nontrivial finitely generated group cannot equal to its Frat-
tini subgroup.

Solution Let G = (g1,92,...,9n). Assume if possible that
Frat G = G. We may discard any of the g; if necessary and assume
that n is the smallest integer such that G = (g1, g2, - . ., gn). Therefore
the subgroup

K; = (1,92, -,9i-1,Gi+1,- - - gn) 18 & proper subgroup of G. If
Frat G = G, then every element of G is a nongenerator but (K, g;) =
G and (K;) # G which is impossible.

3.5. Prove that Frat(Sym(n)) =1

Solution The alternating group Alt(n) is a maximal subgroup of
(Sym(n)) as the index of Alt(n) in (Sym(n)) is 2. So Frat (Sym(n))
< Alt(n). On the other hand (Sym(n)) acts 2-transitively on the
set ©, = {1,2,...,n} Because for any (i,7), (k,l) where i # j and
k # [ the permutation (i, k)(j,1) takes (7, 5) to (k,1). Every 2-transitive
group is a primitive permutation group. Hence stabilizer of a point
is a maximal subgroup. Hence for any i € (), the stabilizer of a
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point ¢ say (Sym(n)); is a maximal subgroup of (Sym(n)) . Hence
Frat((Sym(n))) < N, ((Sym(n)); = 1. It follows that Frat(Sym(n))=
1.

3.6. Show that Frat(Dy) = 1.

Solution Let G = (z,y | 2> =1, y*> = 1) Let a = xy. Then
G = (r,a), v7'ax = yr = a~'. The subgroup generated by an element
a is isomorphic to Z and maximal in G. Hence Do, = (a,t) = Z x (t)
Moreover z € Z implies 2z = z7!. Then (a*t) < Dy, Indeed
t* = a 'ta = tt7'a ta = ta® € (a* t) and t1a*t = a% € (a®,t) ,
D /{a?,t) is of order 2. So (a?,t) is a maximal normal subgroup of G.
Then Frat(Ds) < {(a) N {a?,t).

Moreover (a?, t) is a maximal subgroup of D, for any prime p. Since
|Do : (aP,t)| = p for any prime p. Then Frat(Ds) < {(a) N (a®t) N,
(aP,t) = (a) N (N, prime
then u = a" for some r. Since all primes divide r we obtain r = 0.
Hence Frat(Dy) = 1.

(aP,t)). If u is an element in the intersection

3.7. If G has order n > 1, then |Aut G| < [[5_,(n — 2°) where
k= [loga(n — 1)].

Solution We show that, if d(G) is the smallest number of elements
to generate a finite group G, then |G| > 2%%). In particular this says
that d(G) < logs|G| = logan.

If G is elementary abelian 2-group, then GG becomes a vector space
over the field Z, hence it has a basis consisting of (0,...,1,0...0). If
basis contains k elements, then |G| = 2*. The dimension of a vector
space is the smallest number of elements that generate the vector space.
Hence |G| = 2%%) is possible.

Now back to the solution of the problem. Let a be an element
in Aut(G). Then « sends generators of G to generators of G. Let
{x1,..., 2} be the smallest set of generators of G. Then by first para-
graph k < log, n We have z{ € GG and order of z{ is at least 2, because
a is 1-1 and z; is a generator. For z{ we have at most n — 1 possibil-
ities. For 2§ we have 2§ € G \ (r1). Because if 2§ = (z{)’ we obtain
x§ € (z¢) but this is impossible as x5 is a generator and we choose the
smallest number of generators. Moreover x5 = (z¢) case may occur as
identity but since « is an automorphism this is also impossible.
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Hence z§ € G\ (x{) as order of x; is at least 2. Hence for z§ we
have at most n — 2 possibilities. For x3 we have z§ € G\ (z, 2%), the
order of the group (z¢,x$) is at least 4 hence for 2§ we have |G| \ 22
possibilities. Continuing like this on the generating set we get the
image of GG. Observe that « is uniquely determined by its image on the
generating set. Hence

|Aut(G)] < (n—1)(n —2)(n —22)...(n — 25" = [y n — 2.

3.8. Let G be a finitely generated group. Prove that G has a unique
maximal subgroup if and only if G is a nontrivial cyclic p-group for
some prime p. Also give an example of a noncyclic abelian group with
a unique maximal subgroup.

Solution Let G = (g1, 92, --.gn). We may assume that if we dis-
card any of the g; the remaining elements generate a proper subgroup.
Then for any i let H; = (¢1,...,Gi-1,Jit1,---,9n). 1t is clear that by
assumption g; € H; and H; is a proper subgroup of GG. Let 3; be the
set of subgroups 7' of G such that 7' O H; and g; ¢ T. Then ¥; is
nonempty since H; € ¥; and ¥; is partially ordered with respect to set
inclusion. Then one can show by Zorn’s Lemma that >; has a maximal
element M;. Hence M; O H; and g; € M;.The group M, is a maximal
subgroup of G. If z is any element of G\ M; then (M;,x) > M, hence
gi € (M;, x) it follows that (M;,z) = G, since (H;,¢;) = G. So if G is
generated by two elements ¢g; and g, then we may construct two max-
imal subgroups M; and M in G such that g; € M;. Hence it follows
that My # M.

So if G has a unique maximal subgroup, then G is a cyclic group. In
an infinite cyclic group (a) for any prime p, (a?) is a maximal subgroup
of (a). So if G has a unique maximal subgroup, then G is a finite cyclic
group. Then it can be written as a direct product of of its Sylow
subgroups. Then for each prime p;, Sylow p; subgroup F; has a unique
maximal subgroup M;. Hence Py X... X M;x P11 X ...x P, is maximal
subgroup of G. It follows that n = 1 and hence G is a cyclic p-group
for some prime p.

Conversely every cyclic p-group has a unique maximal subgroup is
clear because every finite cyclic group G has a unique subgroup for any
divisor of the order of G.
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Cpee X Zy, = G is a noncyclic p-group. It is not finitely generated
since Cpeo is not finitely generated. But Cpe is a maximal subgroup
of G. Since Cp does not have a maximal subgroup Cpe is the unique
maximal subgroup of G.

3.9. Suppose G is an infinite group in which every proper nontrivial
subgroup is mazximal. Show that G is simple.

Solution Assume that G is not simple. Let N be a proper
normal nontrivial subgroup of G. Then by assumption /N is a maximal
subgroup of G. It follows that G/N does not have any proper subgroup.
Hence it is a finite cyclic group of order p for some prime p.

Let 1 # x € G. Then (z) is a maximal subgroup of G. If z has infi-
nite order, then the group (x?) is a proper subgroup and by assumption
it is maximal. It follows that G = (x) = Z. But in this group every
subgroup is not maximal. Hence G is a torsion group. Again if x has
order a composite number then for any prime p dividing order of x the
subgroup generated by z? is a maximal subgroup implies G = (z) and
so (G is a finite cyclic group which is impossible as G is infinite . Hence
every element of G is of prime order p. Let 1 # = € N, then (x) is a
maximal subgroup implies N = (x) and it is of finite order p. Hence
G/N and N have finite order. This implies G is a finite group. This
contradicts to the assumption that G is an infinite group.

3.10. A free group is abelian if and only if it is infinite cyclic.

Solution It is clear that an infinite cyclic group is abelian. It
is also free because for any group G and a function v : X — G say

()y=g
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o

{z} - F

G

a map 3, (r)of = g gives a homomorphism. We may consider o as
identity map hence (z)o = z and F' = (x). So 8 becomes a homomor-
phism from the cyclic group F' to the cyclic group (g).

Conversely, by the above problem if the rank of a free group is
greater than one, then it’s center is identity. Hence a free abelian
group must have rank one. But indeed a free group of rank one is an
infinite cyclic group as every element in the normal form is of type z° .

3.11. Let B be a variety. If G is a B-group with a normal subgroup
N such that G/N is a free B-group show that there is a subgroup H
such that G = HN and HNN =1

Solution Asume that G/N is a free B-group on a set X. We
know that the map o : X — G/N is an injection. Let T be a transver-
sal of N in G. Define a map f : X — T C G such that f(z) = g,
where g, € T and o(z) = ¢g,N. Since G is a B-group and G/N is a
free B-group there exists a unique homomorphism ~ such that f = o~.

g

X -G/N

f ly

G

Since 7 is a homomorphism (G/N) = H is a subgroup of G.
We now show that H is the required subgroup. Since yo = f and
f(X) =T we obtain H = (T'). Now it is clear that HN = G. Now
if y € HN N, then y can be written as a product of transversals.
y = (yN)y = (N)y =1 as 7 is a homomorphism. So y = 1.
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3.12. Prove that every variety is closed with respect to forming
subgroups, images and subcartesian products.

Solution Let B be a variety and w = w(xy,. .., z,) be a law of B.
Let G € B and H < @G. Since for any ¢1,...9, € G w(g1,...,g9,) =1
in particular for the elements of H we obtain W (H) = 1.

Let N be a normal subgroup of G € B. Then

w(gp1N,...,9:N)=w(g1,...,9.)N = N. Hence G/N € B

Now let G be a subcartesian product of the groups G € B. Let

w=w(x,...,z.) and let i : G — CryepaGy be an injection.
For g1,...,9. € G we have w(g1,...,g.)" = (w(gi,...,g"))rer =
(1)aea since G, € B. Since i is an injection this implies w(g1, ..., g,) =

3.13. Prove that a subgroup which is generated by W -marginal
subgroups s itself W-marginal.

Solution Let W be a nonempty set of words. Recall that a nor-
mal subgroup N of G is called W- marginal if for any ¢g; € G, and
a €N, wg,....00,...,9,) = w(g1,...,9,). Since the group M
generated by normal subgroups is a normal subgroup we need to show
that for any element y € M, w(g1,...,gn) = w(g1,---,9iY, -, gn). Let
Y= ;G . .. G

. Wwhere a;; € Ny, and NV;; is a W-marginal subgroup

of G. Hence for any ¢1,..., g, € G we have
W(G1,---GjYs -y Gn) = W(G1,- -, GjQiy Qiy - - Qigy - ., Gn). Since N;, is

W-marginal we obtain w(gi, . .., gjGi, - . - Giys - -, Gn) = W(G1, - - -, Gj i, - - -

w(g1, .-, gn) =w(g1,--.,Gj,--.,0n). Hence M is W-marginal.

3.14. Prove that Q is not a subcartesian product of infinite cyclic
groups.

Solution Recall that a group G is subcartesian product of X-
groups if and only if G is a residually X-group. So in order to show
that Q is not a subcartesian product of infinite cyclic group we will
show that @Q is not residually infinite cyclic group. Assume on the
contrary that Q is residually infinite cyclic. Then for any 0 # = € Q
there exists N= such that 7! ¢ Nm and Q/N% is infinite cyclic. So
for any k € Z l k.2t & Nm. Clearly Q is not cyclic so there exists
0# ¢ € Nm. Hence ma =bm§ € Nn. It follows that Q/N= is finite
which is a contradiction. On the other hand ma = an.”.

2 On)
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3.15. If p and q are distinct primes, prove that a group of order
pq has a normal Sylow subgroup. If p # 1( mod ¢) and ¢ # 1 ( mod
p), then the group is cyclic.

Solution Assume that the prime p < ¢. Let S be a Sylow ¢-
subgroup of G where |G| = pg. Then |G : S| = p. Number of Sylow
g-subgroups n, is congruent to 1 modulo ¢g. Moreover n, divides |G :
S| = p. Son, =1+ kq for some k € N. But ¢ > p implies n, = 1.
Hence Sylow g-subgroup S is unique, it follows that S is normal in G.

For the second part consider a Sylow p-subgroup P of G. Let n,
be the number of Sylow p-subgroups. So n, divides |G : P| = ¢ and
n, =1 ( mod p). Then n, = 1+ kp and 1+ kp divides ¢. So n,, is
equal to 1 or ¢. But it is given that ¢ = n, # 1 ( mod p). Hence
n, = 1 and P is a normal subgroup of G. |P|=p, |Q|=¢qand p#q
implies PNQ = 1. Thenforanyx € Pandy € Q , z 'y lzy € PNQ.
Hence xy = yx for all z € P, y € Q. The group G = PQ. G is an
abelian group. Assume that P = (z) and @ = (y), 2y € G and
(zy) ={a'y': P€N}, (ay)P =aby? =y? #1

(xy)? = 29y? = 27 # 1 since p does not divide q.

(zy)? = 2%y? = 27 # 1 So (27) = (z) < (zy) and

(xy)? = aPy? = y? # 1 so (y?) = (y) < (xy). Hence p divides
|(zy)| and ¢ divides |[(xy)| implies pq divides |(xy)|. On the other hand
(ry) < G and |G| = pg. Hence (zy) = G and G is cyclic.

3.16. Let G be a finite group. Prove that elements in the same
conjugacy class have conjugate centralizers. If ¢y, co, ..., c, are the or-
ders of the centralizers of elements from the distinct conjugacy classes,
prove that é + é + ...+ i = 1. Deduce that there exist only finitely
many finite groups with given class number h. Find all finite groups
with class number 3 or less.

Solution Let z and z9 be two elements in the same conjugacy
class. Then Cg(z)? = Cg(z9). Indeed if y € Cg(x)?, then y9 ' €
Ce(x) and zy? ' = y9  x. Taking conjugation of both sides by g
gives 29y = ya?. ie. y € Cg(29). Hence Cg(x)? C Cg(29). Similarly
Ce(29) C Cg(x)9. Hence Cg(x9) = C(x)9.
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By class equation |G| = X ,|G : Cg(x;)|. So |Ca(z;)| = |Ca(x?)]
we have 1 = E?:lm =y, L

So L4+ Ll4. +L=1

The set of all groups with only 1 equivalence class satisfy é =1
where ¢; is the order of the centralizer of identity. Hence G = {1}.

The set of all groups with two equivalence class satisfy é + é =1

Gl-1 G
Then ¢; = |Cg(1)| = |G|. Hence é =1- |—(1;| = % and so ¢y = IC‘?I_—ll

(|G],|G] — 1) = 1 implies |G| — 1 = 1. Hence |G| = 2.

The set of all groups with three equivalence class satisfy é—l—é%—é =
1. Since the identity is an equivalence class we have
1 1 1 |G| —1
ca  C3 |G| |G|

Then St — 1G1-1
cac3 G| -

So we obtain (cg + ¢3)|G| = cac3(|G] — 1). As (|G|, |G| —1) =1 we
have |G| divides cacs3. And ¢y divides |G, c¢3 divides |G| implies that
(|G| — 1) divides ¢5 + cs.

First consider the case ¢; = ¢3 . Then c3((|G|—1) = 2¢3|G| . Hence
c2(|G] — 1) = 2|G]. Since (|G| — 1) divides 2 we obtain |G| — 1 = 2.
Hence |G| = 3 and G is a cyclic group of order 3.

Assume without loss of generality that co < ¢s5. Then (c2+¢3)|G| =
c2¢3(]G| — 1) implies that

26|G| < (ca + &3)|G| = cacs3(|G] — 1) < (|G| — 1) and (¢ +
c3)|G| = cac3(|G| — 1) < 2¢3|G|. Tt follows that co(|G| — 1) < 2|G|. By
dividing both sides with ¢y we obtain |G| —1 < %|G |. Then we obtain
G| < 2|G] + 1.

¢y 1s the order of a centralizer of an element. Hence ¢y > 2.

If ¢; > 2, then |G| < 2|G| + 1 is impossible for |G| > 4. Hence
cy = 2.

Then (2+¢3)|G| = 2¢3(|G| — 1) implies that 2|G|+c3|G| = 2¢3|G| —
2c3

Then we obtain c;3|G| = 2|G| + 2¢s.
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But ¢3 > 2 implies that (c3 — 2)|G| = 2¢3 and hence |G| = ci%
If ¢3 = 3, then |G| = 6 and G is isomorphic to Ss.

If ¢3 = 4, then |G| = 4. This is impossible as G is abelian

If ¢3 = 6, then |G| = 3 which is impossible as G is abelian.

If ¢c3 > 6, then |G| = Ci% < 4. Then we are done as we reach

similar groups as above.

3.17. Let G be a permutation group on a finite set X. If m € G
define Fix(m) to be the set of fized points of  that is all x € X such

that xm = x. Prove that the number of G orbits equals ﬁﬁﬁeg\Fz’x(wﬂ

Solution Consider the following set
Q={(z,m)|zr =z, x € X, m € G}.

We count the number of elements in €2 in two ways. First fix an element
x € X. Then each x appears as many as |Stabg(z)| times in . Then
Q| = X,ex]|Stabe ().

Secondly we fix an element © € G. Then 7 appears Fiz(m) times
in Q. Hence |Q| = X,cq|Fiz(r)]. Then we have ¥,cx|Stabg(z)| =
Yrec|Fiz(m)|. But we know that |G : Stabg(z)|=length of the orbit
of G containing the element x. Let us denote it by |orbit z|. Hence
|Stabe ()| = otz 1t follows that Sex|Stabe ()| = Seex sy =
Yreq|Fiz(m)|. On the other hand ZxEXloTl'tr\ =number of orbits of
G on X. This is because, if  and y belong to the same orbit, then
lorbit x| = |orbit y|. We write X as a disjoint union of orbits say
O4,...,0,. Then

Ezexm = ZleExeoim = k Since

eroim = 1. Hence we have |G|k = Y eq|Fiz(m)|. Then the

number of orbits k = ﬁZﬂeg|Fix(7r)|.

3.18. Prove that a finite transitive permutation group of order
greater than 1 contains an element with no fized point.

Solution By previous question we have the formula

1
1= —"ScqlF"
|G| €G| Z‘T(ﬂ—)|
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Then we obtain |G| = Y,cq|Fiz(n)|. We know that the identity el-
ement of G fixes all points in X. So |G| = Eireq|Fiz(m)| + | X|.
Since G is transitive on X, for any y € X, |G : Stabs(y)| = |X|.
G is a permutation group implies Stabg(y) # G. It follows that |G :
Staba(y)| = | X| > 1. Hence the formula |G| = X req|Fiz(m)| + | X|
and |Fiz(m)| > 0 implies there exists a permutation 7 € G such that
|Fiz(m)| = 0 as the sum is over all non-identity elements of G.

Otherwise Stabg(y) = G for all y € X Hence G acts trivially on
X. But the action is transitive implies |X| = 1 But this is impossible
as G is a permutation group of order greater than 1.

3.19. Show that the identity [u™, v] = [u, v]*" T4 et holds
in any group where x¥** = x¥x*. Deduce that if [u,v] belongs to the
]m —

center of (u,v), then [u™, v] = [u,v]™ = [u,v™].

Solution We show the equality by induction on m.
If m =1, then [u',v] = [u,v]. Assume that

m—1 ]um*2+um*3+...+u+l

™ v] = [u,v

Then

m m—1

—1 _
]um ['me 1,'11

(™ v] = [uu™ " 0] = [u,v
. By induction assumption we obtain

w23 4utl

m m—l[

[u™ v] = [u,v]"" " |u,v]

= [u,v]*" " Hdutl Now if [u, v] belongs to the center of (u,v),
then
[u™, v] = [u,v]™ = [u,v™] as [u, v]* = [u, v]” = [u, v]

3.20. A finite p-group G will be called generalized extra-special if
Z(Q) is cyclic and G' has order p.

Prove that G' < Z(G) and G/Z(G) is an elementary abelian p-
group of even rank.

Solution G is a finite p-group, hence nilpotent. Then ~,(G) =
|G,G] = G’ and 13(G) = [G,G'] < G' and G’ has order p and proper
implies [G,G'] = 1. It follows that G’ < Z(G). Then G/Z(G) is an
abelian group as G < Z(G). Moreover [zP,y] = [z, y]P since [z,y] €
G' < Z(G) and |G'| = p implies that [zP,y] = [z,y]? = 1. Then
2P € Z(G) for any x € G. This implies G/Z(G) is an elementary
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abelian p-group. So we may view G/Z(G) as a vector space over a field
Z,. Let m be the dimension of G/Z(G). Define

F:G/Z2(G) x G/Z(G) = Z,
(22(G),yZ(G)) = i

where [z,y] = ¢ and ¢ is a generator of G'.

Firs we show that f is well defined.

Indeed if (2Z(G),yZ(G)) = (2/Z(G),y'Z(Q)), then © = 'z, y =
y'zy where z; € Z(G),i = 1,2. Then [z,y] = [2'21,¥'22] = [2/,¥]. So
[z,y] = ¢" implies [2/,y/] = .

f(xZ(G),yZ(G)) = f(2’Z(G),yZ(G)). Moreover f is a bilinear
form.

f(l'leZ(G),yZ(G)> = [xlx%y] = [xhy]m[‘x%y] = [SL‘l,y][ng,y] as
G' < Z(@). Moreover

f@12:2(G),yZ(G)) = i+j = [(212(G),yZ(G))+f(2:2(G),yZ(G).

and for the other component

f(@2(G), 11922(G)) = f(2Z(G), 1 Z(G)) + f(2Z(G), y22(G).

Finally we show that f is alternating. Indeed if xZ(G) € Rad(f),
then f(zZ(Q),yZ(G)) =0 for all yZ(G) € G/Z(G) implies [z,y] = °
forall y € G iez € Z(G). Hence 2Z(G) = Z(G) so Rad(f) =
implies f is a non-degenerate bilinear form.

Now m is even follows from the linear algebra that if f is a non-
degenerate alternating form on a vector space, then the dimension will
be even.

3.21. Let Q, be the additive group of rational numbers of the form
mp" where m,n € Z and p is a fived prime. Describe End Q, and Aut

Q.

Solution Let o be an endomorphism of Q,. Every element of Q,, is
of the form mp" for some m,n € Z. Let a(1) = kp™ for some k,m € Z
and a(0) = (1 — 1) = a(1) + a(—1) = 0 implies a(—1) = —kp™.

For any integer n, a(n) = na(l) = nkp™. Now consider kp™ =
a(l) = 04(1’;—:) prals L) implies that a(i) = kg:n = O‘IS}).

So oz(p%) = ”;p and we observe that the endomorphism « is deter-

mined by «(1)
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Conversely for any kp™ € Q,, the map

a:Q, —Q,

x — kpmua

is an endomorphism of the additive group Q,. Indeed a(x + y) =
kp™(z +vy) = kp™z + kp™y. Since kp™ € Q, and z € Q,, kp™z € Q,.
Hence « is an endomorphism. So for any element of @, we may define
an endomorphism and for any endomorphism there exists an element
of Q,.

Every automorphism is an endomorphism. So if a € Aut (G), then
a(l) = kp™ for some k,m € Z. Then

a(f) = "= So

n

pT):O +={0}.

For any element lp" € Q,, «a(xp?) = lp" implies xkp™p¥ = Ip". We

ker(a) = {Z% coof

need to solve x and y. In particular for I = 1, zkp™p¥ = p" implies
that zt = pt. Then k is also a power of p and we can solve z and then
solve y accordingly and we obtain automorphisms of @, of the form
a(l) = p*® for some s € Z. Moreover for any « satisfying a(l) = p®
for some s € Z we have an automorphism of Q,. If (1) = kp™ and
(k,p) = 1 a(xp™) = zkp™*¥ = Ip" where (I,p) = 1 2k = [ and so
r = é € 7 for any [ this has a solution if k£ = £1.

3.22. Prove that a periodic locally nilpotent group is a direct prod-
uct of its mazximal p-subgroups .

Solution Recall that a periodic locally nilpotent group is a locally
finite group, i.e every finitely generated subgroup of G is a finite group.
Let X be the set of all finite subgroups of G. If S'and R are two elements
in ¥, then (S,R) € ¥. Hence G = (4.5 5. Since for any S in ¥ the
group S is finite nilpotent implies that S is a direct product of its Sylow
p-subgroups.

For a fixed prime p Sylow p-subgroups of S is unique but Sylow
p-subgroup of () is also unique. By Sylow’s theorem every p-subgroup
of S is contained in a Sylow p-subgroup of @) but there is only one
Sylow subgroup of () implies Sylow p- subgroup of S is contained in a
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Sylow p-subgroup of @. Let S < @ and S,Q € X. Let P = [Jgcy, Ps
where Ps is a unique Sylow p subgroup of S.

P is a subgroup of G. Because if z,y € P, then there exist S; € X
and Sy € ¥ such that x € Ps, and y € Ps, Then (S;,5;) € ¥ and
Ps, s,y and Ps, s,y 2 Pg, and Ps,. Therefore x,y € P, s,) and so
xy~t € Pg, s,y and Ps, s,y € P hence P is a subgroup. In fact P is a
p-subgroup of GG. Indeed the above argument shows that every finitely
generated subgroup of P is contained in a subgroup Ps for some S € X.

P is a maximal subgroup. If there exists P, > P, then let x € P;\ P,
the element x is a p-element, hence (x) € ¥ Then (z) = P C P

The group P is normal in G, since for any ¢ € G and x € P there
exists an S € X such that x € Pg and the group (S,g) € ¥ and
x € Py . Since Pg g < (S, g) we obtain g 'zg € Pg, C P. This is
true for any prime p. Hence all maximal subgroups of GG are normal for
any prime p. Since every element g € GG is contained in a finite group

S € ¥ and S is a direct product of its Sylow subgroups . We obtain
G=1[,P

4. SYLOW THEOREMS AND APPLICATIONS

4.1. Let S be a Sylow p-subgroup of the finite group G. Let SNS9 =
1 for all g € G\ Ng(S). Then |Syl,(G)| =1 ( mod |S5]).

Solution: By Sylow’s theorems |Syl,(G)| = |G : Ng(S)| and any
two Sylow p-subgroup of G are conjugate in G and |Syl,(G)| = 1(
mod p). The group S acts by right multiplication on the set =
{N¢(S)z|x € G} of right cosets of Ng(S) in G. Now we look to the
lengths of the orbits of S on Q. As S < Ng(S), Na(S)S = Ng(S).
Hence the orbit of S containing Ng(S) is of length 1. Ng(S)zS =
Ng(S)x implies Ng(S)zSz~! = Ng(9) i.e, 2Sz~! < Ng(S). But then
xSxz~! and S are both Sylow p-subgroups of Ng(S), and there exists
only one Sylow p-subgroup of Ng(S). This implies that xSx~! = S,
ie.,r € Ng<S)

Moreover the length of the orbit of S on € is equal to |.S : Stabs(Ng(9))z|.
Ng(S)xs = Ng(S)z implies xsx™! € Ng(S). Then s € Ng(S%).
But s is a p-element, (s) normalizes S* implies (s)S* is a subgroup,
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S* is a Sylow p-groups implies (s)S* = S” i.e. s € S*. But then
s € SNS* =1. Hence Ng(S)xs # Ng(S)x for all non-trivial cosets of
N¢(S) in G. Then the length of the orbit of S on Q2 is |S].

Q] =1+ k|S], i.e, |2 = 1( mod |S]).

4.2. Show that a group G of order 90 = 2.32.5 is not simple.

Solution Let n; denote the number of Sylow i subgroups of G.
Let S; denote a Sylow ¢ subgroup of G. If ns = 1, then S5 is a normal
subgroup of G and |G/Ss| = 2.3%. Hence it follows that G is soluble.
If ny = 6, then consider n3. If n3 = 1, then S3 < G and |G/Ss| = 2.5.
So GG/S3 is soluble and Ss is soluble implies that G is soluble and we
are done. So assume if possible that n3 = 10. If the intersection of
two Sylow 3-subgroup is the identity, then we have 8.10 elements of
order 3 and 24 elements of order 5 so we obtain 105 elements which
is impossible. Hence there exists Sylow 3-subgroups P and () such
that 1 # P N Q # the groups P and (). Moreover |P N Q| = 3 and
PN Q< (P,Q). Then |PQ| > I8 — 8 — 27. S0 [(P,Q)| > 27. So
if [(P, Q)| = 45 and so G is soluble. If (P,Q) = G, then PNQ <1 G
implies |G/(P N Q)| = 2.3.5 is soluble hence we obtain G is soluble.

4.3. Show that a group of order 144 is not simple.

Solution Assume that G is simple. Let S3 be a Sylow 3-subgroup
of G. The number of Sylow 3-subgroups n3 = 4 implies that |G :
N¢(S3)| = 4. Then G acts on the right cosets of Ng(S3). This implies
that there exists

¢ : G— Sym(4)

Then G/ Ker(¢) is isomorphic to a subgroup of Sym(4). But |Sym(4)| =
24 and |G| = 144. Then Ker(¢) # 1. Then G/Ker(¢) is soluble as
Sym(4) is soluble.

We may assume that n3 = 16. If any two Sylow 3-subgroup intersect
trivially, then 8.16 = 128 hence we have only one Sylow 2-subgroup.
It follows that G is soluble. So there exists Sylow 3-subgroups P and
@ such that 1 # PN Q. So |[PNQ|=3. Then PNQ < (P,Q). Then
|PQ| > 27 implies that [(P, Q)| > 36. Hence |G/(P, Q)| = 4. Then as
in the first paragraph we obtain G/ Ker(¢) is isomorphic to a subgroup
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of Sym(4) and |Ker(¢)| < 36 soluble implies G is soluble. Hence we
obtain G is not simple.

4.4. Prove that
(a) every group of order 3*.5.17 is abelian.
(b) Every group of order 33.5.17 is nilpotent.

Solution Let G be group of order 3%.5.17 and let n, denotes
the number of Sylow p subgroups of G. By Sylow’s theorem n, = 1 (
mod p) and n, = |G : Ng(P)].

niz = 1( mod 17) and ny; divides 3%5 implies ny; = 1. This
implies that Sylow 17-subgroup of GG is unique and hence normal in G.

Let @ be a Sylow 5-subgroup. Then ns = 1 or 51 and n5 = |G :
Ne(Q)| Since Sylow 17-subgroup R is normal in G we obtain RQ < G.
The group @ is a Sylow 5-subgroup of RQ. Since |RQ| = 5.17 Sylow
5-subgroup is unique in RQ). That implies |RQ : Ngo(Q)| = 1. i.e.
Npro(Q) = RQ. Then Npo(Q) < Ng(Q). Therefore [Ng(Q)| > |RQ| =
5.17. Therefore |G : Ng(Q)| < 3? and ns cannot be equal to 51. Tt
follows that ns; = 1. So Sylow 5-subgroup () is normal in GG. Let S be
a Sylow 3-subgroup of G. Then n3 = 1,or 85. Since RS < G and S
is a Sylow 3-subgroup of RS 4,7,10, does not divide 17. Then Sylow
3-subgroup is unique in RS. It follows that RS = Ngg(S) < Ng(S).
And |Ng(S)| > 17.3%2. So ng = |G : Ng(S)| < 5. So Sylow 3-subgroup
of GG is normal in G. Hence all Sylow subgroups of G are normal. Then
G is nilpotent. Hence G is a direct product of its Sylow subgroups.

Since any group of order p? is abelian we obtain S is an abelian
group and ) and R are cyclic. Hence G is an abelian group.

(b) Every group of order 32.5.17 is nilpotent.

Let G = 32.5.17. Then n;7 = 1 so Sylow 17-subgroup is normal in
G, say R. By the same argument above Sylow 5-subgroup is unique
and so normal in G say Q.

Let S be a Sylow 3-subgroup. It is unique in RS hence ng = |G :
Ne(S) < 5and ng =1 ( mod 3) and n3 does not divide 5 implies
S is unique. Hence G is nilpotent. Therefore G = S x ) X R where
S| = 33.
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A group G is called a supersoluble group if G has a series of
normal subgroups N; < G in which each factor N;/N;.; in the series
is cyclic for all 7. The group Ay is soluble but not a supersoluble group.

4.5. Prove that the product of two normal supersoluble groups need
not be supersoluble.

Hint: Let X be a subgroup of GL(2,3) generated by

0 -1 0 1
a—(l 0 )andb—(1 O)

Thus X = Dg. Let X act in the natural way on A = Z3 ® Z3 and write
G = X x A. Show that G is not supersoluble. Let L and M be the
disjoint Klein 4-subgroups of X and consider H = LA and K = M A.
Solution Observe that |a| = 4, [b] = 2, and b='ab = a~'. Then
| X/(a)| =2, |X|=8. Let Ds = (z,y). Then
¢ : Dg— X
T —a

y—b

By Von Dyck’s theorem ¢ is a homomorphism. Since ¢ is onto, | X| = 8,
we obtain ¢ is an isomorphism.

() 6)()

So G = X x A and |G| = 72. Moreover G has a series G > A > 1,
G/A = Dg.

If G is supersoluble, then there exists a normal subgroup of G con-
tained in A. Let J be such a normal subgroup of order 3. Arbitrary

element of J is of the form < Z ) . Then J is invariant under the action

() () ()

of X. Let
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(1) (5)-(0)

Therefore G is not supersoluble.
Let

and L:{(é ?>7(51 21)’@1 51)7(? é)}
o) () () ()

Then (L,M) = X = LM and H = LA, K = MA implies |LA| =
|MA| = 36. The groups H, K are normal in G hence HK = G since
HK > (A, L,M,X) = G. The groups H, K are supersoluble.

=) (2) ()

J is invariant under the action of L.
Hp Li> A Jr>1so L is supersoluble.

o=i(a) () ()

is invariant under the action of M. B < K
K> Ki> A B> 1. Hence K is supersoluble.

4.6. Let G =GL(2,3) and Gy = SL(2,3).

(a) Find |G| and |Gy|. Moreover show that |G/G1| = 2 and |Z(G)| =
2 and Z(G) < Gy

(b) Show that G1/Z(G) = Alt(4) and that Gy has a normal Sylow
2-subgroup say J.

(c) Show that J is nonabelian. Deduce that G} = J.

(d) Deduce that G' = Gy. Hence Gy has derived length 3 and G has
derived length 4.

Solution (a) |G| = (32 —1)(32—3) = 8.6 = 48. Consider determi-
nant homomorphism det : G — Z = {1,—1}. Then Ker (det) = G,
and G/G; = {1,—1}. Hence |G;| = 24 = 3.23.
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Z<G>={<é f>,<gl 21)%@1

(b) Sylow 3-subgroup of G (and G;) has order 3. Then

1 10
U1:{<0 f),xezg}, andng{(y 1>,yeZ3}

are Sylow 3-subgroups. n3 = 1 ( mod 3) and n3 = |Gy : Ng, (Uh)].
Since the number of Sylow 3-subgroups is greater than or equal to
2 and n3 = |Gy : Ng,(Uy)| we obtain ng = 4 and |Ng,(Uy)| = 6.
Since Z(G) < Ng, (Uy) we obtain Ng, (Uy) is a cyclic subgroup of order
6 as Sylow 2-subgroup is in the center and any group of order 6 is
either isomorphic to S3 or cyclic group of order 6. Then G; acts by
right multiplication on the set of right cosets of Ng,(U;) in G;. The
homomorphism ¢ : G; — Sym(4) gives; G1/Ker ¢ is isomorphic to
a subgroup of Sym(4). Then Ker ¢ = Nyeq,Ng, (U1)*. As Z(G) <
Ker ¢ and

NG1<U1>0NG2<U2>:{(§ Z)}m{(jf O) b < 2(6)

we obtain Z(G,) = Ker ¢.

G1/Z(G4) is isomorphic to a subgroup of Sym(4). Since Sym(4)
has only one subgroup of order 12 we obtain G1/Z(G;) = Alt(4).

The group Alt(4) has a normal subgroup of order 4, we have J/Z(G1)<
G1/Z(Gy) = Alt(4) and we obtain |J/Z(G1)| = 4 and |J| = 8, Sylow
2-subgroup J of (G; is a normal 2-subgroup.

Moreover J/Z(G) char G1/Z(G)<G/Z(G) implies J/Z(G)<G/Z(G).
Hence J < G. In fact

=)
GG (ARG )

(c) Observe that
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()R )R ()

So J is non-abelian.

For G| = J; as J<Gy and G /J = Z3 we obtain G} < J and J' # 1
as J is non-abelian. Then J/Z(G,) < G1/Z(G;) = Alt(4). Then J is
non-abelian of order 8, implies that J” =1 and J' < Z(G;). Recall
that(1 <V < Alt(4), Alt(4)" =1).

The order |G1Z(G1)/Z(G1)| = 4 implies G} # 1 and G < Z(Gh).
So Gf’) = 1. If G} = J we are done. Now |G| = 2 or |G| = 4.
|G} = 2 implies G is nilpotent hence Sylow 3-subgroup is unique
which is impossible as we already found two distinct Sylow 3-subgroup.

If |G'| = 4, then Sylow 2-subgroup is a quaternion group of order 8
implies that G is cyclic. Hence |Aut(G})| = 2. Therefore G1/Ceq, (G})
is isomorphic to a subgroup of Aut(G)). Since Ng,(G}) = G1 and 3
divides |Cg(GY)| we obtain Sylow 3-subgroup is unique in Cg, (G})<G}.
Then Sylow 3-subgroup is unique in G; This is a contradiction. Hence
G =J.

As [1 4 zej, yer; — yeas] = 1 — 2ze1o and [1 + weay, yer; — yegs] =
1 + 2xeq; we obtain U; and U, are contained in G’. And hence the
subgroup (U;,Us) < G’. Then the elements of the form

1 =z 1 oyY) (l4+zy o ,

In particular for x = y = 1 the elements

11 ,
a-(l 1)€G

la| =4 and for x =y = —1

-1 -1 ,
b_<_1 ) )GG

is an element of order 4. Moreover a and b are contained in .J. Since
these elements generate J we obtain J < G’. Hence 3 divides |G'| and
8 divides |G'| and G’ < Gy implies that |G'| = 24 and G’ = G;.
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4.7. Let G be a finite group with trivial center. If G has a non-
normal abelian maximal subgroup A, then show that G = AN and
ANN =1 for some elementary abelian p-subgroup N which is minimal
normal in G. Also A must be cyclic of order prime to p.

Solution Let A be an abelian maximal subgroup of GG such that A
is not normal in G. Then for any x € G\ A. So we obtain (A4, z) = G.
Therefore for any © € G\ A, we have A* # A otherwise A would be
normal in G. But then consider A N A*. Since A* # A and A is
maximal, (A4, A") = G. If w € AN A", then Cg(w) > (A, A") = G.
Since A is abelian and A” is isomorphic to A so that A* is also maximal
and abelian in G. But Cg(w) = G implies w € Z(G) = 1. Hence
AN A* = 1. This shows that A is Frobenius complement in G. Hence
there exists a Frobenius kernel N such that G = AN and AN N = 1.
By Frobenius Theorem, Frobenius kernel is a normal subgroup of G.
So G = AN implies G/N = AN/N = A/AN N, hence G is soluble. It
follows from the fact that minimal normal subgroup of a soluble group
is elementary abelian p-group for some prime p, N is an elementary
abelian p-group.

If there exists a normal subgroup M in G such that G = AM and
M < N. Then ANM < AN N = 1. Moreover |G| = {3457 = 41T =
|A||M| = |A||N|. Hence |M| = |N]|, this implies M = N. Hence N is
minimal normal subgroup of G.

Since N is elementary ableian p-group if A contains an element g
of order power of p, then the group H = N(g) is a p-group. Hence
Z(H)# 1. Let x € Z(H). If x € A, then Cg(z) > (A,N) = G. This
implies that x € Z(G) = 1 which is impossible. So z € G\A. Then
() N {g)" < AN A" =1. But (g) N {g)" = (g). Hence (|A],p) = 1. i.e.
p 1Al

Claim: A is cyclic: By Frobenius Theorem, Sylow g-subgroups of
Frobenius complement A are cyclic if ¢ > 2 and cyclic or generalized
quaternion if p = 2 (Burnside Theorem, Fixed point free Automor-
phism in [1]). Since A is abelian Sylow subgroup can not be general-
ized quaternion group. Hence all Sylow subgroups of A are cyclic. This
implies that A is cyclic.

4.8. Let G be a finite group. If G has an abelian mazimal subgroup,
then show that G is soluble with derived length at most 3.
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Solution Let A be an abelian maximal subgroup of G. If A is
normal in G, then for any x € G\ A, we have A(x) = G. Hence G/A =
Alx)/A = x)/(z) N A. Then G/A is cyclic and A is abelian implies
G"” =1 and hence G is soluble. Now consider Z(G). If Z(G) is not a
subgroup of A, then AZ(G) = G. This implies that G is abelian. Hence
we may assume that Z(G) is a subgroup of A. Then AN A* > Z(G),
on the other hand if w € AN A*, then Cg(w) > (A, A*) = G. Hence
w € Z(G). It follows that AN A* = Z(G).

Now, consider the group G = G/Z(G). Then G has an abelian
maximal subgroup A. Then for any z € G\A. We obtain AN A* =
1. Hence G is a Frobenius group with Frobenius complement A and
Frobenius kernel N. Then G = G/Z(G) = (A/Z(Q))(N/Z(G)). The
group G is soluble hence G is soluble. As in [1] Lemma 2.2.8 N is an
elementary abelian p-group and N is a minimal normal subgroup of G.

Since G = AN and A is abelian, we obtain G’ < N and G” < Z(G)
as N is abelian. Hence (G/Z(G)) < N/Z(G) and G"Z(G)/Z(G) <
Z(G))Z(G). i.e G" < Z(G). Hence G = 1.

4.9. Let « be a fixed point free automorphism of a finite group G.
If o has order a power of a prime p, then p does not divide |G|. If
p = 2, infer via the Feit-Thompson Theorem that G is soluble.

Solution: Recall that a fixed point free automorphism « stabilizes
a Sylow p-subgroup of G. The point is P = Py for some g € G where
Py is a Sylow p-subgroup of GG. Since the map

G— G

r— x iz

is a bijective map we may write every element ¢ = h~'h® for some

he€G. Let P= P}, Then
P = (B ) = (B = ()™ = ()T = P = p

So « becomes an automorphism of P. Then let H = P x {(«). If ()
is a p-group, then H is a p-group. So Z(H) # 1. This implies that if
1 # Z(H), then z* = z which is impossible by fixed point free action.
Hence a can not be a power of a prime dividing |G|. i.e. (o], |G]) = 1.

So if a group G has a fixed point free automorphism of order 2"
for some n, then (2,|G|) = 1. Hence by Feit-Thompson theorem |G|
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is odd and G is soluble. It follows that a group has a fixed point free
automorphism « of order power of a prime 2 is soluble.

4.10. If X is a nontrivial fixed point free group of automorphisms
of a finite group G, then X x G is a Frobenius group.

Solution: We need to show that for any
a€ (X xG)\ X, XNX*=1.

Let @« = xg where ¢ # 1 and assume that w € X N X* = X N
X% = X NX9 Then w =z = y9 for some x,y € X. The element
yy lglyg = v = w € X implies that y~t¢g lyg = y 'z € X as
z,y € X. Moreover y(¢g-')Yg =2 € GX. Then (g-')g e X NG = 1.
Hence (g7!)Yg = 1 which implies (¢71)¥ = g~!. But y is a fixed point
free automorphism, this implies that g = 1 which is a contradiction.

Hence X NX® =1forall @ € (X xG)\ X. It follows that X x G is
a Frobenius group with Frobenius Kernel G and Frobenius complement
X.

4.11. A soluble p-group is locally nilpotent.

Solution: A group G is called a p-group if every element of G has
order a power of a fixed prime p. A periodic soluble group is a locally
finite group. One can see this by induction on the derived length n of
G. For n = 1, then G is a periodic abelian group which is clearly locally
nilpotent. Assume n > 1 and let S be a finitely generated subgroup
of G. Then SG'/G’ is finite as it is abelian and finitely generated p-
group. Moreover SG'/G' = S/SNG'. As S is finitely generated and
S/(SNG') is finite we have S NG’ is a finitely generated subgroup of
the p-group G’. By induction assumption S NG’ is finite and S/SNG’
is finite implies S is finite. It follows that G is locally finite.

A locally finite p-group is locally nilpotent because every finitely
generated subgroup is a finite p-group. Hence it is nilpotent.

4.12. A finite group has a fized-point-free automorphism of order
2 if and only if it is abelian and has odd order.

Solution: Let G be an abelian group of odd order.
a:G—-G
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x— !

« is a fixed-point-free automorphism of G. Indeed if a(z) = = implies
x = x~'. Then 2% = 1. Hence there exists a subgroup of order 2. This
implies |G| is even. Hence = = 1.
Conversely let a be a fixed point free automorphism of a finite group
G. Then the map
6:G—=G

r— 1 a(z)

is a 1 — 1 map. Indeed B(z) = B(y) implies x~'a(z) = y'a(y). Then
ya ' = a(y)a(z)™
xr =y. Now, for any g € G, there exists x € G such that g = 27 a(z).
-1

= a(yz™!). Since « is fixed-point-free we obtain
Then a(g) = a(zla(x)) = a(z)a?(z) = alz) ™z = ¢ Now
a(g192) = (9192)7" = alg)a(ge) = 992" = (9192)™" = go g7 Tt
follows that g19o = ¢g291. Hence G is an abelian group.

Moreover if there exists an element y of order 2, then a(y) = y~! =
y. Which is impossible as « is a fixed-point-free automorphism of order
2.

4.13. Let G be a finite Frobenius group with Frobenius kernel K.
If |G : K| is even, prove that K is abelian and has odd order.

Solution: Frobenius kernel K is a normal subgroup of G. Let X
be a Frobenius complement. Then G = KX and K N X = 1. Since
order of G/K is even, we obtain |G/K| = | XK/K| = | X/XNK| = |X]|.
Then there exists an element x € X of order 2. Then

ap: K - K

qg — ! gx.
is an automorphism of K. Moreover |a,| = 2 and «, is fixed-point-free.
If 27 'kx = k for some k € K. Then kzk™! =z and X N X* # 1
where k € G\ X. Which is impossible. Hence «, is a fixed point free
automorphism of K of order 2. Then by question 4.12 K is abelian of
odd order.

Recall that if G is a finite group and pq, - - - , pr. denote the distinct
prime divisors of |G| and Q); is a Hall p}-subgroup of G. Then the set
{Q1, -+ ,Q} is called a Sylow system of G. By Hall’s theorem every
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k

soluble group has a Sylow-system. N = ﬂ Ng(Q;) is called system
i=1
normalizer of G.

4.14. Locate the system normalizers of the groups:

(a) Ss (b) Ay (¢) Su (d) SL(2,3)

Solution:

(a) Ss is soluble and H; = {(1),(12)}, Hy = {1,(13)}, H3 =
{1,(23)}. are Hall 2-subgroups of S3 or Hall 3’-subgroup of S3, and
As = {1,(123),(132)} is a Hall 2’-subgroup or Hall 3-subgroup of Sj.
Then {H,, A3} is a Sylow system of G. Ng,(H;)NNg,(As) = H;NS3 =
H; system normalizer of S3 ¢ = 1,2, 3.

(b) Observe that V' = {1, (12)(34), (13)(24), (14)(23)} is a Hall 2-
subgroup or Hall 3’-subgroup of A;. The group V <1 A4, hence there is
only one Hall 2-subgroup of Ay.

Hl - {(1)7 (123)7 (132)}7 H2 = {(1)7 (124)7 (142)}7

Hy = {(1), (134), (143)}, H, = {1, (234), (243)}

are Hall 3-subgroups or Hall 2’-subgroups of Aj.

Since A4 has no subgroup of index 2 and H; is not normal in
Ay we obtain Na,(H;) = H;. {H; V} is Sylow System of A, and
Na,(H;)) N Ny, (V)= H; N Ay = H;, System normalizers of Ay.

(c) Sy is a soluble group of derived length 3. Sylow 2-subgroup
becomes Hall 2-subgroup or equivalently Hall 3’-subgroup.

Sylow 3-subgroup of S; becomes Hall 3-subgroup equivalently Hall
2'-subgroup of Sy. Let H; be a Sylow 2-subgroup of order 8 in Sj.
Then H; is not normal in Sy. Hence Ng,(H;) = H;. There are 4
Sylow 3-subgroups. Hence K; = {1,(123),(132)} as in A, every 3-
cycle generates a Sylow 3-subgroup of Sy. But |Sy : Ng,(K;)| = 4
implies | Ng, (K;)| = 6.

Namely Ng,(K7) = S3. Similarly Ng,(K;) = S;. For K; we ob-
tain Ng,(K7) = {1, (13),(12), (23), (123), (132)}, {K1, H1} is a Sylow
System. Since V' <154 every Sylow 2-subgroup contains V.

Hy = {1,(12), (34), (13)(24), (14)(23), (23), (1342), (1243), (14)}
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Ng,(Hy) N Ng, (K1) = HiNS3 ={(1),(23)} system normalizer of Sj.

@ (32-1)(32—3) 8-6
ISL(2,3)| = > = - =2

1
i {

T € Zg} is a Sylow 3-subgroup

o

o
Hy; = { (1) ‘y € Zg} is a Sylow 3-subgroup
Y

10 0 —1 -1 1
H = = 2 =
s {[0 1]’3/ 1—1]’3/ [—1 0]}
is a Sylow 3-subgroup of SL(2,3).
Then the number of Sylow 3-subgroups is 4.

Z(SL(2,3)):{[(1) 2] _01 _01”

NSL(2,3)(H1> Z <Z(SL(2,3)),H1> = H1 X Z(SL(Q,B))
The index |SL(2,3) : Ngr2,3)(H1)| = 4 implies |Ngp(2,3)(H:1)| = 6.
So Nsr2,3)(Hy) is a cyclic group of order 6 and generated by the element

=10

All Sylow 2-subgroup contains Z(SL(2,3)). Let S be a Sylow 2-
subgroup of order 8. Then Ngz(2,3)(S) = SL(2,3) since by Question
4.6 S is normal in SL(2,3), {S, H,} is a Sylow system.

Nsr2,3)(S) N Nape,3)(Hy) = Z(SL(2,3)) x H;.
So Z(SL(2,3)) x Hy is a System normalizer of SL(2,3).

4.15. Let G be a finite soluble group which is not nilpotent but all
of whose proper quotients are nilpotent. Denote by L the last term of
the lower central series. Prove the following statements:

(a) L is minimal normal in G.

(b) L is an elementary abelian p-group.

(c) there is a complement X # 1 of L which acts faithful on L

(d) the order of X is not divisible by p.



60 M. KUZUCUOGLU

Solution: (a) Let v1(G) > 1%(G) > -+ > y%(G) = L # 1. Since
G is not nilpotent, there exists k such that L = v,(G) = 7441(G) # 1.
The group L is a normal subgroup of GG as each term in the lower cen-
tral series is a characteristic subgroup of G. If there exists a normal
subgroup N <1 G, and N < L, then by assumption G/N is a nilpotent
group. Hence 7,(G/N) = 1. Equivalently v,(G/N) < N. But this
implies N/N = 7,(G/N) = 7,(G)N/N = L/N. This implies L = N

contradiction. Hence L is a minimal normal subgroup of G.

(b) For a finite soluble group minimal normal subgroup is an ele-
mentary abelian p-group for some prime p.

(c) Now by Gaschutz-Schenkman, Carter Theorem, if G is a finite
soluble group and L is the smallest term of the Lower central series of
G. If N is any system normalizer in GG, then G = NL. If in addition
L is abelian, then also NN L =1 and N is a complement of L.

Now by the above theorem L has a complement N where N is a
system normalizer in G. For solvable groups system normalizer exists.
Hence there exists X such that G = X L. By the same theorem since
L is abelian we obtain X N L =1, so X is a complement of L in G.

Claim X acts faithfully on L.

Since L is a minimal normal subgroup of G, the group X acts on
L by conjugation. Let K be the kernel of the action of X on L. Then
K <X and K commutes with L. Hence Ng(K) > XL = G. It follows
that K is normal in G. Then G/K is nilpotent by assumption. Hence
L=~,(G)<K<X.But XNL=1. Hence K =1and X acts on L
faithfully.

(d) Assume that p| | X|. Let P be a Sylow p-subgroup of G contain-
ing L. Then for x € P\ L and z € X, (x) acts an L faithfully. Consider
T = L{x). Then T is a p-group Z(T) # 1. Let 1 #w € Z(T), w = {z*
for some . Then for any g € L, g“i = gxi =g as L is abelian.

Then z* acts trivially on L implies z* = 1. This implies Z(T) < L.
X system normalizer is nilpotent, implies that G = X L.

Let X = P, x P, x --- x P,, where P,’s are Sylow p;-subgroups of
X. Let LP, = P Sylow p-subgroup of G.
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Since G = LX and P, < X we obtain Ng(P) = G so P < G.
Then Z(P) char P < G so Z(P) < G. Then G/Z(P) is nilpotent
hence L = v,(G) < Z(P). So [L, P\] = 1. Since X normalizes P, and
[L, P] =1 we obtain P, <G. If P; # 1, then G/P, is nilpotent. Hence
L =~,(G) < P, but LN P, = 1. Hence L < P, is impossible. So
P =1

4.16. Write H asc K to mean that H is an ascendant subgroup of
a group K. Establish the following properties of ascendant subgroups.

(a) H asc K and K asc G imply that H asc G.

(b) H asc K <G and L asc M < G imply that H N L asc KN M

(c) If H asc K < G and « is a homomorphism from G, then H®
is asc K. Deduce that HN asc KN if N < G.

Solution: (a) H asc K implies, there exists a series H = Hy <
H,<---<H, = K for some ordinal o. Similarly there exists an ordinal
B such that K = Ko < K; <--- < Kg=G. Then

H=Hy<H - <H,=K<K,1 < dKyp1p5=0G

be an ascending series of H in G.
(b) Let L =Ly << H; <---<Lg= M be aseries of L in M. Then

LNH=LyNnH<ILiNHQ---ALgNH=MNH
Moreover
MNH<MNH <---<<MNH,=MNK

Hence LN H asc M N K.

(c) If H asc K, then there exists an ordinal « such that H =
Hy<xHy<---<H, =K. Then H* < H < .-- < H;" = K% is an
ascending series of H* in K.

HN = HON < H N <---<H/,N = KN. Hence HN asc KN.
Observe that H < H; and N <1 G implies HN < H{N

4.17. A group is called radical if it has an ascending series with lo-
cally nilpotent factors. Define the upper Hirsch Plotkin series of a group
G to be the ascending series 1 = Ry < Ry < ... in which Ryi1/Ra i
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the Hirsch-Plotkin radical of G/R, and Ry = UR“ for limit ordi-
a(A
nals A. Prove that the radical groups are precisely those groups which

coincide with a term of their upper Hirsch-Plotkin series.

Solution: It is clear by definition of a radical group that, if a
group coincides with a term of its upper Hirsch Plotkin series then it is
an ascending series with locally nilpotent factors. Hence it is a radical
group.

Conversely assume that G is a radical group with an ascending
series 1 < Hy < H; <--- < Hg = G such that H; < H;yy and H;;,/H;
is locally nilpotent.

Recall from [1, 12.14] that if G is any group the Hirsch-Plotkin
radical contains all the ascendent locally nilpotent subgroups.

Let R; denote i*" term in Hirsch-Plotkin series of G.

Claim: H; < R; for all 7. For i = 0 clear.

Assume that H; 1 < R;_; we know that H;/H; ; is locally nilpo-
tent. Then H;R; 1/R;-1 < G/R;—;. Moreover H;R; 1/R;_; is an
ascendent subgroup of G/R;_; and H;R; 1/R;_; is locally nilpotent.
Hence by [1, 12.1.4] it is contained in the Hirsch Plotkin radical of
G/R;_yi.e. HR;_1 < R;. 1t follows that H; < R;.

4.18. Show that a radical group with finite Hirsch-Plotkin radical
is finite and soluble.

Solution: Let H be a Hirsch-Plotkin radical of a radical group
G. By previous question Cq(H) = Z(H). Now consider G/Cq(H) =
G/Z(H) which is isomorphic to a subgroup of Aut H. If H is fi-
nite, then Aut H is finite. Hence G/Z(H) is a finite group. Hence
G/Z(H) is finite and H is finite implies G is a finite group. Then
1< H <Hy<---<H,=(G implies G is soluble as v.(H,) < H,_1.
So G® < H,_; and so on.

4.19. T(2,7Z) = Dy, X Zy where Dy, is the infinite dihedral group.

-

Solution:

F1 ot

T(Q,Z):{ 0
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(2

0
-1

Indeed [ 8 Z ] is in the Z(T(2,7Z))

Mk

N a at—
0 —-b

t
—1

o e ]

c a c+tb
= Yt € Z
] [0 |0 PE

at — c = c+tb = (a — b)t = 2c¢ Since t is arbitrary

fort =0 we havec=0and soa=0»

Hence the center C' = Z,.

Now consider

1

H=(|

H is a subgroup of T'(2,7)

(RIE
)

N < H. Indeed

gEl

o | [10
beZ

>:a—|—b

b
1 ]) =a+ b = ¢ is a homomorphism

SNSRI

} is equal to the center of T'(2,7Z).

63
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][0 e

[1) 0 ] is an element of order 2.
So H=N x( L0 ) Let a = L0
0 —1 0 —1

Every element of N is inverted by a and a? = 1. The group N is a
cyclic group isomorphic to Z. So, H is isomorphic to infinite dihedral
group.

{ The dihedral group D, is a semidirect product of infinite cyclic
group and a group of order 2 }. HNC = {1}

[H,C]=1

HxC<T(2,7Z)

We take an arbitrary element from 7'(2,Z). If the entry a;; = —1
by multiplying

-1 b || -1 0 |_
0 F1|| 0 =11

Therefore, every element in 7'(2,7Z) can be written as a product of

1 —b

eH
0 F1

an element from H.

4.20. Show that Qaon [Z(Qan) is isomorphic to Daon-1 for n > 2.

Solution: Recall that

1

Qo = (z,y | 22 =¥ ¥ =lLa yr =y, n>2)

(¥ ) = (y 27 = (22)" = 22y as y?" has order 2. So y¥"
commutes with  and y hence y2n_2 is in the center of (Qo». The group
(y) has index 2 in Qan as z? € (y). Hence (y) is normal in Qan.
Moreover z(y) # (y) and |Qon| = 2™ and every element of Qan can be
written as z'y’ where i = 0,1 and 0 < j S 2"

The writing of every element is unique, as

:Biyj::vmyk, 0<im<1, 0<k,j < gn-t

implies 2™~ = y*=7. Then m —i = 0 or 1 but if m — i = 1 we obtain
x € (y) which is impossible. Hence m —i = 0 and k — 7 = 0. This
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implies every element of Qo= can be written uniquely in the form z%y/.

Now assume that an element z'y’ € Z(Qgn). Then (x'y’)* =
ri(y?)® = a'y™7 = 2%y/. Hence y¥ = 1. Since there exists a unique
subgroup of order 2 in (y) we obtain j = 2"72. Then

(a'y™ )Y = ()™ =y atyy

_ xixfiyflxiyyW_Q _ $i(yf1)xiyy2"—2 _ l.in"_Q‘

It follows that (y~1)*'y = 1 and so (y)* = y. Since i = 0 or 1, in

2n—2

case i = 1 we obtain y? = 1 and Q9= = Q4 abelian case.
So the center Z(Qyn) = (y*" ) and |Z(Qu)| = 2. Moreover
Q20 /Z(Q2n)| = 2"

Qo /Z(Qan) = (,y | 22 =¥ 0¥ =1, a7y =y ' > JZ(Qan).

Let T =2 Z(Qon and J = y Z(Qan). Then 7% = 1 and 7 = 1.
Moreover T~ 'yz = 71,
The map
p: Qon/Z(Q2n) — Danr

where
2n72

Dogn-1 = {a,b| a®*=1=0"",a 'ba=b"").

T —a
y—>0b

© is an epimorphism both groups have the same order hence

Qo /Z(Q2n) = Don—s

4.21. Let G = (z,y | 2* = y® = (wy)® = 1). Prove that G = Ax <
t > where t3 =1 and A = (a) x (b) is the direct product of two infinite
cyclic groups, the action of t being a* = b, b = a=1b7L.

Hint: prove that (xyx,z?y) is a normal abelian subgroup.

Solution: Let N = (zyz,z*y). The group N is a normal subgroup

of G. Indeed, z7(zyx)z = ya? = yx =t

The product of two elements of N is ayx - 2%y = xy? = 2y~ ! =
(yr=1) ™' = (yz*)~! € N hence yr~' € N

r(ryr)zr ' =2y e N

(2?y)* = x7'2*yx = zyz € N, and x(z*y)z~' = yz~' € N. Hence
N <G
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By previous paragraph zyx - %y = zy* = zy~! and now

2y - ayr=a - (vy)(vy) - x =2 (vy)? x=x-y*2? v =2y’ =xy "

Hence z%y and zyz commute.
Observe that

vy -wy = (zy) " =y T =yt
Hence N is abelian normal subgroup of G. For the order of the

element xyx we have

(vyr)? = 2yx - 2y = YT YT = VYT YT
Since zy~! € N we obtain z N = yN. But 23 = 1 implies 23N = N.
It is clear that x € N; otherwise N = G, then G is abelian, but zy # yz,
(xN) has order 3; otherwise 22 € N implies y € N as yz*> € N. So zN
has order 3 and (x) "N =1

(2%y)" = v '2%yx = yx

Moreover

2 1 1

(zyz)* =y2* =y a2z Ny lztasy® =1 and 22 = 2~

1 1 1

=y ot =yrt = ya? = (2%) M(zyr) tasy P =y and 2? = 2~
Now let 2%y = a, and zyz = b. Then

a® = (2?y)® = 2~ '2?yx = ryxr and

1 1

b = (wyx)’ = ya? = (2%y) "' =y a2y T

=y 2l =yrt=y2® =a b7l

Then by von Dyck’s theorem we obtain the isomorphism.

4.22. Show that S3 has the presentation

(w,y | 2 =y = (2y)* = 1)

Solution: Let G = (z,y | 2? = y* = (xy)? = 1). Then (zy)? =
ryry = 1. This implies zyr = y~' = 27 'yz as 2> = 1. Hence the
subgroup generated by y is a normal subgroup of order 3. Let N = (y).
Since G is generated by x and y, G = (x,N), N < G implies |G| < 6
on the other hand z'y/ = 2"y* implies 27" = y*7 € (x) N (y) = 1 as
|(z)| = 2 and |(y)| = 3. This implies
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2" =11ie. 2' = 2" and y* = y/. Hence two possibilities for ¢ and
three possibilities for j implies we have 6 elements of the form z‘y’.
Hence |G| = 6.

Recall that S3 = ((12), (123))

(12)(123)(12) = (132) = (123)~!

(12)(123)(12)(123) = (132)(123) = 1.

Now let o = (12), 5 = (123). Then every relation in G holds in Ss.

So by Von Dycks Theorem there exists an epimorphism

© 83—> G
r— «
y— B

Ker(p) ={a'f’) | p(a’f7) = a'y’ =1}
={a'®) |z =y € (x)N(y) =1}
= {1}.

Hence G = S5

4.23. Let G be a finite group with trivial center. If G has a non-
normal abelian maximal subgroup A, then G = AN and ANN =1 for
some elementary abelian p-subgroup N which is minimal normal in G.
Also A must be cyclic of order prime to p.

Solution: Let A be an abelian maximal subgroup of GG such that
A is not normal. Then for any x € G\A. So we obtain (A,z) = G.
Therefore for any x € G\ A, we have A* # A otherwise A would be
normal in G. But then consider A N A*. Since A* # A and A is
maximal, (A, A*) = G. If w € AN A*, then Cg(w) > (A, A*) = G.
Since A is abelian and A” is isomorphic to A so that A” is also maximal
and abelian in G. But Cg(w) = G implies w € Z(G) = 1. Hence
AN A* = 1. This shows that A is Frobenius complement in G. Hence
there exists a Frobenius kernel N such that G = AN and AN N = 1.
By Frobenius Theorem, Frobenius kernel is a normal subgroup of G.
So G' = AN implies G/N = AN/N = A/AN N, hence G is soluble as
Frobenius kernel NV is nilpotent. It follows from the fact that minimal
normal subgroup of a soluble group is elementary abelian p-group for
some prime p NN is an elementary abelian p-group.

If there exists a normal subgroup M in G such that G = AM and

M < N. Then ANM < AN N = 1. Moreover |G|:%:%:
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|A||M| = |A||N|. Hence |M| = |N|, this implies M = N. Hence N is
minimal normal subgroup of G.

Since N is elementary abelian p-group if A contains an element g
of order power of p, then the group H = N(g) is a p-group. Hence
Z(H) # 1. Let x € Z(H). If x € A, then Cg(z) > (A,z) = G. This
implies that x € Z(G) = 1 which is impossible. So z € G\A. Then
(g) N {g)" < AN A* =1. But (g) N {g)" = (g). Hence (|A4],p) = 1. ie.
ptlAl

Now we show that A is cyclic. Indeed by Frobenius Theorem, Sylow
g-subgroups of Frobenius complement A are cyclic if ¢ > 2 and cyclic
or generalized quaternion if p = 2 (Burnside Theorem, Fixed point
free Automorphism in [1]). Since A is abelian Sylow subgroup can not
cannot be generalized quaternion group. Hence all Sylow subgroups of
A are cyclic. This implies that A is cyclic.

4.24. Let G be a finite group. If G has an abelian maximal sub-
group, then G is soluble with derived length at most 3.

Solution: Let A be an abelian maximal subgroup of G. If A
is normal in G, then for any x € G\A, we have A(x) = G. Hence
G/A = A(x)/A = (x)/(x) N A. Then G/A is cyclic and A is abelian
implies G” = 1.

Consider Z(G). If Z(G) is not a subgroup of A, then AZ(G) = G.
This implies that G is abelian. Hence we may assume that Z(G) is a
subgroup of A. Then ANA* > Z(G), on the other hand if w € AN A",
then Cg(w) > (A, A*) = G. Hence w € Z(G). It follows that ANA® =
Z(G).

Now, consider the group G = G/Z(G). Then G has an abelian
maximal subgroup A. Then for any 7 € G\A. We obtain AN A* =
1. Hence G is a Frobenius group with Frobenius complement A and
Frobenius kernel N. Then G = G/Z(G) = (A/Z(G))(N/Z(G)). The
group G is soluble hence G is soluble. Asin [1, Lemma 2.2.8] N is an
elementary abelian p-group and N is a minimal normal subgroup of G.

Since G = AN and A is abelian, we obtain G’ < N and G” < Z(G)
as N is abelian. Hence (G/Z(G)) < N/Z(G) and G"Z(G)/Z(G) <
Z(@)/Z(Q). i.e " < Z(G). Hence G" = 1.
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4.25. Let M be a mazimal subgroup of a locally finite group G. If
M is inert and abelian, then G is soluble.

Solution: If M is normal, then for any x € G\M, we have
(M, x) = G implies that G/M = (z) M /M = (z)/(x) N M.
Then [G,G] < M. So [G, G] is abelian. Therefore, G > [G,G]| > 1. So
that G is soluble of derived length 2.

Assume M is not normal in G. Then Ng(M) = M as M maximal.
Then for any = € G\M we have M* # M. Hence (M, M*) = G. By
inertness we have |M : M N M?*| < oo and |[M* : M N M?*| < co. Then
by [?, Belyaev’s Paper| this implies that |G : M N M?*| = |(M, M?) :
MNM?| < co. So MAM?® 4 G. Indeed, Ng(MNM?®) > (M, M*) = G.
Then the group G/M N M? is a finite group with abelian maximal sub-
group, then by [1, Theorem 2.2.1] G/M N M? is soluble. It follows that
G is soluble as M N M? is abelian.

4.26. Let G be soluble and ®(G) = 1. If G contains exactly one
minimal normal subgroup N, then N = F(G).

Solution: Let N be a minimal normal subgroup of the soluble G.
Then N is an elementary abelian group and so it is a normal nilpotent
subgroup of G. Hence N < F(G).

The group F(G) is a characteristic nilpotent subgroup of G so

F(G) = 0,,(F(G)) x ... x 0, (F(Q))
where each O,,(F(G)) < G and G contains only one minimal normal
subgroup implies that, there exists only one prime p.
Z(F(G))charF(G)charG implies there exists a minimal normal
subgroup in Z(F(G)). Uniqueness of N implies every element of order
p in Z(F(G)) is contained in N. So 1(Z(F(G))) < N. Moreover

every maximal subgroup of F/(G) is contained in a maximal subgroup

of G. Hence ®(F(G)) < ®(G) = 1. Then
F(G) = F(G)/®(F(G)) = Dr F(G)/M;

M; is maximal in F(G). Since each F(G)/M,; is cyclic of order p we
obtain F'(G)) is an elementary abelian p group. Then ,(Z(F(G))) <
N implies F/(G) < N and hence we have the equality F'(G) = N.
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4.27. Let G be a group of order 2n. Suppose that half of the
elements of G are of order 2 and the other half form a subgroup H of
order n. Prove that H s of odd order and H is an abelian subgroup of

G.

Solution: Since H is a subgroup of index 2 in G we have H is
a normal subgroup of GG. There is only one coset of H in G other
than itself say ©H is the second coset and zH # H. Hence by as-
sumption every element in xH has order 2. In particular G/H is of
order 2 and z is an element of G of order 2. Then for any h € H we
have (zh)? = (zh)(xh) = 1. Tt follows that zhx = 7 'he = h™! as
x has order 2. Then the inner automorphism i, is of order 2 and
inverts every element h € H. Then for any hi,hy € H we have
7Y (hihy)x = (hihy)™" = hy'hyt = (27 hix)(z 7 hew) = hy'hyt
Hence hy'hy' = hythy* for all hy, hy € H. By taking inverse of each
side we have hihy = hohy. Hence H is abelian. If |H| is even, then by
Cauchy theorem there will be an element of order 2 in H. But then
there will be n+ 1 elements of order 2 in G which is impossible. Hence
H is a subgroup of odd order.

4.28. Show that Sym(6) has an automorphism that is not inner,
Out(Sym(6)) # 1

Solution: (a) We first show that there is a faithful, transitive
representation of Sym(5) of degree 6.
First we show that there exists a subgroup of Sym(5) of order 20
hence the index |[Sym(5) : G| = 6. Then the action of Sym(5) on the
right cosets of G is

v Sym(5) — Sym(6), is faithful and transitive on 6 letters.
Let
G = {fup : GF(5) = GF(5) | fap(x) = ax + b where a,b € GF(5) and

Then we may consider G as a subgroup of Sym(5) as each element
being a permutation on 5 elements. Then G < Sym(5) and |G| = 20 as
there are 4 choices for a and 5 choices for b. Therefore |Sym(5) : G| =
6. Then Sym(5) acts on the right cosets of G in Sym(5) by right
multiplication.

a#0}
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Then we may write the element of G as permutations of 5 elements
and then G contains both even and odd permutations. For example,
fa,2 corresponds to the permutation of GF(5) as 2z + 2. Then fy, =
(1,4,0,2) so fa2 defines an odd permutation. On the other hand

fir © (1,2,3,4,0) which is an even permutation and
fao = (1,2,4,3) which is an odd permutation.

If K is the kernel of the action of Sym(5) on the cosets of G
in Sym(5), then K < Sym(5). Since the kernel of the action is
Mzesym(5)G* which lies inside G and G 5 Sym(5) and the only nor-
mal subgroup of Sym(5) is either Alt(5) or {1}. Since |K| <
|G| < |Alt(5)|, we have K = {1}.Hence Sym(5) acts faithfully and
transitively on the set of cosets of G in Sym(5) where degree of the
action is 6.

(b) The groups Sym(6);, Sym(6)a, . . . ,Sym(6)s which are mu-
tually conjugate and isomorphic to Sym(5), but these subgroups fixes
a point as a subgroup of Sym(6).

The symmetric group Sym(6) has a subgroup H = Sym(5) which
is transitive on 6 elements.

Sym(5) has 6 Sylow 5-subgroups. Indeed the number of Sylow 5-
subgroups ns = 1 ( mod 5) so it can be 1,6, 11,16 or 21 and moreover
n5124 = [Sym(5) : Ngym5)(Cs)| implies that n; = 6 as we have 6
Sylow subgroup and so Sylow 5-subgroup is not normal in Sym(5). So
Sym(5) acts on the set of Sylow 5-subgroups by conjugation. Hence
there exists a homomorphism

¢ : Sym(5) — Sym(6)

representing members of Sym(5) as permutation of Sylow 5-subgroups.
Kernel of the action is either Alternating group Alt(5) or {1}. Kernel
cannot be Alt(5) since the set of the Sylow 5-subgroups of Sym/(5)
are also the set of Sylow 5-subgroups of Alt(5) and Alt(5) can act
on this set transitively. Hence the kernel of the action is {1} . Hence
H = Im(p) = Sym(5) and Im(p) < Sym(6) and Im(p) acts
transitively and faithfully on the set of Sylow 5-subgroups. One can
observe that the subgroup G of order 20 corresponds to Ngym(5)(05)
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and recall that Ngym,5)(C5) does not lie in Alt(5) as it contains odd
and even permutations.

(c) Let
m 2 Sym(6) = Sym{Sym(6).1y1, Sym(6)1yz, ..., Sym(6)1ys}

The natural representation of Sym(6) on the cosets of Sym(6); gives
an isomorphism
Sym(6) — m(Sym(6))
o — m(o)
The representation of Sym/(6) on the cosets of H = Im(p) = Sym(5)
is faithful since the kernel is as in first lemma, a normal subgroup of

Sym(6) smaller than Alt(6). Hence kernel is {1} . Thus one obtains
a second isomorphism

my : Sym(6) — Sym(6) = Sym(Hxy, Hxs, . . . , Hxg)

Hzls are cosets of H in Sym(6).
The correspondence

Sym(6) — Sym(6)
m(o) — m(o)
is then an automorphism of Sym(6).
m1(00) = m1(0)m1(0) = ma(0d) = ma(0)ma ()

This automorphism associates (7 (c) | o € H) with (my(0) | 0 € H).

However, (m(0) | o € H) fixes all the elements in H while (m(0)|o € H)
fixes no elements, indeed if (Sym(6));7 = Sym(6),70 for all 0 € H
then To7=! € Sym(6); for all ¢ € H, it follows that, THT~' = Sym(6),
which makes Sym(6); and H conjugate. Both H and Sym(6); are iso-
morphic to Sym(5) as a subgroup of Sym(6) but they cannot be con-
jugate since Sym(6); is transitive on 5 elements and H on 6 elements.
This automorphism of Sym(6) is not inner.
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Observe that 7m; and 7y gives two inequivalent permutation repre-
sentation of the group Sym(6) but the representations m; and 7, are
permutational isomorphic.

5. A

Let F' be any field and n any positive integer. Then the set of all
invertible n x n matrices with entries in F' form a group with respect to
matrix multiplication. This is called the general linear group of de-
gree n over I’ and denoted by GL,(F'). Let X be a metric space with
distance function d : X x X — R. Then a bijective map ¢ : X — X is
structure preserving if d(xp, yp) = d(z,y) for all x,y € X such a map
© is called isometry of X.

5.1. Assume that a set G with an operation satisfying the associa-
tive law satisfies the following two conditions (a) and (b):

(a) There exists an element e of G such that ge = g for all g € G.

(b) For any element a of G, there exists an element o’ such that
aa’ = e.
Then, show that G is a group with respect to the given operation.

Solution We need to show that there exists a left identity and
each element has a left inverse. Apply (b) to the element a’. So there
exists a” € G with a’a” = e. By the associative law;
ea” = (ad')a” = a(d’a”) = ae = a by part (a). So we have ea” = a

On the other hand; ea = (ea)e = (ea)(a'a"”) = e(aa’)a” = (ee)a” =
ea” = a by the above paragraph.
Therefore for any element a € G we have ea = a = ae for all a € G.
So, e is the identity element of G.
Since we have ea” = a and e is the identity element, we get a” = a. So
we have aa’ = e and d'a” = d'a = e = ad’. So d’ is the inverse of a.

Therefore, GG is a group with the given conditions.

5.2. For a given subset X of a group G, let 7€ be the set of sub-
groups H satisfying H N X = () (the empty set). The set A becomes
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a partially ordered set by defining H < K if and only if H and K are
members of 7 and H is a subgroup of K. Show that, if 2 is not
empty, € is inductively ordered, so 7€ has at least one mazimal ele-
ment by Zorn’s lemma.

Pick a subgroup Hy satisfying HoNX = (), and let 54 denote the subset
of A consisting of the members which contain Hy. Show that 6 is
also inductively ordered, and has a maximal element.

Solution Assume 57 is non-empty. It is clear that J¢ is a partially
ordered set as being a subgroup is a partially ordered set on the set of
all subgroups of GG. This is the restriction of this relation to . Since
0 # (), there exists a subgroup Hy € 5 such that HyN X = (). Let

Ho={H e H|Hy<H}

Let H;,i € I be a chain of subgroups in J%. Then T' = J,.; H; is a
subgroup of G and T € % as TN X = (). Hence every ascending chain
of members in 77 has an upper bound in .545. Then by Zorn’s lemma
there exists a maximal element in .74). i.e. There exists a subgroup
M of G such that M is a maximal element in 7. Therefore every
subgroup containing M will have a non-empty intersection.

5.3.

Let G = EBHEN+Z2”’+1 = Z4 D Zg D Zlﬁ D---
H = Gpen+lon =2y DLy ® Zg D ZLyg® -+

Show that G is not isomorphic to H.

Solution: Observe first that H = Z, @& G. Then there exists a
projection from H to Z,.

If G = H, then there exists a projection from G to Zsy. Then

7. G — Zy such that G/ker(w) & Zy. m* = 7. By the property of
the projection we have G = Zy @ Ker(m).

Then there exists an epimorphism from finite group

Z4@Zg@...@ZQn+l —>ZQ.
Then
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Ly ®Ls® - D Lont1r = Lo ® Ker(m)

=l ® Ly DLy D+ -+ Zign

But this is impossible as direct sums has different maximal elemen-
tary abelian subgroups.

5.4. Let G be the group of 2 X2 nonsingular matrices over R. Show
that G is a semidirect product of the group of matrices with determinant
1 and the multiplicative group R*. Describe an action associated with
this semidirect product.

(Hint. The action is not unique. Why not?)

Solution Let G = GL(2,R) Show that G = SL(2,R) x R*

”
01
Ker(yp) =1, so ¢ is one-to-one. Then we have R* = H < GL(2,R).
We now show that SL(2,R) < GL(2,R)

Define 6 : GL(2,R) — R* by 0(A) = det(A).

We know that determinant is a homomorphism. Then

Ker(0) ={A € GL(2,R) | 0(A) =det(A) =1} = SL(2,R)

Being the kernel of a homomorphism, we have SL(2,R) < GL(2,R).

Define ¢ : R* — GL(2,R) by ¢(r) = ( ! ) Say o(R*) = H.

Now,HmSL(z,R):{AeH\det(A)=1}2{<é (1)>}

So we have G = SL(2,R) x R*.
Arbitrary element of G' can be written as

a b _ ad —bc o ﬁ ﬁ where ad —bc o
c d 0 1 c d 0 1

—e_ _b_
isin H and | ad-be “d&bc is in SL(2,R)
c

Remark In the above question G = GL(2,R), but the proof will
work exactly the same manner for GL(n,R) or GL(n,F).
1
One may take K = 0 . Then K = R* then the ho-
0 ad—bc

momorphism and the action is not the same.
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5.5. Find the number of left cosets of K which are contained in
the double coset Hx K, also show that G is the disjoint union of its
(H, K)-double cosets.

Solution

5.6. Let H be a proper subgroup of a finite group G. Show that
there exists an element of G which is not conjugate to any element of
H.

Solution Assume for any x € G, there exists ¢ € G such that
x € H9. Then G =|J HY. Let |G| =n and |H| = k.

The number of distinct conjugates of H is [G : Ng(H)].

Then we have |G| = [G : Ng(H)||Na(H)| > [G : Ng(H)||H| as
Ng(H) > H. Let |G : No(H)| = m. Then H has m distinct conjugates
in G. Say H = H',H%, ..., H%. As each HY% contain |H| — 1 non-
identity element we have at most |H%| — 1 non-identity element in H9.
If G =~ H% Then |G| = Y ([(H% —id)] < (k—1)m +1 as
H < Ng(H) we have mk —m +1 > |G| = m(|Ng(H)| > mk. So we
have —m 4+ 1 > 0 and m < 1. But m = 1 implies that H << G and
in this case H? = H for all ¢ € G. This implies that H = G. This
contradicts to the assumption that H is a proper subgroup of G. So G

cannot be a union of conjugates of a proper subgroup H.

5.7. For any proper subgroup H of a group G, HH* # G for any
red.

Solution Assume that HH* = G for some x € G. Since H is a
proper subgroup, clearly x # 1. Then x = hyh3 for some hy, hy € H.
Then x = hyz~ hew. Tt follows that 1 = hyz~*hy and so hy 'hy ' = 271
Since H is a subgroup and hy, hy € H we have h{'h;' € Hie. z € H.
But then, G = HH”® = H. This contradicts to H is a proper subgroup.
Hence HH” # @.
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5.8. (a) Prove that any subgroup of index 2 is normal.
(b) Let G be a finite group, and let p be the smallest prime divisor of
the order |G|. Show that any subgroup of index p is normal.

Solution (a) Let H < G with [G: H] = 2.
Then H has two distinct right cosets, and also two distinct left cosets
in G. For any h € H, we have hH = Hh = H and for any a € G with
a ¢ H, we have aH # H and Ha # H. Since there are exactly two
cosets of H in G, we have Ha =aH =G\ H for all a € G.
Therefore H < G.

(b) Let H be a subgroup of G of index p. Then we need to show
that H is a normal subgroup of GG. Indeed G acts from right on the
set of right cosets of H in G. Then there exists a homomorphism
from G into Sym(p). Then G/Ker(¢) is isomorphic to a subgroup of
Sym(p). Recall that Ker(¢) = (), H*. So Ker(¢) < H. If H is
not normal in G, then Ker(¢) will be a proper subgroup of H and
hence 1 # H/Ker(¢) < G/Ker(¢). i.e a prime divisor of |H/Ker(¢)|
divides |G|/|Ker(¢)| which divides m. Hence it divides |G| which
is impossible as any prime dividing p! is less than p and p is the smallest

prime dividing |G|.

DEFINITION 5.1. An endomorphism o of a group G is said to be
normal if o commutes with all inner automorphisms of G.

5.9. Let o be a normal endomorphism of a group G. Set o(G) = H
and o(g) = 2(g)"'g for any g € G.

(a) Show that z is a homomorphism from G into Co(H).

(b) Show that H is a normal subgroup of G such that G = HC¢(H),
and HNCq(H) = Z(H) C Z(G).

(¢) Show that both H and Cg(H) are invariant by o. Prove that
the restriction p of o on Cg(H) is a homomorphism from Cg(H) into
Z(H), and that for any element x of Z(H), we have x = ((x)p(x)
where ¢ s the restriction of z on H.

Solution
(a) Let o be a normal endomorphism of a group G. Then o is
an endomorphism of GG, commuting with all the inner automorphisms
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of G. Let 0(G) = H and o(g9) = 2(g)"'g. We may view this as
2(g) = go(g)~".

First observe that z(g) = go(g)™" € Ce(H). Indeed;

ig0 = oi, implies for any © € G ((v)ig)o = ((x)o)i;. Then
(g7 xg)o = g7 ((x)o)g. Tt follows that

((g7Ho)((z)o)((g)o) = g~ ((x)o)g. Multiply from left by g and
from right by ¢g=! we have [g((¢7")0o)]((z)o)(g)o)g™ = (z)o for any
z € G. So for any (z)o € H we have z(g) = g(g~1)o € Cq(H).

Now for any g and h in G we have;

(gh)z = gh((gh)o)™" = gh((g)a(h)o) ™" = gh((h)o) " ((g)o) ™!

By first paragraph h(h™')o € Cg(H) so h(h™')o commutes with
(¢g71)o and we obtain

(gh)z = g((g7)o)h((h"Yo) = (g)z(h)z. Hence z is a homomor-
phism from G into Cg(H).

(b) H=(G)o. For any g € G and (x)o € H

9 H(x)og =g (z)og((9)o) " (9)o as g((g)o) ! € C(H) we have
= ¢ 9((9)0)@o(9)o = (9)0)" ()(9)o = (g~'2g)0 € H.
So H is a normal subgroup of G.

Now for any g € G

g=1(9)og((g)o) " as g((g)o)~" € Cs(H) and (g9)o € H we have
G = HCG(H) and H N Ca(H) = Z(H).

Indeed if x € H N Cg(H), then for any g € G

gr = (9)og((g~")o)z

= (9)oxg((g~')o) as x € H and g((9~")o) € Ca(H)
=2(9)og((¢97)o) as x € Ce(H) and (g)o € H.

= xg.

So z € Z(G) and hence Z(H) = HNCg(H) < Z(G).

(c)(i) H is invariant as (H)o = ((G)o)o C (G)o = H

Let © € Cg(H). Then for any h € H,xh = hzx.

ie. x(g)o = (g)ox for any g € G. Then z(g)ox™ = (g)o for all
g €.

Now we consider the following (x)o(g)o = (g)o(z)o?

(v)ox tz(g)o = (v)ox™(g)ox

= (9)o(zx)ox 'z as (z)ox™ = (z(z71)o) ™' € Cq(H) and (g)o € H
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= (9)o(z)o
Hence (z)o € C(H).

(ii) The restriction p:

Let z,y € Cg(H). Then (z)p = (z)o =
Z(H) as for any (g)o € H, we have ((z)z) 'z
as * € Cg(H) and (g)0 € H. Now as (z)z € (H) we have
(z)2)z(9)0 = (9)o((x)z)tz. Tt follows t
and (z)p € Z(H).

Moreover (zy)p = (zy)o = (z)o(y)o = (x)p(y)p

=
&
-+
\'T
L
S
m
N
=z

(iii) Let z € Z(H). Then x = z((z)o) ! (x)o.
Now z((z)o)™! = (z)z = (x)¢ where ( is the restriction of z on H.
And (x)o = (x)p where p is the restriction of o on Cg(H).

5.10. Let G be a group with Z(G)=1. Show that the centralizer in
Aut(G) of Inn(G) is {1} and in particular, Z(Aut(G))={1}.

Solution: Let ¢ € Cuuyc)(Inn(G)). Then

¢ Ligp = i, for any i, € Inn(G). For any element 2 € G, ¢ 'igp(x) =
ig(z) and so ¢ Y, (p(z)) = g 'zg. Tt follows that ¢~ (g 'd(x)g) =
g lzg iff 71 (g7 )xd(g) = g txg. Then we have

9671 (g~ )6~ (g)g~) = . Hence

(7)o g) e (g)g ! =x forallz € G.

Hence, ¢ 1(g)g™! € Z(G) = {1}. Tt follows that ¢~1(g) = g for all
g € G. Then the automorphism ¢! fixes all the elements of G. i.e.
¢~ and hence ¢ is the identity automorphism of G.

As Z(Aut(G)) = Cawe)(Aut(G)) < Cawe(Inn(G)) = {1}, we
have Z(Aut(G)) = {1}. It follows that Z(G) = {1} implies Z(Aut(G)) =
{1}.

5.11. Let G be a nonabelian simple group. Show that any auto-
morphism of Aut(G) is inner.
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Solution: As G is nonabelian simple group, Z(G)={1}. Then by
Question 5.10, Z(Aut(G)) = {1}. Then by Question ??, any automor-
phism of A = Aut(G) is an inner automorphism.

5.12. If two subgroups H and K of a group G satisfy the conditions
HNK={1}, H< Ng(K) and K < Ng(H), then every element of H
commutes with every element of K.

Solution: Consider the element h='k~'hk. Since K < Ng(H),
k~'hk € H. So h™'k~'hk € H. Similarlyy, H < Ng(K) implies
k~hk € K. So h™'k™'hk € K. Hence, h'k~'hk € HN K = {1}.
It follows that h~'k~'hk = 1 and so hk = kh forany h € H and k € K.

5.13. Let G be a group with a composition series and let N be a
normal subgroup of G. Show that there is a composition series of G
having N as a term.

Solution: Let G be a group with a composition series G = Gy >

Giv>.>G, ={1}.

Take the intersection of each subgroup in the series with the normal
subgroup N. We have GyNN = NoG;NN>GyNN>..>G, NN = {1}.

Now, we need to show G;,1 NN < G;NN. Indeed, let z € G;; 1NN
and g € G;NN. Then g 'xg € N asx € N an N is a normal subgroup
of G. Moreover, z € G,;1 and g € G; and G, is normal in G; implies
g 'zg € Gi11. Hence, x € G,y NN and so G; .1 NN <G, N N.

(Gl N N)/(Gz—i-l N N) >~ (G, N N)Gi—i-l/Gi-i-l Sl Gz/GH-l

But G;/G;y1 is a composition factor of the group G. So (G; N
N)/(Giy1 N N) is either equal to G;/G;4q or {1}.

So it is simple or (G; N N)G;41/Giy1 is the trivial group.

So N has a series where each factor is either simple and the simple
factor is isomorphic to a simple factor of G or it is trivial group. By
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deleting the trivial terms from the series, we obtain a composition series
of N.

Now we may look at the series G > G1N <1 GyN ... N this series
also give a series from G to N with factors are either trivial or simple
apply the same procedure above and obtain a series of G where N is a
term of this series.

5.14. Show that the following two conditions on a group G are
equivalent:
(1) There is a homomorphism ¢ from G into Sym(n) such that

©(g) # 1 for some g € G.
(2) The group G contains a proper subgroup of index at most n.

Solution (a) = (b): Assume that there is a homomorphism
¢ : G — Sym(n) such that ¢(g) # 1 for some g € G.

Let G act on the set X = {1,2,..,n}. As

Ker(p) ={g € G | p(g) =1}

and ¢(g) # 1 for some g € G, the action of G on X is no-trivial.

Let x € X such that 29 # x > for some g € G. Then O, # {z}.
This implies that |O,| > 1.

By Orbit-Stabilizer Theorem, |G : Stabg(z)| = |0, < n. This
implies that Stabg(x) is a proper subgroup of G as |O,| > 1 and the
index of Stabg(x) is at most n.

(b) = (a): Assume that H is a proper subgroup of G of index at
most n, say [G : H| = k . Let Q be the set of right cosets of H in G.
Then G act on € by right multiplication. Observe that || = k.

As G act on €, there exists a homomorphism ¢ : G — Sym(k) by
¢(9)Hx = Hzg .
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As Ker(p) contains all elements g € G such that g € (. H" we
have Ker(y) < H. Hence, for any g € G\ H we have ¢(g) # 1.
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