GROUP THEORY EXERCISES AND SOLUTIONS

Mahmut Kuzucuoğlu
Middle East Technical University
matmah@metu.edu.tr
Ankara, TURKEY
December 12, 2014

TABLE OF CONTENTS

CHAPIERS
0. PREFACE v

1. SEMIGROUPS 1
2. GROUPS 2
3. SOLUBLE AND NILPOTENT GROUPS 33
4. SYLOW THEOREMS AND APPLICATIONS 47
5. INDEX 82

Preface

I have given some group theory courses in various years. These problems are given to students from the books which I have followed that year. I have kept the solutions of exercises which I solved for the students. These notes are collection of those solutions of exercises.

Mahmut Kuzucuoğlu
METU, Ankara
December 12, 2014

GROUP THEORY EXERCISES AND SOLUTIONS

M. Kuzucuoğlu

1. SEMIGROUPS

Definition A semigroup is a nonempty set S together with an associative binary operation on S. The operation is often called multiplication and if $x, y \in S$ the product of x and y (in that ordering) is written as $x y$.
1.1. Give an example of a semigroup without an identity element.

Solution $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ is a semigroup without identity with binary operation usual addition.
1.2. Give an example of an infinite semigroup with an identity element e such that no element except e has an inverse.

Solution $\mathbb{N}=\{0,1,2, \ldots\}$ is a semigroup with binary operation usual addition. No non-identity element has an inverse.
1.3. Let S be a semigroup and let $x \in S$. Show that $\{x\}$ forms a subgroup of S (of order 1) if and only if $x^{2}=x$ such an element x is called idempotent in S.

Solution Assume that $\{x\}$ forms a subgroup. Then $\{x\} \cong\{1\}$ and $x^{2}=x$.

Conversely assume that $x^{2}=x$. Then associativity is inherited from S. So Identity element of the set $\{x\}$ is itself and inverse of x is also itself. Then $\{x\}$ forms a subgroup of S.

2. GROUPS

Let V be a vector space over the field F. The set of all linear invertible maps from V to V is called general linear group of V and denoted by $G L(V)$.
2.1. Suppose that F is a finite field with say $|F|=p^{m}=q$ and that V has finite dimension n over F. Then find the order of $G L(V)$.

Solution Let F be a finite field with say $|F|=p^{m}=q$ and that V has finite dimension n over F. Then $|V|=q^{n}$ for any base $w_{1}, w_{2}, \ldots, w_{n}$ of V, there is unique linear map $\theta: V \rightarrow V$ such that $v_{i} \theta=w_{i}$ for $i=1,2, \ldots, n$.
Hence $|G L(V)|$ is equal to the number of ordered bases of V, in forming a base $w_{1}, w_{2}, \ldots, w_{n}$ of V we may first choose w_{1} to be any nonzero vector of V then w_{2} be any vector other than a scalar multiple of w_{1}. Then w_{3} to be any vector other than a linear combination of w_{1} and w_{2} and so on. Hence
$|G L(V)|=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right)$.
2.2. Let G be the set of all matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ where a, b, c are real numbers such that $a c \neq 0$.
(a) Prove that G forms a subgroup of $G L_{2}(\mathbb{R})$.

Indeed

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\left(\begin{array}{ll}
d & e \\
0 & f
\end{array}\right)=\left(\begin{array}{cc}
a d & a e+b f \\
0 & c f
\end{array}\right) \in G
$$

$a c \neq 0, d f \neq 0$, implies that $a c d f \neq 0$ for all $a, c, d, f \in \mathbb{R}$. Since determinant of the matrices are all non-zero they are clearly invertible. (b) The set H of all elements of G in which $a=c=1$ forms a subgroup of G isomorphic to \mathbb{R}^{+}. Indeed $H=\left\{\left.\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \right\rvert\, b \in \mathbb{R}\right\}$

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & b_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & b_{2} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & b_{1}+b_{2} \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & b_{1} \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & -b_{1} \\
0 & 1
\end{array}\right) \in H . \text { So } H \leq G
\end{aligned}
$$

Moreover $H \cong \mathbb{R}^{+}$

$$
\begin{aligned}
& \varphi: H \rightarrow \mathbb{R}^{+} \\
& \left(\begin{array}{cc}
1 & b_{1} \\
0 & 1
\end{array}\right) \rightarrow b_{1} \\
& \varphi\left[\left(\begin{array}{cc}
1 & b_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & b_{2} \\
0 & 1
\end{array}\right)\right]=b_{1}+b_{2}=\varphi\left(\begin{array}{cc}
1 & b_{1} \\
0 & 1
\end{array}\right) \varphi\left(\begin{array}{cc}
1 & b_{2} \\
0 & 1
\end{array}\right) \\
& \operatorname{Ker} \varphi=\left\{\left(\begin{array}{cc}
1 & b_{1} \\
0 & 1
\end{array}\right) \left\lvert\, \varphi\left(\begin{array}{cc}
1 & b_{1} \\
0 & 1
\end{array}\right)=0=b_{1}\right.\right\}=I d . \text { So } \varphi \text { is one-to- } \\
& \text { one. }
\end{aligned}
$$

Then for all $b \in \mathbb{R}$, there exists $h \in H$ such that $\varphi(h)=b$, where $h=$ $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$. Hence φ is an isomorphism.
2.3. Let $\alpha \in$ Aut G and let $H=\left\{g \in G: g^{\alpha}=g\right\}$. Prove that H is a subgroup of G, it is called the fixed point subgroup of G under α.

Solution Let $g_{1}, g_{2} \in H$. Then $g_{1}^{\alpha}=g_{1}$ and $g_{2}^{\alpha}=g_{2}$. Now $\left(g_{1} g_{2}\right)^{\alpha}=g_{1}^{\alpha} g_{2}^{\alpha}=g_{1} g_{2}$ $\left(g_{2}^{-1}\right)^{\alpha}=\left(g_{2}^{\alpha}\right)^{-1}=g_{2}^{-1} \in H$. So H is a subgroup.
2.4. Let n be a positive integer and F a field. For any $n \times n$ matrix y with entries in F let y^{t} denote the transpose of y. Show that the map

$$
\begin{aligned}
\phi: G L_{n}(F) & \rightarrow G L_{n}(F) \\
x & \rightarrow\left(x^{-1}\right)^{t}
\end{aligned}
$$

for all $x \in G L_{n}(F)$ is an automorphism of $G L_{n}(F)$ and that the corresponding fixed point subgroup consist of all orthogonal $n \times n$ matrices with entries in F. (That is matrices y such that $y^{t} y=1$)

Solution

$$
\begin{aligned}
\phi\left(x_{1} x_{2}\right) & =\left[\left(x_{1} x_{2}\right)^{-1}\right]^{t} \\
& =\left[x_{2}^{-1} x_{1}^{-1}\right]^{t} \\
& =\left(x_{1}^{-1}\right)^{t}\left(x_{2}^{-1}\right)^{t}=\phi\left(x_{1}\right) \phi\left(x_{2}\right)
\end{aligned}
$$

Now if $\phi\left(x_{1}\right)=1=\left(x_{1}^{-1}\right)^{t}$, then $x_{1}^{-1}=1$. Hence $x_{1}=1$. So ϕ is a monomorphism. For all $x \in G L_{n}(F)$ there exists $x_{1} \in G L_{n}(F)$ such that $\phi\left(x_{1}\right)=x$. Let $x_{1}=\left(x^{-1}\right)^{t}$. So we obtain ϕ is an automorphism. Let $H=\left\{x \in G L_{n}(F): \phi(x)=x\right\}$. We show in the previous exercise that H is a subgroup of $G L_{n}(F)$. Now for $x \in H \quad \phi(x)=x=\left(x^{-1}\right)^{t}$ implies $x x^{t}=1$. That is the set of the orthogonal matrices.

Recall that if $G=G_{1} \times G_{2}$, then the subgroup H of G may not be of the form $H_{1} \times H_{2}$ as $H=\{(0,0),(1,1)\}$ is a subgroup of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ but H is not of the form $H_{1} \times H_{2}$ where H_{i} is a subgroup of G_{i}. But the following question shows that if $\left|G_{1}\right|$ and $\left|G_{2}\right|$ are relatively prime, then every subgroup of G is of the form $H_{1} \times H_{2}$.
2.5. Let $G=G_{1} \times G_{2}$ be a finite group with $\left.\operatorname{gcd}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)\right)=1$. Then every subgroup H of G is of the form $H=H_{1} \times H_{2}$ where H_{i} is a subgroup of G_{i} for $i=1,2$.

Solution: Let H be a subgroup of G. Let π_{i} be the natural projection from G to G_{i}. Then the restriction of π_{i} to H gives homomorphisms from H to G_{i} for $i=1,2$. Let $H_{i}=\pi_{i}(H)$ for $i=1,2$. Then clearly $H \leq H_{1} \times H_{2}$ and $H_{i} \leq G_{i}$ for $i=1,2$. Then $H / \operatorname{Ker}\left(\pi_{1}\right) \cong H_{1}$ implies that $\left|H_{1}\right|||H|$ similarly $| H_{2}| ||H|$. But $\operatorname{gcd}\left(\left|H_{1}\right|,\left|H_{2}\right|\right)=1$ implies that $\left|H_{1}\right|\left|H_{2}\right|\left||H|\right.$. So $H=H_{1} \times H_{2}$.
2.6. Let $H \unlhd G$ and $K \unlhd G$. Then $H \cap K \unlhd G$. Show that we can define a map

$$
\begin{aligned}
\varphi: & G / H \cap K \longrightarrow G / H \times G / K \\
& g(H \cap K) \longrightarrow(g H, g K)
\end{aligned}
$$

for all $g \in G$ and that φ is an injective homomorphism. Thus $G /(H \cap K)$ can be embedded in $G / H \times G / K$. Deduce that if G / H and G / K or both abelian, then $G / H \cap K$ abelian.

Solution As H and K are normal in G, clearly $H \cap K$ is normal in G.

$$
\varphi: G / H \cap K \longrightarrow G / H \times G / K
$$

$$
\begin{aligned}
\varphi\left(g(H \cap K) g^{\prime}(H \cap K)\right) & =\varphi\left(g g^{\prime}(H \cap K)\right) \\
& =\left(g g^{\prime} H, g g^{\prime} K\right) \\
& =(g H, g K)\left(g^{\prime} H, g^{\prime} K\right) \\
& =\varphi(g(H \cap K)) \varphi\left(g^{\prime}(H \cap K)\right) .
\end{aligned}
$$

So φ is an homomorphism. $\operatorname{Ker} \varphi=\{g(H \cap K): \varphi(g(H \cap K))=$ $(\bar{e}, \bar{e})=(g H, g K)\}$. Then $g \in H$ and $g \in K$ implies that $g \in H \cap K$. So $K e r \varphi=H \cap K$. If G / H and G / K are abelian, then $g_{1} H g_{2} H=g_{1} g_{2} H=$ $g_{2} g_{1} H$. Similarly $g_{1} g_{2} K=g_{2} g_{1} K$ for all $g_{1}, g_{2} \in G, g_{2}^{-1} g_{1}^{-1} g_{2} g_{1} \in$ $H, g_{2}^{-1} g_{1}^{-1} g_{2} g_{1} \in K$. So for all $g_{1}, g_{2} \in G, g_{2}^{-1} g_{1}^{-1} g_{2} g_{1} \in H \cap K$. $g_{2}^{-1} g_{1}^{-1} g_{2} g_{1}(H \cap K)=H \cap K$. So $g_{2} g_{1}(H \cap K)=g_{1} g_{2}(H \cap K)$.
2.7. Let G be finite non-abelian group of order n with the property that G has a subgroup of order k for each positive integer k dividing n. Prove that G is not a simple group.

Solution Let $|G|=n$ and p be the smallest prime dividing $|G|$. If G is a p-group, then $1 \neq Z(G) \supsetneqq G$. Hence G is not simple. So we may assume that G has composite order. Then by assumption G has a subgroup M of index p in G. i.e. $|G: M|=p$. Then G acts on the right cosets of M by right multiplication. Hence there exists a homomorphism $\phi: G \hookrightarrow \operatorname{Sym}(\mathrm{p})$. Then $G / \operatorname{Ker} \phi$ is isomorphic to a subgroup of $\operatorname{Sym}(\mathrm{p})$. Since p is the smallest prime dividing the order of G we obtain $\mid G / \operatorname{Ker} \phi \| p$! which implies that $|G / \operatorname{Ker} \phi|=p$. Hence $\operatorname{Ker} \phi \neq 1$ otherwise $\operatorname{Ker} \phi=1$ implies that G is abelian and isomorphic to Z_{p}. But by assumption G is non-abelian.
2.8. Let $M \leq N$ be normal subgroups of a group G and H a subgroup of G such that $[N, H] \leq M$ and $[M, H]=1$. Prove that for all $h \in H$ and $x \in N$
(i) $[h, x] \in Z(M)$
(ii) The map

$$
\begin{aligned}
\theta_{x}: H & \rightarrow Z(M) \\
h & \rightarrow[h, x]
\end{aligned}
$$

is a homomorphism.
(iii) Show that $H / C_{H}(N)$ is abelian.

Solution: Let $h \in H$ and $x \in N$. Then $[h, x]=h^{-1} x^{-1} h x \in$ $[N, H] \leq M$. Moreover for any $m \in M$, we need to show $m[h, x]=$ [$h, x] m$ if and only if $m^{-1} h^{-1} x^{-1} h x m=h^{-1} x^{-1} h x$ if and only if $m^{-1} h^{-1} x^{-1} h x m x^{-1} h^{-1} x h=1$ if and only if $m^{-1} h^{-1} x^{-1}\left(x m x^{-1}\right) h h^{-1} x h=$ 1. That is true as $m h=h m$ and M is normal in G we have, $x m x^{-1} \in M$ and $x m x^{-1} h=h x m x^{-1}$
(ii)

$$
\begin{aligned}
\theta_{x}\left(h_{1} h_{2}\right) & =\left[h_{1} h_{2}, x\right] \\
& =\left[h_{1}, x\right]^{h_{2}}\left[h_{2}, x\right] \\
& =\left[h_{1}, x\right]\left[h_{2}, x\right]
\end{aligned}
$$

as $\left[h_{1}, x\right] \in Z(M)$ and so $h_{2}^{-1} m h_{2}=m$.
(iii) It is easy to see that $\operatorname{Ker} \theta_{x}=C_{H}(x)$. Then we can define a map

$$
\begin{aligned}
\psi: H & \rightarrow Z(M) \times Z(M) \times \ldots \times Z(M) \ldots \\
h & \rightarrow\left[h, x_{1}\right] \times\left[h, x_{2}\right] \times \ldots \times\left[h, x_{i}\right] \ldots
\end{aligned}
$$

where all $x_{j} \in N$. Then the kernel of ψ is $\cap C_{H}\left(x_{j}\right)=C_{H}(N)$. Then $x_{j} \in N$
the map from $H / C_{H}(N)$ to the right hand side is into and the right hand side is abelian we have $H / C_{H}(N)$ is abelian.
2.9. Let G be a finite group and $\Phi(G)$ the intersection of all maximal subgroups of G. Let N be an abelian minimal normal subgroup of G. Then N has a complement in G if and only if $N \nexists \Phi(G)$

Solution Assume that N has a complement H in G. Then $G=N H$ and $N \cap H=1$. Since G is finite there exists a maximal subgroup $M \geq H$. Then N is not in M which implies N is not in $\Phi(G)$. Because, if $N \leq M$, then $G=H N \leq M$ which is a contradiction.

Conversely assume that $N \not \leq \Phi(G)$. Then there exists a maximal subgroup M of G such that $N \not \leq M$. Then by maximality of M we have $G=N M$. Since N is abelian N normalizes $N \cap M$ hence $G=N M \leq N_{G}(N \cap M)$ i.e. $N \cap M$ is an abelian normal subgroup of G. But minimality of N implies $N \cap M=1$. Hence M is a complement of N in G.
2.10. Show that $F(G / \phi(G))=F(G) / \phi(G)$.

Solution: (i) $F(G) / \phi(G)$ is nilpotent normal subgroup of $G / \phi(G)$ so $F(G) / \phi(G) \leq F(G / \phi(G))$.
Let $K / \phi(G)=F(G / \phi(G))$. Then $K / \phi(G)$ is maximal normal nilpotent subgroup of $G / \phi(G)$. In particular $K \unlhd G$ and $K / \phi(G)$ is nilpotent. It follows that K is nilpotent in G. This implies that $K \leq F(G)$. $K / \phi(G) \leq F(G) / \phi(G)$ which implies $F(G / \phi(G))=F(G) / \phi(G)$.
2.11. If $F(G)$ is a p-group, then $F(G / F(G))$ is a p^{\prime} - group.

Solution: Let $K / F(G)=F(G / F(G))$, maximal normal nilpotent subgroup of $G / F(G)$. So $K / F(G)=\operatorname{Dr} O_{q}(K / F(G))=P_{1} / F(G) \times$ $P_{2} / F(G) \times \ldots \times P_{m} / F(G)$. Since $F(G)$ is a p-group so one of $P_{i} / F(G)$ is a p-group, say $P_{1} / F(G)$ is a p-group.

Now P_{1} is a p-group, $P_{1} / F(G) \operatorname{char} K / F(G) \operatorname{char} G / F(G)$ implies that $P_{1} / F(G) c h a r G / F(G)$ implies $P_{1} \triangleleft G$. This implies P_{1} is a p-group and hence nilpotent and normal implies $P_{1} \leq F(G)$. So $P_{1} / F(G)=\overline{i d}$ i.e $K / F(G)=F(G / F(G))$ is a p^{\prime}-group.

Observe this in the following example. $S_{3}, F\left(S_{3}\right)=A_{3} . F\left(S_{3} / A_{3}\right)=$ $S_{3} / A_{3} \cong \mathbb{Z}_{2}$ is a 2-group.
2.12. Let $G=\left\{\left(a_{i j}\right) \in G L(n, F) \mid a_{i j}=0\right.$ if $i>j$ and $a_{i i}=$ $a, i=1 \ldots, n\}$ where F is a field, be the group of upper triangular
matrices all of whose diagonal entries are equal. Prove that $G \cong D \times U$ where D is the group of all non-zero multiples of the identity matrix and U is the group of upper triangular matrices with 1's down diagonal.

Solution

$$
\left.\begin{array}{cccccc}
c \\
a & c_{12} & c_{13} & c_{14} & \ldots & c_{1 n} \\
0 & a & c_{23} & c_{24} & \ldots & c_{2 n} \\
& & \cdot & & & \\
& & & \cdot & \ldots & * \\
0 & 0 & 0 & 0 & a & c_{n-1 n} \\
0 & 0 & 0 & 0 & 0 & a
\end{array}\right) \quad \rightarrow F^{*}
$$

It is clear that d is a homomorphism and $\operatorname{Ker} d=U$. So U is normal $D \cap U=1$. Since F is a field and a is a non-zero element every element $g \in G$ can be written as a product $g=c u$ where $c \in D$ and $u \in U$. So $D U=G$. Moreover D is normal in G in fact D is central in G. So $G=D U \cong D \times U$.
2.13. Prove that if N is a normal subgroup of the finite group G and $(|N|,|G: N|)=1$, then N is the unique subgroup of order $|N|$.

Solution If M is another subgroup of G of order $|N|$. Then $N M$ is a subgroup of G as $N \triangleleft G$. Now $|N M|=\frac{|N||M|}{|N \cap M|}$. If $N \neq M$, then $|N M|>|N|$ and if π is the set of primes dividing $|N|$, then N is a maximal π-subgroup of G. But $M N$ is also a π-group containing N properly. Hence $M N=N$. i.e $M \leq N$.
2.14. Let F be a field. Define a binary operation * on F by $a * b=$ $a+b-a b$ for all $a, b \in F$.
Prove that the set of all elements of F distinct from 1 forms a group $F^{x}=F \backslash\{1\}$ with respect to the operation $*$ and that $F^{*} \cong F^{x}$ where F^{*} is the multiplicative group on $F \backslash\{0\}$ with respect to the usual multiplication in the field.

Solution $*$ is a binary operation on F^{x} as $a+b-a b=1$ implies $(a-1)(1-b)=0$ but $a \neq 1$ and $b \neq 1$ implies image of $*$ is in F^{x}. Indeed $*$ is a binary operation and $*: F^{x} \times F^{x} \rightarrow F^{x}$
(i) associativity of $*$: We need to show $a *(b * c)=(a * b) * c$

Indeed $a *(b * c)=a *(b+c-b c)$ and $(a * b) * c=(a+b-a b) * c$ Then $a *(b * c)=a+b+c-b c-(a b+a c-a b c)=a+b-a b+c-a c-b c+a b c=$ $(a * b) * c$ So associativity holds.
(ii) For the identity element, let $a * b=a$ for all $a \in F$ implies b is the identity element. The equality implies that $a+b-a b=a$. Hence $b-a b=0$ i.e $b(1-a)=0$. Since this is true for all a and $a \neq 1$ we obtain $b=0$ and 0 is the identity element.
(iii) $a * b=b * a$ if and only if $a+b-a b=b+a-b a$ if and only if $-a b=-b a$ since we are in a field for all $a, b \in F$ we have $a b=b a$. So $a * b=b * a$ for all $a \in F$.
(iv) Now for all $a \in F \backslash\{0\}$, there exists $a^{\prime} \in F$ such that $a * a^{\prime}=0$ $=a+a^{\prime}-a a^{\prime}$ implies $a+a^{\prime}=a a^{\prime}$. So $a^{\prime}=a(1-a)^{-1}$. Hence F^{x} is an abelian group with respect to $*$. Let

$$
\begin{aligned}
\phi: F^{x} & \rightarrow F^{*} \\
a \rightarrow & 1-a
\end{aligned}
$$

$\phi(a * b)=\phi(a+b-a b)=1-a-b+a b=(1-a)(1-b)=\phi(a) \phi(b)$. Then $\operatorname{Ker} \phi=\left\{a \in F^{x}: \phi(a)=1\right\}=\left\{a \in F^{x}: 1-a=1\right\}=\{0\}$.
ϕ is onto as for any $b \in F^{*}$ so $b \neq 0, \quad \phi(x)=b$ implies that $1-x=b$ so $x=1-b$ and $x \neq 1$. Hence ϕ is an isomorphism.
2.15. Consider the direct square $G \times G$ of G. Let $\hat{G}=\{(g, g)$: $g \in G\} \subseteq G \times G$.
(i) Show that \hat{G} is a subgroup of $G \times G$ which is isomorphic to G. \hat{G} is called the diagonal subgroup of $G \times G$.
(ii) Show also that $\hat{G} \unlhd G \times G$ if and only if G is abelian.

Solution i) \hat{G} is a subgroup of G. Indeed $\left(g_{1}, g_{1}\right),\left(g_{2}, g_{2}\right) \in \hat{G}$. $\left(g_{1}, g_{1}\right)\left(g_{2}, g_{2}\right)=\left(g_{1} g_{2}, g_{1} g_{2}\right) \in \hat{G} .\left(g_{1}^{-1}, g_{1}^{-1}\right) \in \hat{G}$ which implies \hat{G} is a subgroup of $G \times G$.
$\hat{G} \cong G$. Indeed define

$$
\begin{aligned}
\varphi: & G \longrightarrow \hat{G} \\
& g \longrightarrow(g, g)
\end{aligned}
$$

$\varphi\left(g g^{\prime}\right)=\left(g g^{\prime}, g g^{\prime}\right)=(g, g)\left(g^{\prime}, g^{\prime}\right)=\varphi(g) \varphi\left(g^{\prime}\right)$. So φ is a homomorphism.
$\varphi(g)=1=(g, g)$. This implies $g=1$. So φ is a monomorphism. For all $\left(g_{i}, g_{i}\right) \in \hat{G}$ there exists $g_{i} \in G$ such that $\varphi\left(g_{i}\right)=\left(g_{i}, g_{i}\right)$. So φ is onto. Hence φ is an isomorphism.
ii) $\hat{G} \unlhd G \times G$ if and only if G is abelian.

Assume \hat{G} is a normal subgroup of $G \times G$. Then for any $g_{1}, g_{2} \in G$,
$\left(g_{1}, g_{2}\right)^{-1}(x, x)\left(g_{1}, g_{2}\right)=\left(g_{1}^{-1} x g_{1}, g_{2}^{-1} x g_{2}\right) \in \hat{G}$. In particular $g_{1}=1$ implies for all g_{2}, and for all $x \in G, g_{2}^{-1} x g_{2}=x$. Hence G is abelian.

Conversely if G is abelian, then $G \times G$ is abelian and every subgroup of $G \times G$ is normal in G, in particular \hat{G} is normal in G.
2.16. Suppose $H \unlhd G$. Show that if x, y elements in G such that $x y \in H$, then $y x \in H$.

Solution $H \unlhd G$, implies that every left coset is also a right coset $H x=x H, y H=H y, x y \in H$ so $H=x y H$.
$x H=H x$ implies $x y x H=x y H x=H x$. Then $y x H=x^{-1} H x=H$. Hence $y x \in H$.
2.17. Give an example of a group such that normality is not transitive.

Solution Let us consider A_{4} alternating group on four letters. Then $V=\{1,(12)(34),(13)(24),(14)(23)\}$ is a normal subgroup of A_{4}. Since V is abelian any subgroup of V is a normal subgroup of V. But $H=\{1,(12)(34)\}$ is not normal in A_{4}.

Another Solution Let's consider $G=S_{3} \times S_{3}, A_{3}=\{1,(123),(132)\}$. $A_{3} \triangleleft S_{3}$. Let
$A=\{(1,1),((123),(123)),((132),(132)) \quad\} \leq G, A$ is diagonal subgroup of $A_{3} \times A_{3}$ and $A \cong A_{3} . A \triangleleft A_{3} \times A_{3} \triangleleft G$. But A is not normal in G as $((12), 1)^{-1}((123),(123))((12), 1)=((132),(123)) \notin A$.
2.18. If $\alpha \in A u t G$ and $x \in G$, then $\left|x^{\alpha}\right|=|x|$.

Solution First observe that $\left(x^{\alpha}\right)^{n}=\left(x^{n}\right)^{\alpha}$. If x^{α} has finite order say n, then $\left(x^{\alpha}\right)^{n}=1=\left(x^{n}\right)^{\alpha}=1^{\alpha}$. Hence $x^{n}=1$ as α is an automorphism. Hence x has finite order dividing n. If order of x is less than or equal to n, say m. Then we obtain $x^{m}=1$. Then $\left(x^{m}\right)^{\alpha}=1^{\alpha}=1$. Hence $\left(x^{\alpha}\right)^{m}=1$. It follows that $n=m$, i.e. $\left|x^{\alpha}\right|=|x|$ when the order is finite. But the above proof shows that if order of x^{α} is infinite then order of x must be infinite. In particular conjugate elements of a group have the same order. We can consider the semidirect product of G with the $\operatorname{Aut}(G)$. Then in the semidirect product the elements x and x^{α} becomes conjugate elements.
2.19. Let H and K be subgroups of G and $x, y \in G$ with $H x=K y$. Then show that $H=K$.

Solution $H x=K y$ implies $H x y^{-1}=K$. As H is a subgroup, $1 \in H$ and so $x y^{-1} \in H x y^{-1}=K$. Then $y x^{-1} \in K$. It follows that $K=K y x^{-1}$. Then $K=K x y^{-1}=K y x^{-1}=H$. Hence $K=H$.
2.20. Prove that if K is a normal subgroup of the group G, then $Z(K)$ is a normal subgroup of G. Show by an example that $Z(K)$ need not be contained in $Z(G)$.

Solution: Let $z \in Z(K), k \in K$ and $g \in G$. Then $g^{-1} z g \in$ K as $K \unlhd G$ and $\left(g^{-1} z g\right) k\left(g^{-1} z^{-1} g\right) k^{-1}=g^{-1} z\left(g k g^{-1}\right) z^{-1} g k^{-1}=$ $g^{-1}\left(g k g^{-1}\right) z z^{-1} g k^{-1}=1$. Hence $Z(K) \unlhd G$.

Now as an example consider A_{3} in $S_{3} . Z\left(A_{3}\right)=A_{3}$ but $Z\left(S_{3}\right)=1$.
2.21. Let $x, y \in G$ and let $x y=z$ if $z \in Z(G)$, then show that x and y commute.

Solution: $x y=z \in Z(G)$ implies for all $g \in G,(x y) g=g(x y)$. This is also true for x, hence $(x y) x=x(x y)$. Now multiply both side by x^{-1}, we obtain $y x=x y$. Then x and y are commute.
2.22. Let $U T(3, F)$ be the set of all matrices of the form

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

where a, b, c are arbitrary elements of a field F, moreover 0 and 1 are the zero and the identity elements of F respectively. Prove that
(i) $U T(3, F) \leq G L(3, F)$
(ii) $Z(U T(3, F)) \cong F^{+}$and $U T(3, F) / Z(U T(3, F)) \cong F^{+} \times F^{+}$
(iii) If $|F|=p^{m}$, then $U T\left(3, p^{m}\right) \in \operatorname{Syl}_{p}\left(G L\left(3, p^{m}\right)\right)$

Solution: (i) Let

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right), a, b, c, x, y, z \in F \\
\text { Then } A B=\left(\begin{array}{ccc}
1 & x+a & y+a z+b \\
0 & 1 & z+c \\
0 & 0 & 1
\end{array}\right) \in U T(3, F) \\
A^{-1}=\left(\begin{array}{ccc}
1 & -a & -b+a c \\
0 & 1 & -c \\
0 & 0 & 1
\end{array}\right) \in U T(3, F) .
\end{gathered}
$$

Hence $U T(3, F)$ is a subgroup of $G L(3, F)$.
(ii) Now if

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \in Z(U T(3, F)), \text { then } A B=B A \text { for all } B \in U T(3, F) \text { implies } \\
A=\left(\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

and every element of this type is contained in the center so

$$
Z(U T(3, F))=\left\{\left.\left(\begin{array}{ccc}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \quad b \in F\right\}
$$

Let

$$
\begin{aligned}
\varphi: F^{+} \longrightarrow & Z(U T(3, F)) \\
b \longrightarrow & \left(\begin{array}{ccc}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

φ is an isomorphism.
Now to see that $U T(3, F) / Z(U T(3, F)) \cong F^{+} \times F^{+}$.
Let $\theta: U T(3, F) / Z(U T(3, F)) \longrightarrow F^{+} \times F^{+}$.

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) Z \longrightarrow(a, c)
$$

θ is well defined and, moreover θ is an isomorphism.
(iii) Now all we need to do is to compare the order of $U T\left(3, p^{m}\right)$ and the order of the Sylow p-subgroup of $G L\left(3, p^{m}\right)$. It is easy to see that $\left|U T\left(3, p^{m}\right)\right|=p^{3 m}$. And $\left|G L\left(3, p^{m}\right)\right|=\left(p^{3 m}-1\right)\left(p^{3 m}-p^{m}\right)\left(p^{3 m}-p^{2 m}\right)=$ $p^{3 m}\left(\left(p^{3 m}-1\right)\left(p^{2 m}-1\right)\left(p^{m}-1\right)\right)$. Hence p part are the same and we are done.
2.23. Let $x \in G, \quad D:=\left\{x^{g} \quad: g \in G\right\}$ and $U_{i} \leq G$ for $i=1$, 2. Suppose that $\langle D\rangle=G$ and $D \subseteq U_{1} \cup U_{2}$. Then show that $U_{1}=G$ or $U_{2}=G$.

Solution: Assume that $U_{1} \neq G$. Then there exists $g \in G$ such that $x^{g} \notin U_{1}$ otherwise all conjugates of x is contained in U_{1} and so $D \subseteq U_{1}$ which implies $U_{1}=G$. Then $x^{g} \notin U_{1}$ implies $x^{g} \in U_{2}$ as $D \subseteq U_{1} \cup U_{2}$. Now for any $u_{1} \in U_{1},\left(x^{g}\right)^{u_{1}} \notin U_{1}$ otherwise x^{g} will be in U_{1} which is impossible. Then for any $u_{1} \in U_{1}$ we obtain $\left(x^{g}\right)^{u_{1}} \in U_{2}$. Now U_{2} is a subgroup and $x^{g} \in U_{2}$ so we have $\left(x^{g}\right)^{u_{2}} \in U_{2}$ for all $u_{2} \in U_{2}$. As $\left\langle U_{1} \cup U_{2}\right\rangle=G$ we obtain $\left(x^{g}\right)^{t} \in U_{2}$ for all $t \in G$, i.e, $D \subseteq U_{2}$ this implies $\langle D\rangle \leq U_{2}$ but $\langle D\rangle=G \leq U_{2}$ which implies $U_{2}=G$.

2.24. Let $g_{1}, g_{2} \in G$. Then show that $\left|g_{1} g_{2}\right|=\left|g_{2} g_{1}\right|$.

Solution: We will show that if $\left|g_{1} g_{2}\right|=k<\infty$, then $\left|g_{2} g_{1}\right|=k$.
Let $\left|g_{1} g_{2}\right|=k . \underbrace{\left(g_{1} g_{2}\right)\left(g_{1} g_{2}\right) \ldots\left(g_{1} g_{2}\right)}_{k \text {-times }}=1$. Then multiplying from left by g_{1}^{-1} and from right by g_{2}^{-1} we have $\underbrace{\left(g_{2} g_{1}\right)\left(g_{2} g_{1}\right) \ldots\left(g_{2} g_{1}\right)}_{(k-1) \text {-times }}=g_{1}^{-1} g_{2}{ }^{-1}$. Now multiply from right first by g_{2} and then g_{1}, we obtain $\underbrace{\left(g_{2} g_{1}\right)\left(g_{2} g_{1}\right) \ldots\left(g_{2} g_{1}\right)}_{k \text {-times }}=\left(\left(g_{2} g_{1}\right)\right)^{k}=1$. It cannot be less than k since we
may apply the above process and then reduce the order of $\left(g_{1} g_{2}\right)$ less than k.
2.25. Let $H \leq G, g_{1}, g_{2} \in G$. Then $H g_{1}=H g_{2}$ if and only if $g_{1}{ }^{-1} H=g_{2}{ }^{-1} H$.

Solution: (\Rightarrow) If $H g_{1}=H g_{2}$, then $H=H g_{2} g_{1}^{-1}$ hence $g_{2} g_{1}^{-1} \in$ H. Then H is a subgroup implies $\left(g_{2} g_{1}^{-1}\right)^{-1} \in H$ i.e. $g_{1} g_{2}^{-1} \in H$. It follows that $g_{1} g_{2}^{-1} H=H$. Hence $g_{2}^{-1} H=g_{1}^{-1} H$.
(\Leftarrow) If $g_{1}^{-1} H=g_{2}^{-1} H$, then $g_{1} g_{2}^{-1} \in H$ by the same idea in the first part we have $\left(g_{1} g_{2}^{-1}\right)^{-1} \in H, g_{2} g_{1}^{-1} \in H$ i.e. $H g_{2} g_{1}{ }^{-1}=H$. This implies $H g_{1}=H g_{2}$.
2.26. Let $H \leq G, g \in G$ if $|g|=n$ and $g^{m} \in H$ where n and m are co-prime integers. Then show that $g \in H$.

Solution: The integers m and n are co-prime so there exists $a, b \in \mathbb{Z}$ satisfying $a n+b m=1$. Then $g=g^{a n+b m}=g^{a n} g^{b m}=$ $\left(g^{n}\right)^{a}\left(g^{m}\right)^{b}=g^{m b} \in H$. As H is a subgroup of $G, g^{m} \in H$ implies $g^{b m} \in H$ and $g^{n a}=1$. Hence $g^{m b}=g \in H$.
2.27. Let $g \in G$ with $|g|=n_{1} n_{2}$ where n_{1}, n_{2} co-prime positive integers. Then there are elements $g_{1}, g_{2} \in G$ such that $g=g_{1} g_{2}=g_{2} g_{1}$ and $\left|g_{1}\right|=n_{1},\left|g_{2}\right|=n_{2}$.

Solution: As n_{1} and n_{2} are relatively prime integers, there exist a and b in \mathbb{Z} such that $a n_{1}+b n_{2}=1$. Observe that a and b are also relatively prime in \mathbb{Z}. Then $g=g^{1}=g^{a n_{1}+b n_{2}}=g^{a n_{1}} g^{b n_{2}}$. Let $g_{1}=g^{b n_{2}}$ and $g_{2}=g^{a n_{1}}$. Then $g_{1}^{n_{1}}=\left(g^{b n_{2}}\right)^{n_{1}}=1, g_{2}^{n_{2}}=\left(g^{a n_{1}}\right)^{n_{2}}=1$ $g=g_{1} g_{2}=g^{a n_{1}+b n_{2}}=g^{b n_{2}+a n_{1}}=g_{2} g_{1}$. Indeed $\left|g_{1}\right|=n_{1}$. If $g_{1}^{m}=1$, then $m \mid n_{1}$ and $g_{1}^{m}=g^{b n_{2} m}=1$. It follows that $n_{1} n_{2} \mid b n_{2} m$. Then $n_{1} \mid b m$ but by above observation n_{1} and b are relatively prime as $a n_{1}+b n_{2}=1$, so $n_{1} \mid m$. It follows that $n_{1}=m$. Similarly $\left|g_{2}\right|=n_{2}$.
2.28. Let $g_{1}, g_{2} \in G$ with $\left|g_{1}\right|=n_{1}<\infty,\left|g_{2}\right|=n_{2}<\infty$, if n_{1} and n_{2} are co-prime and g_{1} and g_{2} commute, then $\left|g_{1} g_{2}\right|=n_{1} n_{2}$.

Solution: The elements g_{1} and g_{2} commute. Therefore $\left(g_{1} g_{2}\right)^{n_{1} n_{2}}=g_{1}^{n_{1} n_{2}} g_{2}^{n_{1} n_{2}}=\left(g_{1}^{n_{1}}\right)^{n_{2}}\left(g_{2}^{n_{2}}\right)^{n_{1}}=1$. Assume $\left|g_{1} g_{2}\right|=m$. Then $\left(g_{1} g_{2}\right)^{m}=g_{1}^{m} g_{2}^{m}=1$. Then $m \mid n_{1} n_{2}$ and $g_{1}^{m}=g_{2}^{-m}$. $\left(g_{1}^{m}\right)^{n_{1}}=\left(g_{2}^{-m}\right)^{n_{1}}=1$. Then $n_{2} \mid m n_{1}$ but $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. We obtain
$n_{2} \mid m$. Similarly $n_{1} \mid m$ but $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ implies $n_{1} n_{2} \mid m$. Hence $m=n_{1} n_{2}$.
2.29. If $H \leq K \leq G$ and $N \triangleleft G$, show that the equations $H N=$ $K N$ and $H \cap N=K \cap N$ imply that $H=K$.

Solution: $H N \cap K=K N \cap K=K$. On the other hand by Dedekind law $H N \cap K=H(N \cap K)=H(N \cap H)=H$. Hence $H=K$.
2.30. Given that $H_{\lambda} \triangleleft K_{\lambda} \leq G$ for all $\lambda \in \Lambda$, show that $\bigcap_{\lambda} H_{\lambda} \triangleleft$ $\bigcap_{\lambda} K_{\lambda}$.

Solution: Let $x \in \bigcap_{\lambda} H_{\lambda}$ and $g \in \bigcap_{\lambda} K_{\lambda}$. Then consider $g^{-1} x g$. Since, for any $\lambda \in \Lambda, g \in K_{\lambda}$ and $x \in H_{\lambda}$ and $H_{\lambda} \triangleleft K_{\lambda}$, we have $g^{-1} x g \in H_{\lambda}$ for all $\lambda \in \Lambda$. i.e $g^{-1} x g \in \bigcap_{\lambda \in \Lambda} H_{\lambda}$.
2.31. If a finite group G contains exactly one maximal subgroup, then G is cyclic.

Solution: Let M be the unique maximal subgroup of G. Then every proper subgroup of G is contained in M. Since M is maximal there exists $a \in G \backslash M$. Then $\langle a\rangle=G$
2.32. Let H be a subgroup of order 2 in G. Show that $N_{G}(H)=$ $C_{G}(H)$. Deduce that if $N_{G}(H)=G$, then $H \leq Z(G)$.

Solution: Let $H=\{1, h\}$ be a subgroup of order 2. Clearly $C_{G}(H) \leq N_{G}(H)$. We need to show that if $|H|=2$, then $N_{G}(H) \leq$ $C_{G}(H)$. Let $g \in N_{G}(H)$. Then $g^{-1} h g$ is either 1 or h. If $g^{-1} h g=1$, then $h=1$ which is a contradiction. So $g^{-1} h g=h$ i.e $g \in C_{G}(H)$. So $C_{G}(H)=N_{G}(H)$. Moreover if $N_{G}(H)=G$ then $C_{G}(H)=N_{G}(H)=$ G. This implies $H \leq Z(G)$.
2.33. Let $\alpha \in$ Aut G. Suppose that $x^{-1} x^{\alpha} \in Z(G)$ for all $x \in G$. Then $x^{\alpha}=x$ for all $x \in G^{\prime}$.

Solution: Observe that $x^{-1} x^{\alpha} \in Z(G)$ implies that $x^{\alpha} x^{-1} \in Z(G)$ as $Z(G)$ is a subgroup and x is an arbitrary element in G. Take an arbitrary generator $a^{-1} b^{-1} a b \in G^{\prime}$ where $a, b \in G$. Then

$$
\begin{aligned}
\left(a^{-1} b^{-1} a b\right)^{\alpha} & =\left(a^{-1}\right)^{\alpha}\left(b^{-1}\right)^{\alpha}(a)^{\alpha}(b)^{\alpha} \\
& =\left(a^{-1}\right)^{\alpha}\left(b^{-1}\right)^{\alpha}(a)^{\alpha} a^{-1} a(b)^{\alpha} \text { as } a^{\alpha} a^{-1} \in Z(G) \\
& =\left(a^{-1}\right)^{\alpha}(a)^{\alpha} a^{-1}\left(b^{-1}\right)^{\alpha} a(b)^{\alpha} \\
& =a^{-1}\left(b^{-1}\right)^{\alpha} a(b)^{\alpha} \\
& =a^{-1} b^{-1} \underbrace{b\left(b^{-1}\right)^{\alpha}} a(b)^{\alpha} \\
& =a^{-1} b^{-1} a \underbrace{b\left(b^{-1}\right)^{\alpha}}(b)^{\alpha} \\
& =a^{-1} b^{-1} a b
\end{aligned}
$$

For any generator $x \in G^{\prime}$ we have $x^{\alpha}=x$. Hence for any $g \in G^{\prime}$ we have $g^{\alpha}=g$
2.34. Let $G=A A^{g}$ for some $g \in G$. Then $G=A$.

Solution: It is enough to show that the specific element $g \in G$ is contained in A. For every element $x \in G$, there exist a_{x}, b_{x} in A such that $x=a_{x} b_{x}^{g}$. In particular $g=a_{g} b_{g}^{g}=a_{g} g^{-1} b_{g} g$. It follows that $a_{g} g^{-1} b_{g}=1$ and $g^{-1}=a_{g}^{-1} b_{g}^{-1}$, then $g=b_{g} a_{g} \in A$ as a_{g} and b_{g} in A.
2.35. Let G be a finite group and $A \leq G$ and $B \leq A$. If $x_{1}, x_{2} \ldots x_{n}$ is a transversal of A in G and $y_{1}, y_{2} \ldots y_{m}$ is a transversal of B in A, then $\left\{y_{j} x_{i}\right\}, i=1,2, \ldots, n$ and $j=1,2, \ldots, m$ is a transversal of B in G.

Solution: Let $G=\bigcup_{i=1}^{n} A x_{i}$ and $A x_{i} \cap A x_{j}=\emptyset$ for all $i \neq j$ and $A=\bigcup_{i=1}^{m} B y_{i}$ and $B y_{i} \cap B y_{j}=\emptyset$ for all $i \neq j$. Then we have,
$G=\bigcup_{i=1}^{n} A x_{i}=\bigcup_{i=1}^{n}\left(\bigcup_{j=1}^{m} B y_{i}\right) x_{i}=\bigcup_{i=1}^{n} \bigcup_{j=1}^{m} B y_{j} x_{i}$
If $B y_{j} x_{i} \cap B y_{r} x_{m} \neq 0$, then $A x_{i} \cap A x_{m} \neq 0$ implying that $x_{i}=x_{m}$. Then $B y_{j} x_{i} \cap B y_{r} x_{i} \neq 0$. Hence $y_{r}=y_{j}$
2.36. Suppose that $G \neq 1$ and $|G: M|$ is a prime number for every maximal subgroup M of G. Then show that G contains a normal maximal subgroup. (Maximal subgroups with the above properties exist by assumption).

Solution: Let Σ be the set of all primes p_{i} such that $\left|G: M_{i}\right|=p_{i}$ where p_{i} is a prime.

So $\Sigma=\left\{p_{i} \quad: \quad\left|G: M_{i}\right|=p_{i}, M_{i}\right.$ is a maximal subgroup of $\left.G\right\}$. Let p be the smallest prime in Σ. Let M be a maximal subgroup of G such that $|G: M|=p$. Then G acts on the right to the set of right cosets of M in G. Let $\Omega=\{M x: x \in G\}$. Then $|\Omega|=p$ and there exists a homomorphism

$$
\phi: G \rightarrow \operatorname{Sym}(\Omega)
$$

such that $\operatorname{Ker} \phi=\cap_{x \in G} M^{x} \leq M$. Then $G / \operatorname{Ker} \phi$ is isomorphic to a subgroup of $\operatorname{Sym}(\Omega)$ and $|\operatorname{Sym}(\Omega)|=p$. Then $G / \operatorname{Ker}(\phi)$ is a finite group and there exists a maximal subgroup of G containing $\operatorname{Ker}(\phi)$ and index of subgroup divides $p!$. But p was the smallest prime $|G: M|=p$ so this implies that $M=\operatorname{Ker}(\phi)$ is a normal subgroup of G.
2.37. If G acts transitively on Ω, then $N_{G}\left(G_{\alpha}\right)$ acts transitively on $C_{\Omega}\left(G_{\alpha}\right), \quad \alpha \in \Omega$.

Solution $G_{\alpha}=\{g \in G \mid \alpha . g=\alpha\}$ and
$C_{\Omega}\left(G_{\alpha}\right)=\left\{\beta \in \Omega \mid \beta . g=\beta\right.$ for all $\left.g \in G_{\alpha}\right\}$. Clearly $\alpha \in C_{\Omega}\left(G_{\alpha}\right)$. We will show that the orbit of $N_{G}\left(G_{\alpha}\right)$ containing α is $C_{\Omega}\left(G_{\alpha}\right)$.

Observe first that if $\beta \in C_{\Omega}\left(G_{\alpha}\right)$ and $x \in N_{G}\left(G_{\alpha}\right)$, then $\beta x \in$ $C_{\Omega}\left(G_{\alpha}\right)$. Indeed for any $g_{\alpha} \in G_{\alpha}, \beta x \cdot g_{\alpha}=\beta x g_{\alpha} x^{-1} x=\beta y x$ for some $y \in G_{\alpha}$. Hence $\beta x g_{\alpha}=\beta x$. i.e. $\beta x \in C_{\Omega}\left(G_{\alpha}\right)$. Let $\beta \in C_{\Omega}\left(G_{\alpha}\right)$. Since G is transitive on Ω, there exists $g \in G$ such that $\alpha . g=\beta$. Then for any $t \in G_{\alpha}, \alpha . g t=\alpha g$. i.e $g t g^{-1} \in G_{\alpha}$ for all $t \in G_{\alpha}$. i.e. $g \in N_{G}\left(G_{\alpha}\right)$. Therefore the orbit of $N_{G}\left(G_{\alpha}\right)$ containing α contains the set $C_{\Omega}\left(G_{\alpha}\right)$.
2.38. Let G be a finite group.
(a) Suppose that $A \neq 1$ and $A \cap A^{g}=1$ for all $g \in G \backslash A$.

Then $\left|\bigcup_{g \in G} A^{g}\right| \geq \frac{|G|}{2}+1$
(b) If $A \neq G$, then $G \neq \bigcup_{g \in G} A^{g}$

Solution: (a) If $A=G$, then the statement is already true. So assume that A is a proper subgroup of G. The number of distinct conjugates of A in G is the index $\left|G: N_{G}(A)\right|=k$.

Observe first that as $N_{G}(A) \geq A$ and $A \cap A^{g}=1$ for all $g \in G \backslash A$ we have $N_{G}(A)=A$. Then $A^{g_{i}} \cap A^{g_{j}}=1$ for all $i \neq j$ as $A^{g_{i}} \cap A^{g_{j}} \neq 1$ implies $A \cap A^{g_{i} g_{j}^{-1}} \neq 1$. It follows that $A=A^{g_{i} g_{j}^{-1}}$. This implies $A^{g_{i}}=A^{g_{j}}$ and we obtain $i=j$.

$$
\left|G: N_{G}(A)\right|=\frac{|G|}{\left|N_{G}(A)\right|}=\frac{|G|}{|A|}=k \text {. Then }|G|=k|A| \text {. }
$$

Now

$$
\begin{aligned}
\left|\bigcup_{g \in G} A^{g}\right| & =\left|\bigcup_{i=1}^{k} A^{g_{i}}\right| \\
& =k(|A|-1)+1 \\
& =k|A|-k+1 \\
& =|G|-k+1 \\
& \geq|G|-\frac{|G|}{2}+1 \text { as } k \leq \frac{|G|}{2} \\
& =\frac{|G|}{2}+1
\end{aligned}
$$

(b) By above if $A \neq G$, then $\left|\bigcup_{g \in G} A^{g}\right|=|G|-k+1$. Then $|G|=k-1+\left|\bigcup_{g \in G} A^{g}\right|$ as $k \geq 2$ we obtain $G \neq \bigcup_{g \in G} A^{g}$.
2.39. If $H \leq G$, then $G \backslash H$ is finite if and only if G is finite or $H=G$.

Solution: Assume that $H \leq G$ and $G \backslash H$ is finite. If $G \backslash H=\phi$ then, $G=H$. So assume that $G \backslash H \neq \phi$. If $x \in G \backslash H$, then the left coset $x H$ has the same cardinality as H and $x H \cap H=\phi$, it follows that $x H \subseteq G \backslash H$. Hence H is finite. Similarly $\bigcup_{t_{i} \neq 1} t_{i} H \subseteq G \backslash H$ finite where t_{i} belongs to the left transversal of H in G. But $G=\bigcup_{t_{i} \neq 1} t_{i} H \cup H$. Union of two finite set is finite. Hence G is a finite group.

Converse is trivial.
2.40. Let $d(G)$ be the smallest number of elements necessary to generate a finite group G. Prove that $|G| \geq 2^{d(G)}$
(Note: by convention $d(G)=0$ if $|G|=1$).
Solution: By induction on $d(G)$. If $d(G)=0$, then $|G|=1$. The result is also true if $d(G)=1$. Since the non-identity element has order at least 2. Hence $|G| \geq 2$. Let $d(G)=n$. Assume that if a group H is generated by $n-1$ elements, then $|H| \geq 2^{n-1}$.

Let the generators of G be $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. Then the subgroup $T=<x_{1}, x_{2}, \cdots, x_{n-1}>$ is a proper subgroup of G and by assumption
$|T| \geq 2^{n-1}$. Since $x_{n} \notin T$ we obtain $x_{n} T$ is a left coset of T in G and $x_{n} T \cap T=\phi$. Moreover $x_{n} T \cup T \subseteq G$. Hence $|G| \geq\left|x_{n} T \cup T\right|=$ $\left|x_{n} T\right|+|T|=2|T| \geq 22^{n-1}=2^{n}$.
2.41. A group has exactly three subgroups if and only if it is cyclic of order p^{2} for some prime p.

Solution: Let G be a cyclic group of order p^{2}. Every finite cyclic group has a unique subgroup for any divisor of the order of G. Hence G has a unique subgroup H of order p. Hence H is the only nontrivial subgroup of G. Then the subgroups are $\{1\}, H$ and G.

Conversely let G be a group which has exactly three subgroups. Since every group has $\{1\}$ and itself as trivial subgroups, G must have only one non-trivial subgroup, say H. So H has no nontrivial subgroups. This implies H is a cyclic group of order p for some prime p. Let $x \in G$. Then $x^{-1} H x$ is again a subgroup of order p but G has only one subgroup of order p implies that $x^{-1} H x=H$ for all $x \in G$ i.e. H is a normal subgroup of G. So we have the quotient group G / H. Since there is a $1-1$ correspondence between the subgroups of G / H and the subgroups of G containing H we obtain G / H has no nontrivial subgroup i.e. G / H is a group of order q for some prime q. Then $|G|=p q$ so G has a proper subgroup of order p and of order q. This implies

$$
p=q \quad \text { and } \quad|G|=p^{2}
$$

Every group of order p^{2} is abelian. Then either G is cyclic of order p^{2} or $G \cong Z_{p} \times Z_{p}$. But if G is isomorphic to $Z_{p} \times Z_{p}$ then G has 5 subgroups but this is impossible as we have only three subgroups. Hence G is a cyclic group of order p^{2}.

Another Solution: Let G be a group with exactly 3 subgroups. Since $\{1\}$ and $\{G\}$ are subgroups of G we have only one nontrivial proper subgroup H of G. Since H has no nontrivial subgroup. It is a group of order p for some prime p, say $H=\langle x\rangle$, since $G \neq H$ there exists $y \in G \backslash H$. Then $\langle y\rangle$ is a subgroup of G different from H. Hence $\langle y\rangle=G$. So G is a cyclic group, and has a subgroup H of order p. This implies G is a finite cyclic group. Since for any divisor of the order of a cyclic group, there exists a subgroup, the only prime divisor of $|G|$
must be p. And $|G|$ must be p^{2} otherwise G has a subgroup for the other divisors.
2.42. Let H and K be subgroups of a finite group G.
(a) Show that the number of right cosets of H in $H d K$ equals $\mid K$: $H^{d} \cap K \mid$
(b) Prove that

$$
\sum_{d} \frac{1}{\left|H^{d} \cap K\right|}=\frac{|G|}{|H||K|}=\sum_{d} \frac{1}{\left|H \cap K^{d}\right|}
$$

where d runs over a set of (H, K)-double coset representatives.
Solution: (a) The function $\alpha: H d K \rightarrow H d K d^{-1}$

$$
h d k \rightarrow h d k d^{-1}
$$

is a bijective function. Hence $|H d K|=\left|H d K d^{-1}\right|=\left|H \cdot K^{d}\right|$. Similarly $\beta: H d K \rightarrow d^{-1} H d K$ is bijective. Hence

$$
|H d K|=\left|H K^{d}\right|=\left|d^{-1} H d K\right|=\left|H^{d} K\right|
$$

Since H and K^{d} are subgroups of G we have $|H d K|=\left|H K^{d}\right|$.

$$
\begin{gathered}
|H d K|=\left|H K^{d}\right|=\frac{|H|\left|K^{d}\right|}{\left|H \cap K^{d}\right|}=\frac{|H||K|}{\left|H \cap K^{d}\right|} \\
\frac{|H d K|}{|H|}=\frac{\left|H^{d} K\right|}{|H|}=\frac{\left|H^{d}\right||K|}{|H|\left|H^{d} \cap K\right|}=\frac{|K|}{\left|H^{d} \cap K\right|} \\
=\left|K: K \cap H^{d}\right|
\end{gathered}
$$

(b)

$$
\frac{|G|}{|H||K|}=\sum_{d} \frac{|H d K|}{|H||K|}=\sum_{d} \frac{|K|}{\left|H^{d} \cap K\right||K|}=\sum_{d} \frac{1}{\left|H^{d} \cap K\right|}
$$

similarly

$$
\frac{|G|}{|H||K|}=\sum_{d} \frac{|H d K|}{|H||K|}=\sum_{d} \frac{|H|\left|K^{d}\right|}{\left|H \cap K^{d}\right| \cdot|H||K|}=\sum_{d} \frac{1}{\left|H \cap K^{d}\right|}
$$

2.43. Find some non-isomorphic groups that are direct limits of cyclic groups of order p, p^{2}, p^{3}, \cdots.

Solution: Let the finite cyclic group G_{i} of order p^{i} be generated by x_{i}. Recall that a cyclic group has a unique subgroup for any divisor of the order of the group.

$$
\alpha_{i}^{i+1}: \begin{aligned}
& G_{i} \hookrightarrow G_{i+1} \\
& x_{i} \hookrightarrow x_{i+1}^{p}
\end{aligned}
$$

The homomorphisms α_{i}^{i+1} is a monomorphism. So direct limit is the locally cyclic (quasi-cyclic or Prüfer) group denoted by $C_{p^{\infty}}$.
(b) $\alpha_{i}^{i+1}: \begin{aligned} & G_{i} \hookrightarrow G_{i+1} \\ & x_{i} \hookrightarrow 1\end{aligned}$. Then $D=\lim _{n \rightarrow \infty} G_{n}=\{1\}$.
2.44. If $H \leq G$, prove that $H^{G}=\left\langle H^{g} \mid g \in G\right\rangle$ and $H_{G}=\bigcap_{g \in G} H^{g}$.

Solution: Recall that H^{G} is the intersection of all normal subgroups containing H. Let $M=\left\langle H^{g} \mid g \in G\right\rangle$ we need to show that $M=H^{G}$. Every element $x \in M$ is of the form $x=h_{1}^{g_{1}} h_{2}^{g_{2}} \cdots h_{k}^{g_{k}}$. Then for any element

$$
g \in G, \quad x^{g}=\left(h_{1}^{g_{1}} \cdots h_{k}^{g_{k}}\right)^{g}=h_{1}^{g_{1} g} h_{2}^{g_{2} g} \cdots h_{k}^{g_{k} g} \in M .
$$

Hence M is a normal subgroup of G. If we choose $g=1$ in h^{g} we obtain $H \leq M$. Hence M is a normal subgroup containing H i.e. $M \supseteq H^{G}$. On the other hand H^{G} is a normal subgroup of G containing H. Hence H^{G} contains all elements of the form $h^{g}, g \in G$. In particular $H^{G} \supseteq M$. Hence $M=H^{G}$.
H_{G} is the join of normal subgroups of G contained in H. Recall that H_{G} is the largest normal subgroup, contained in H.

For the second part, let, $T=\bigcap_{g \in G} H^{g}$.
If we choose $g=1$ we obtain $H^{g}=H$. Hence $T \subseteq H$. Intersection of subgroups is a subgroup, hence T is a subgroup of G.

Let $x \in T$. Then $x \in H^{y}$ for all $y \in G$. It follows that $x^{g} \in H^{y g}$ for all $y \in G$. But $\bigcap_{y \in G} H^{y}=\bigcap_{y \in G} H^{y g}$ since the function $\alpha_{g}: \begin{aligned} & G \rightarrow G \\ & y \rightarrow y g\end{aligned}$ is $1-1$ and onto. Hence T is a normal subgroup of G contained in H. It follows that $T \subseteq H_{G}$.

On the other hand H_{G} is a normal subgroup of G contained in H. Then $H_{G}^{g} \leq H^{g}$ for all $g \in G$. But $H_{G}^{g}=H_{G}$ implies $H_{G} \leq \bigcap_{g \in G} H^{g}=T$.

Hence $T=H_{G}$.
2.45. If H is abelian, then the set of homomorphisms $\operatorname{Hom}(G, H)$ from G into H is an abelian group, if the group operation is defined by $g^{\alpha+\beta}=g^{\alpha} g^{\beta}$.

Solution: Let $\alpha, \beta, \gamma \in \operatorname{Hom}(G, H)$. Then for any $g \in G$

$$
\begin{aligned}
g^{\alpha+(\beta+\gamma)} & =g^{\alpha} g^{\beta+\gamma}=g^{\alpha}\left(g^{\beta} g^{\gamma}\right) . \\
& =\left(g^{\alpha} g^{\beta}\right) g^{\gamma} \\
& =g^{\alpha+\beta} \cdot g^{\gamma}=g^{(\alpha+\beta)+\gamma}
\end{aligned}
$$

By associativity in H.
Hence $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$
The zero homomorphism, namely the map which takes every element g in G to the identity element in H.

For any $\alpha \in \operatorname{Hom}(G, H)$

$$
\begin{gathered}
g^{-\alpha}=\left(g^{-1}\right)^{\alpha} \\
g^{\alpha-\alpha}=g^{\circ}=1
\end{gathered}
$$

Hence $-\alpha$ is the inverse of α.

$$
\begin{aligned}
g^{\alpha+\beta} & =g^{\alpha} g^{\beta}=g^{\beta} g^{\alpha} \quad \text { since } \quad H \quad \text { is abelian } \\
& =g^{\beta+\alpha} . \quad \text { Hence } \quad \alpha+\beta=\beta+\alpha
\end{aligned}
$$

for all $\alpha, \beta \in \operatorname{Hom}(G, H) g^{\alpha+\beta}=g^{\alpha} g^{\beta}$, then $\alpha+\beta$ is a homomorphism.

$$
\begin{aligned}
(g h)^{\alpha+\beta}=(g h)^{\alpha}(g h)^{\beta} & =g^{\alpha} h^{\alpha} g^{\beta} h^{\beta} \\
& =g^{\alpha} g^{\beta} \cdot h^{\alpha} h^{\beta} \quad \text { since } \quad H \quad \text { is abelian. } \\
& =g^{\alpha+\beta} h^{\alpha+\beta}
\end{aligned}
$$

Observe that commutativity of H is used in order to have $\alpha+\beta \in$ Hom (G, H).
2.46. If G is n-generator and H is finite, prove that

$$
|\operatorname{Hom}(G, H)| \leq|H|^{n}
$$

Solution: Let G be generated by $g_{1}, g_{2}, \cdots, g_{n}$ and α be a homomorphism. α is uniquely determined by the n tuple $g_{1}^{\alpha}, g_{2}^{\alpha}, \cdots, g_{n}^{\alpha}$. For this if β is another homomorphism from G into H, such that $g_{i}^{\alpha}=g_{i}^{\beta}$. Then for any element $g \in G$

$$
g=g_{i_{1}}^{n_{i 1}} g_{i_{2}}^{n_{i 2}} \cdots g_{i_{k}}^{n_{i k}}
$$

where $g_{i_{j}} \in\left\{g_{1}, \cdots, g_{n}\right\}$ for all $i_{j} \in\{1,2, \cdots, n\}$ and $n_{i_{j}} \in Z$. Since α and β are homomorphisms from G into H.

$$
\begin{aligned}
& g^{\alpha}=\left(g_{i_{1}}^{n_{i_{1}}}\right)^{\alpha}\left(g_{i_{2}}^{n_{i_{2}}}\right)^{\alpha} \cdots\left(g_{i_{k}}^{n_{i k}}\right)^{\alpha} \\
& g^{\beta}=\left(g_{i_{1}}^{n_{i_{1}}}\right)^{\beta}\left(g_{i_{2}}^{n_{i_{2}}}\right)^{\beta} \cdots\left(g_{i_{k}}^{n_{i_{k}}}\right)^{\beta}
\end{aligned}
$$

It follows that for any $g \in G, g^{\alpha}=g^{\beta}$. Hence $\alpha=\beta$. H is finite and there are at most $|H|^{n}$, n-tuple. Hence the number of homomorphisms from G into H is less than or equal to $|H|^{n}$.
2.47. Show that the group $T=\left\{\left.\frac{m}{2^{n}} \right\rvert\, m, n \in \mathbb{Z}\right\}$ is a direct limit of infinite cyclic groups.

Solution Let G_{i} be an infinite cyclic group generated by x_{i}. Define a homomorphism $\alpha_{i}^{i+1}: \begin{aligned} & G_{i} \hookrightarrow G_{i+1} \\ & x_{i} \hookrightarrow x_{i+1}^{2}\end{aligned}$

$$
\alpha_{i}^{j}=\alpha_{i}^{i+1} \alpha_{i+1}^{i+2} \cdots \alpha_{j-1}^{j}
$$

and

$$
\alpha_{i}^{j}: \begin{aligned}
& G_{i} \rightarrow G_{j} \\
& x_{i} \rightarrow x_{j}^{2^{j-i}}
\end{aligned}
$$

Then the set $\sum=\left\{\left(G_{i}, \alpha_{i}^{j}\right): \quad i \leq j\right\}$ is a direct system.
Let D be the direct limit of the above direct system. Then

$$
\begin{array}{ll}
\bar{G}_{1}=\left\{\left[x_{1}^{j}\right] \mid\right. & j \in \mathbb{Z}\} \leq D \\
\bar{G}_{2}=\left\{\left[x_{2}^{j}\right] \mid\right. & j \in \mathbb{Z}\} \leq D
\end{array}
$$

$\bar{G}_{1} \leq \bar{G}_{2}$. Because

$$
\left[x_{1}^{j}\right]=\left[\left(x_{1}\right)^{j} \alpha_{1}^{2}\right]=\left[x_{2}^{2 j}\right] \in \bar{G}_{2}
$$

Let $D=\bigcup_{i=1}^{\infty} \bar{G}_{i}$. Then D is an abelian group. Indeed assume that $i \leq j \cdot\left[x_{i}^{n}\right]\left[x_{j}^{m}\right]=\left[x_{i}^{n}\left(\alpha_{i}^{j}\right) x_{j}^{m}\right]=\left[x_{j}^{n 2^{j-i}} \cdot x_{j}^{m}\right]=\left[x_{j}^{m} \cdot x_{j}^{n 2^{j-i}}\right]=$ $\left[x_{j}^{m}\right]\left[x_{j}^{n 2^{j-i}}\right]=\left[x_{j}^{m}\right]\left[x_{i}^{n}\right]$.

Claim: $D \cong T=\left\{\left.\frac{n}{2^{i}} \right\rvert\, n, i \in \mathbb{Z}\right\} \leq(\mathbb{Q},+)$

$$
\begin{gathered}
\varphi: D \rightarrow T \\
{\left[x_{i}^{k}\right] \rightarrow \frac{k}{2^{i}}}
\end{gathered}
$$

Let $\left[x_{i}^{n}\right]$ and $\left[x_{j}^{m}\right]$ be elements of D. Assume that $i \leq j$. Then $\left[x_{i}^{n}\right]\left[x_{j}^{m}\right]=\left[x_{j}^{n 2^{2 j-}+m}\right]$

$$
\begin{gathered}
{\left[x_{i}^{n}\right] \xrightarrow{\varphi} \frac{n}{2^{i}}} \\
{\left[x_{j}^{m}\right] \stackrel{\varphi}{\rightarrow} \frac{m}{2^{j}}} \\
{\left[x_{i}^{n}\right]\left[x_{j}^{m}\right]=\left[x_{j}^{n 2^{j-i}+m}\right] \xrightarrow{\varphi} \frac{n 2^{j-i}+m}{2^{j}}}
\end{gathered}
$$

Now

$$
\frac{n}{2^{i}}+\frac{m}{2^{j}}=\frac{n \cdot 2^{j-i}}{2^{j}}+\frac{m}{2^{j}}=\frac{n 2^{j-i}+m}{2^{j}}
$$

So φ is a homomorphism from D into T. Clearly φ is onto.

$$
\operatorname{Ker} \varphi=\left\{\left[x_{i}^{m}\right] \left\lvert\, \varphi\left[x_{i}^{m}\right]=\frac{m}{2^{i}}=0\right.\right\}=\left\{\left[x_{i}^{\circ}\right]\right\}=\{[1]\} \in D
$$

so φ is an isomorphism.
2.48. Show that \mathbb{Q} is a direct limit of infinite cyclic groups.

Solution: Recall that for any two infinite cyclic groups generated by x and y the map

$$
\begin{aligned}
\langle x\rangle> & \rightarrow\langle y\rangle \\
x & \rightarrow y^{m}
\end{aligned}
$$

for any m defines a homomorphism. Moreover this map is a monomorphism. Observe that the set of natural numbers \mathbb{N} is a directed set with respect to natural ordering. Let G_{i} be an infinite cyclic group generated by $x_{i}, i=1,2,3, \cdots$

Define a homomorphism $\alpha_{i}^{i+1}: \begin{aligned} & G_{i} \hookrightarrow G_{i+1} \\ & x_{i} \hookrightarrow x_{i+1}^{i+1}\end{aligned}$
where α_{i}^{i} is identity.

$$
\begin{gathered}
\alpha_{i}^{i+1} \alpha_{i+1}^{i+2}=\alpha_{i}^{i+2}: \quad x_{i} \rightarrow x_{i+1}^{i+1} \rightarrow\left(x_{i+2}\right)^{(i+2)(i+1)} \\
\alpha_{i}^{j}=\alpha_{i}^{i+1} \alpha_{i+1}^{i+2} \cdots \alpha_{j-1}^{j}
\end{gathered}
$$

The set $\left\{\left(G_{i}, \alpha_{i}^{j}\right) \mid i \leq j\right\}$ is a direct system. The equivalence class of x_{1} contains the following set

$$
\begin{aligned}
& {\left[x_{1}\right]=\left\{x_{1}, x_{2}^{2}, x_{3}^{6}, x_{4}^{24}, x_{5}^{5!}, \cdots, x_{n}^{n!}, \cdots\right\}} \\
& {\left[x_{2}\right]=\left\{x_{2}, x_{3}^{3}, x_{4}^{12}, x_{5}^{5 \cdot 4 \cdot 3}, \cdots, x_{k}^{k \cdot(k-1) \cdots 3}, \cdots\right\}} \\
& {\left[x_{3}\right]=\left\{x_{3}, x_{4}^{4}, x_{5}^{20}, x_{6}^{6 \cdot 5 \cdot 4}, \quad, x_{k}^{k \cdot(k-1)(k-2) \cdots 4}, \cdots\right\}} \\
& {\left[x_{n-1}\right]=\left\{x_{n-1}, x_{n}^{n}, x_{n+1}^{(n+1) n}, \cdots\right\}} \\
& {\left[x_{n}\right]=\left\{x_{n}, x_{n+1}^{n+1}, x_{n+2}^{n+2 \cdot n+1}, \cdots, x_{k}^{k \cdot(k-1) \cdots(n+1)}, \cdots\right\}} \\
& {\left[x_{2}\right]^{2}=\left[x_{2}\right]\left[x_{2}\right]=\left[x_{1}\right]} \\
& {\left[x_{3}\right]^{3}=\left[x_{3}\right]\left[x_{3}\right]\left[x_{3}\right]=\left[x_{2}\right]} \\
& {\left[x_{4}\right]^{4}=\left[x_{4}\right]\left[x_{4}\right]\left[x_{4}\right]\left[x_{4}\right]=\left[x_{3}\right]} \\
& {\left[x_{n}\right]^{n}=\left[x_{n}\right] \cdots\left[x_{n}\right]=\left[x_{n}^{n}\right]=\left[x_{n-1}\right]} \\
& {\left[x_{n}\right]^{n!}=\left[x_{1}\right]}
\end{aligned}
$$

since $G_{i}=\left\langle x_{i}\right\rangle$, the direct limit $D=\lim _{n \rightarrow \infty} G_{i}=\left\langle\left[x_{i}\right] \mid i=1,2,3, \cdots\right\rangle$
Define a map

$$
\varphi: \begin{aligned}
& \varphi: D \rightarrow(\mathbb{Q},+) \\
& {\left[x_{n}\right] \rightarrow \frac{1}{n!}}
\end{aligned}
$$

if $m>n$

$$
\begin{aligned}
{\left[x_{n}\right]\left[x_{m}\right]=} & {\left[x_{n}^{\alpha_{n}^{m}}\right]\left[x_{m}\right] } \\
= & {\left[x_{m}^{(n+1)(n+2) \cdots m}\right]\left[x_{m}\right] } \\
= & {\left[x_{m}^{(n+1)(n+2) \cdots m+1}\right] } \\
{\left[x_{n}\right]\left[x_{m}\right]=} & {\left[x_{m}^{(n+1)(n+2) \cdots m+1}\right] } \\
& x_{n} \rightarrow \frac{1}{n!} \\
& x_{m} \rightarrow \frac{1}{m!} \\
x_{m}^{(n+1)(n+2) \cdots m+1} \rightarrow & \frac{(n+1)(n+2) \cdots m+1}{m!}
\end{aligned}
$$

For $m \geq n$.

$$
\frac{1}{n!}+\frac{1}{m!}=\frac{(n+1)(n+2) \cdots m}{m!}+\frac{1}{m!}=\frac{(n+1) \cdots(m)+1}{m!}
$$

so φ is a homomorphism. For any $\frac{m}{n} \in \mathbb{Q}$ we have $\varphi\left(\left[x_{n}\right]^{(n-1)!m}\right)=$ $\frac{1}{n!}^{(n-1)!m}=\frac{m}{n}$. Hence φ is onto
$\operatorname{Ker} \varphi=\left\{\left[x_{i_{1}}\right]^{k_{1}}\left[x_{i_{2}}\right]^{k_{2}} \cdots\left[x_{i_{j}}\right]^{k_{j}} \in D \quad \mid \varphi\left(\left[x_{i}\right]^{k_{1}} \cdots\left[x_{i j}\right]^{k j}\right)=1\right\}$
Since the index set is linearly ordered this corresponds to, there exists $n \in \mathbb{N}$ such that $n=\max \left\{i_{1}, \cdots, i_{j}\right\}$. Hence $\left[x_{i 1}\right]^{k_{1}} \cdots\left[x_{i_{j}}\right]^{k_{j}}=$ $\left[x_{n}\right]^{m}$ for some m. Then $\varphi\left[\left[x_{n}\right]^{m}\right]=\frac{m}{n!}=0$. It follows that $m=0$.

Then $\left[x_{n}\right]^{0}=\left[x_{1}\right]^{0}=\left[x_{1}^{0}\right]$ which is the identity element in D. Hence φ is an isomorphism.

Remark: On the other hand observe that $\varphi\left(\left[x_{n}\right]^{m}\right)=\frac{m}{n!}=1$ implies $m=n!$. Then $\left[x_{n}\right]^{n!}=\left[x_{1}\right]$ and $\varphi\left(\left[x_{1}\right]\right)=\frac{1}{1!}=1$.
2.49. If G and H are groups with coprime finite orders, then Hom (G, H) contains only the zero homomorphism.

Solution: Let α in $\operatorname{Hom}(G, H)$. Then by first isomorphism theorem $G / \operatorname{Ker} \alpha \cong \operatorname{Im}(\alpha)$.

By Lagrange theorem $|\operatorname{Ker}(\alpha)|$ divides the order of $|G|$. Hence $\frac{|G|}{|\operatorname{Ker}(\alpha)|}$ is coprime with $|H|$. Similarly $\operatorname{Im}(\alpha) \leq H$ and $|\operatorname{Im}(\alpha)|$ divides the order of H. Hence $\frac{|G|}{|\operatorname{Ker}(\alpha)|}=|\operatorname{Im}(\alpha)|=1$. Hence $|\operatorname{Ker}(\alpha)|=|G|$. This implies that α is a zero homomorphism i.e. α sends every element $g \in G$ to the identity element of H.
2.50. If an automorphism fixes more than half of the elements of a finite group, then it is the identity automorphism.

Solution Let α be an automorphism of G which fixes more than half of the elements of G. Consider the set $H=\left\{g \in G \mid g^{\alpha}=g\right\}$ We show that H is a subgroup of G. Indeed if $g_{1}, g_{2} \in H$ then $g_{1}^{\alpha}=$ $g_{1}, g_{2}^{\alpha}=g_{2}$. Hence $\left(g_{1} g_{2}\right)^{\alpha}=g_{1}^{\alpha} g_{2}^{\alpha}=g_{1} g_{2}$ i.e. $g_{1} g_{2} \in H$. Moreover $\left(g_{1}^{-1}\right)^{\alpha}=\left(g_{1}^{\alpha}\right)^{-1}=g_{1}^{-1}$. Hence $g_{1}^{-1} \in H$. So H is a subgroup of G containing more than half of the elements of G. By Lagrange theorem $|H|$ divides $|G|$. It follows that $H=G$.
2.51. Let G be a group of order $2 m$ where m is odd. Prove that G contains a normal subgroup of order m.

Solution Let ρ be a right regular permutation representation of G. By Cauchy's theorem there exists an element $g \in G$ such that $|\langle g\rangle|=2$. We write g as a permutation $g^{\rho}=\left(x_{1}, x_{1} g^{\rho}\right)\left(x_{2}, x_{2} g^{\rho}\right) \ldots\left(x_{m}, x_{m} g^{\rho}\right)$. Since G^{ρ} is a regular permutation group it does not fix any point. It follows that any orbit of g^{ρ} containing a point x is of the form $\left\{x, x g^{\rho}\right\}$. Hence we have m transpositions. Since m is odd g^{ρ} is an odd permutation. Then the map

$$
\text { Sign : } G^{\rho} \rightarrow\{1,-1\}
$$

is onto. Hence $\operatorname{Ker}(\operatorname{Sign}) \triangleleft G^{\rho}$ and $|G / \operatorname{Ker}(\operatorname{Sign})|=2$. It follows that $|\operatorname{Ker}(\operatorname{Sign})|=m$.
2.52. Let G be a finite group and $x \in G$. Then $\left|C_{G}(x)\right| \geq\left|G / G^{\prime}\right|$ where G^{\prime} denotes the derived subgroup of G.

Solution G acts on G by conjugation. Then stabilizer of a point is $C_{G}(x)$. Hence $\left|G: C_{G}(x)\right|=\left|\left\{x^{g} \mid g \in G\right\}\right|=$ length of the orbit containing x. It follows that $\frac{|G|}{\left|C_{G}(x)\right|}=\left|\left\{g^{-1} x g \mid g \in G\right\}\right|$. The function

$$
\phi:\left\{g^{-1} x g \mid g \in G\right\} \rightarrow\left\{x^{-1} g^{-1} x g \mid g \in G\right\}
$$

is a bijective function. But G^{\prime} is generated by the elements $y^{-1} g^{-1} y g=$ $[y, g]$ where y and g lies in G. It follows that

$$
\left|\left\{x^{-1} g^{-1} x g \mid g \in G\right\} \leq\left|\left\{y^{-1} g^{-1} y g \mid y, g \in G\right\}\right| \leq\left|G^{\prime}\right| .\right.
$$

Hence $\frac{|G|}{\left|C_{G}(x)\right|} \leq\left|G^{\prime}\right|$. Then $\left|G / G^{\prime}\right| \leq\left|C_{G}(x)\right|$.
2.53. If H, K, L are normal subgroups of a group, then $[H K, L]=$ $[H, L][K, L]$.

Solution The group $[H, L]$ is generated by the commutators $[h, l]=$ $h^{-1} l^{-1} h l$ where $h \in H$ and $l \in L$. Of course every generator $[h, l]$ of $[H, L]$ is contained in $[H K, L]$. Hence $[H, L]$ is a subgroup of $[H K, L]$. Similarly $[K, L]$ is contained in $[H K, L]$ hence $[H, L][K, L] \subseteq[H K, L]$. On the other hand generators of $[H K, L]$ are of the form $[h k, l]=$ $[h, l]^{k}[k, l]$ where $h \in H$ and $l \in L$. The right hand side is an element of $[H, L][K, L]$ since H, K, L are normal subgroups, hence $[H, L]$ is normal in G and so $[h, l]^{k} \in[H, L]$. It follows that $[H K, L] \leq[H, L][K, L]$. Then we have the equality $[H K, L]=[H, L][K, L]$.
2.54. Let α be an automorphism of a finite group G. Let

$$
S=\left\{g \in G \mid g^{\alpha}=g^{-1}\right\} .
$$

If $|S|>\frac{3}{4}|G|$, show that α inverts all the elements of G and so G is abelian.

Solution Let $x \in S$. Then $|S \cup x S|=|S|+|x S|-|S \cap x S|$. Since $S \cup x S \subseteq G$, we obtain $|S \cup x S| \leq|G|$. On the other hand the function

$$
\phi_{x}: \begin{aligned}
& S \rightarrow x S \\
& s \rightarrow x s
\end{aligned}
$$

is a bijective function. Hence $|x S|=|S|$. It follows that $|G| \geq \mid S \cup$ $x S|=|S|+|S|-|S \cap x S|$. Then $| G\left|>\frac{3}{4}\right| G\left|+\frac{3}{4}\right| G|-|S \cap x S|$. It follows that $|S \cap x S|>\frac{3}{2}|G|-|G|=\frac{1}{2}|G|$. This is true for all $x \in S$. Let $x s_{1}$ and $x s_{2}$ be two elements of $S \cap x S$, then $x s_{i} \in S$ implies $\left(x s_{i}\right)^{\alpha}=x^{\alpha} s_{i}^{\alpha}=\left(x s_{i}\right)^{-1}=s_{i}^{-1} x^{-1}=x^{\alpha} s_{i}^{\alpha}=x^{-1} s_{i}^{-1}$. It follows that x and s_{i} commute. Since there are more than $\frac{1}{2}|G|$ elements in $|S \cap x S|$ we obtain $\left|C_{G}(x)\right|>\frac{1}{2}|G|$. But $C_{G}(x)$ is a subgroup. Hence by Lagrange theorem we obtain $\left|C_{G}(x)\right|=|G|$ which implies $G=C_{G}(x)$ i.e $x \in Z(G)$. But this is true for all $x \in S$. Hence $S \subseteq Z(G)$. So $\frac{3}{4}|G|<|S| \leq|Z(G)|$ and $Z(G)$ is a subgroup of G implies that $Z(G)=G$. Hence G is abelian. Then S becomes a subgroup of G. Hence S is a subgroup of G of order greater than $\frac{3}{4}|G|$. It follows by Lagrange theorem that $S=G$.
2.55. Show that no group can have its automorphism group cyclic of odd order greater than 1 .

Solution Recall that if an element of order 2 in G exists, then by Lagrange theorem 2 must divide the order of the group.

We first show that the group in the statement of the question can not be an abelian group. If G is abelian, then the automorphism $x \rightarrow$ x^{-1} is an automorphism of G of order 2 unless $x=x^{-1}$ for all $x \in G$. By assumption the automorphism group is cyclic of odd order so $x=x^{-1}$ for all $x \in G$. It follows that G is an elementary abelian 2-group. Then G can be written as a direct sum of cyclic groups of order 2 . This allows us to view G as a vector space over the field \mathbb{Z}_{2}. Then $\operatorname{Aut}(G) \cong G L\left(n, \mathbb{Z}_{2}\right)$. As $\left|G L\left(2, \mathbb{Z}_{2}\right)\right|=\left(2^{2}-1\right)\left(2^{2}-2\right)=3.2=6$.

The group $\operatorname{Aut}(G) \cong G L\left(2, \mathbb{Z}_{2}\right)$ is cyclic of odd order. This group is cyclic if and only if $n=1$ in that case $G \cong \mathbb{Z}_{2}$ and $\operatorname{Aut}(G)=1$ which is impossible by the assumption. So we may assume that G is nonabelian. Then there exists $x \in G \backslash Z(G)$. The element x induces a nontrivial inner automorphism of G. Moreover $G / Z(G) \cong \operatorname{Inn}(G) \leq$ Aut (G). So $G / Z(G)$ is a cyclic group But this implies G is abelian. This is a contradiction. Hence such an automorphism does not exist.
2.56. If $N \triangleleft G$ and G / N is free, prove that there is a subgroup H such that $G=H N$ and $H \cap N=1$. (Use projective property).

Solution Let π be the projection from G into G / N. Then by the projective property of the free group the diagram

commutes.
Since β is a homomorphism, $\operatorname{Im}(\beta)$ is a subgroup of G. Let $H=$ $\operatorname{Im}(\beta)$. Let $w \in H \cap N$. Since $w \in N, w N=N$. The map β is a homomorphism implies $(w N) \beta=(N) \beta=i d_{G}$ so $w=i d$.

Let g be an arbitrary element of G. Now $g N \in G / N$ and $(g N) \beta \in$ H, since the diagram is commutative $(g N) \beta \pi=g N$. By the projection π we have $(g N) \beta=g n$ for some $n \in N$. Hence $g=(g N) \beta . n^{-1}$ where $(g N) \beta \in H$ and $n^{-1} \in N$ i.e. $G=H N$.
2.57. Prove that free groups are torsion free.

Solution Let F be a free group on a set X. We may consider the elements of F as in the normal form. i.e. every element w in F can be written uniquely in the form $w=x_{1}^{l_{1}} \ldots x_{k}^{l_{k}}$ where $x_{i} \in X$ and $l_{i} \in \mathbb{Z}$ for all $i=1,2, \ldots, k$ and $x_{i} \neq x_{j}$ for $i \neq j$. Observe first that the elements x_{i} or x_{i}^{-1} have infinite orders.

Let $w=x_{1}^{l_{1}} \ldots x_{k}^{l_{k}}$ be an arbitrary non-identity element of $F . w^{2}=$ $x_{1}^{l_{1}} \ldots x_{k}^{l_{k}} x_{1}^{l_{1}} \ldots x_{k}^{l_{k}}$. If $x_{1}^{l_{1}} \neq x_{k}^{-l_{k}}$, then for any n, w^{n} is nonidentity and
we are done. If $x_{1}^{l_{1}}=x_{k}^{-l_{k}}$, then in w^{2} these two elements cancel and gives identity. But it may happen that $x_{2}^{l_{2}}=x_{k-1}^{-l_{k-1}}$. Then the element w is of the form $x_{1}^{l_{1}} x_{2}^{l_{2}} \ldots x_{2}^{-l_{2}} x_{1}^{-l_{1}}$. Then continuing like this we reach to an element $x_{1}^{l_{1}} x_{2}^{l_{2}} \ldots x_{i}^{l_{i}} x_{i}^{-l_{i}} \ldots x_{2}^{-l_{2}} x_{1}^{-l_{1}}$. But this implies that w is identity. So there exists i such that when we take powers of w then the powers of x_{i} increase. Since x_{i} has infinite order we obtain, w has infinite order.
2.58. Prove that a free group of rank greater than one has trivial center.

Let $w=x_{1}^{l_{1}} \ldots x_{n}^{l_{n}}$ be an element of a center of a free group of rank >1. If $x_{1} \neq x_{n}$. Then $x_{1}^{l_{1}} \ldots x_{n}^{l_{n}} x_{1} \neq x_{1} x_{1}^{l_{1}} \ldots x_{n}^{l_{n}}$. Since every element of F can be written uniquely and any two elements are equal if the corresponding entries are equal.

If $x_{1}=x_{n}$, then consider $w x_{2} x_{1}$. By uniqueness of writing $w x_{2} x_{1} \neq$ $x_{2} x_{1} w$. This also shows that even if w contains only one symbol if rank of F is greater than one, then center of F is identity.
2.59. Let F be a free group and suppose that H is a subgroup with finite index. Prove that every nontrivial subgroup of F intersects H nontrivially.

Solution The group H has finite index in F implies that F acts on the right to the set $\Omega=\left\{H x_{1}, \ldots, H x_{n}\right\}$ of the right cosets of H in F. Then there exists a homomorphism $\phi: F \rightarrow \operatorname{Sym}(\Omega)$ such that $\operatorname{Ker} \phi=\bigcap_{i=1}^{n} H^{x_{i}}$. Hence $F / \operatorname{Ker}(\phi)$ is a finite group. Let K be a nontrivial subgroup of F and let $1 \neq w \in K$. Then $w^{n!} \neq 1$ since every nontrivial element of F has infinite order by 2.57. But $w^{n!} \in \operatorname{Ker} \phi \leq H$. Hence $1 \neq w^{n!} \in K \cap \operatorname{Ker}(\phi)$.
2.60. If M and N are nontrivial normal nilpotent subgroups of a group. Prove from first principals that $Z(M N) \neq 1$. Hence give an
alternative proof of Fittings Theorem for finite groups.

Solution Consider $M \cap N$. If $M \cap N=1$, then $M N=M \times N$ and $Z(M N)=Z(M) \times Z(N) \neq 1$. As M and N are nilpotent. If $M \cap N \neq 1$, then $[[M \cap N, M], M] \ldots]=1$ implies there exists a subgroup $K \triangleleft(M \cap N)$ such that $1 \neq K \leq Z(M)$. Since $K \triangleleft N$ we have $[[K, N], N \ldots]=1$. It follows that there exists a subgroup $1 \neq L \leq K$ such that $L \leq Z(N)$. Hence we obtain $1 \neq L \leq Z(M) \cap Z(N)$. But $1 \neq L \leq Z(M) \cap Z(N) \leq Z(M N)$.

Let $Z=Z(M N) C h a r M N \triangleleft G$ implies $Z \triangleleft G$. Hence $M Z / Z$ and $N Z / Z$ are normal nilpotent subgroups of G / Z. Then $M N / Z$ has a nontrivial center in G / Z. Continuing like this if $M N$ is finite we obtain a central series of $M N$. Hence $M N$ is a nilpotent group in the case that $M N$ is a finite group.
2.61. Let A be a nontrivial abelian group and set $D=A \times A$. Define $\delta \in \operatorname{Aut}(D)$ as follows: $\left(a_{1}, a_{2}\right)^{\delta}=\left(a_{1}, a_{1} a_{2}\right)$. Let G be the semidirect product $\langle\delta\rangle \ltimes D$.
(a) Prove that G is nilpotent of class 2 and $Z(G)=G^{\prime} \cong A$
(b) Prove that G is a torsion group if and only if A has finite exponent.
(c) Deduce that even if the center of a nilpotent group is a torsion group, the group may contain elements of infinite order.

Solution Let A be a nontrivial abelian group. Define δ on $D=$ $A \times A$ such that $\delta\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{1} a_{2}\right)$. Then δ is an automorphism of D. Indeed $\delta\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\delta\left(a_{1} b_{1}, a_{2} b_{2}\right)=\left(a_{1} b_{1}, a_{1} b_{1} a_{2} b_{2}\right)=$ $\left(a_{1}, a_{1} a_{2}\right)\left(b_{1}, b_{1} b_{2}\right)$ as A is an abelian group. So δ is a homomorphism from D into D.

$$
\operatorname{Ker}(\delta)=\left\{\left(a_{1}, a_{2}\right) \mid \quad \delta\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{1} a_{2}\right)=(1,1)\right\}=\{(1,1)\}
$$

Moreover for any $\left(a_{1}, a_{2}\right) \in D, \delta\left(a_{1}, a_{1}^{-1} a_{2}\right)=\left(a_{1}, a_{2}\right)$. Hence δ is an automorphism of D. Therefore we may form the group G as a semidirect product of D and $\langle\delta\rangle$ and obtain $G=D \rtimes\langle\delta\rangle$
(a) Now we show that $Z(G)=G^{\prime} \cong A$.

An element of G is of the form $\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)$ for some $i \in \mathbb{Z}$ and a_{1}, a_{2} in A. Let $\left(\delta^{n},\left(z_{1}, z_{2}\right)\right)$ be an element of the center of G. Then $\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)^{-1}\left(\delta^{n},\left(z_{1}, z_{2}\right)\right)\left(\delta^{i},\left(a_{1}, a_{2}\right)=\left(\delta^{n},\left(z_{1}, z_{2}\right)\right)\right.$ for any $i \in \mathbb{Z}$ and for any $\left(a_{1}, a_{2}\right) \in A \times A$.

Then

$$
\begin{aligned}
& \left(\delta^{i},\left(a_{1}, a_{2}\right)\right)^{-1}\left(\delta^{n+i},\left(z_{1}, z_{2}\right)^{\delta^{i}}\left(a_{1}, a_{2}\right)\right)=\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)^{-1}\left(\delta^{n+i},\left(z_{1}, z_{1}^{i} z_{2}\right)\left(a_{1}, a_{2}\right)\right) \\
& =\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)^{-1}\left(\delta^{n+i},\left(z_{1} a_{1}, z_{1}^{i} z_{2} a_{2}\right) .\right.
\end{aligned}
$$

Observe that $\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)^{-1}=\left(\delta^{-i},\left(a_{1}^{-1}, a_{1}^{i} a_{2}^{-1}\right)\right)$, we obtain $\left(\delta^{-i},\left(a_{1}^{-1}, a_{1}^{i} a_{2}^{-1}\right)\right)\left(\delta^{n+i},\left(z_{1} a_{1}, z_{1}^{i} z_{2} a_{2}\right)\right.$

$$
\begin{gathered}
=\left(\delta^{n},\left(a_{1}^{-1}, a_{1}^{i} a_{2}^{-1}\right)^{\delta^{n+i}}\left(z_{1} a_{1}, z_{1}^{i} z_{2} a_{2}\right)\right. \\
=\left(\delta^{n},\left(a_{1}^{-1}, a_{1}^{-n} a_{2}^{-1}\left(z_{1} a_{1}, z_{1}^{i} z_{2} a_{2}\right)\right)\right. \\
=\left(\delta^{n},\left(a_{1}^{-1},\left(a_{1}^{-1}\right)^{n} a_{2}^{-1}\right)\left(z_{1} a_{1}, z_{1}^{i} z_{2} a_{2}\right)\right) \\
=\left(\delta^{n},\left(z_{1}, a_{1}^{-n} z_{1}^{i} z_{2}\right)\right. \\
=\left(\delta^{n},\left(z_{1}, z_{2}\right)\right)
\end{gathered}
$$

implies that $a_{1}^{-n} z_{1}^{i}=1$. So $z_{1}^{i}=a_{1}^{n}$ for any i and for any $a_{1} \in A$. In particular $a_{1}=1$ implies that $z_{1}=1$. It follows that $a_{1}^{n}=1$ for any $a_{1} \in A$. Then $\left(a_{1}, a_{2}\right)^{\delta^{n}}=\left(a_{1}, a_{1}^{n} a_{2}\right)=\left(a_{1}, a_{2}\right)$.

Hence δ^{n} is an identity automorphism of D. It follows that $\left(\delta^{n},\left(1, z_{2}\right)\right)=$ $\left(i d,\left(1, z_{2}\right)\right)$.

Hence $Z(G)=\{(1,(1, z)): \quad z \in A\} \cong A$.
The group G^{\prime} is generated by commutators. The form of a general commutator is:

$$
\left[\left(\delta^{i},\left(a_{1}, a_{2}\right)\right),\left(\delta^{n},\left(z_{1}, z_{2}\right)\right)\right]=\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)^{-1}\left(\delta^{n},\left(z_{1}, z_{2}\right)\right)^{-1}\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)\left(\delta^{n},\left(z_{1}, z_{2}\right)\right)
$$

Since $\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)^{-1}=\left(\delta^{-i},\left(a_{1}^{-1}, a_{1}^{i} a_{2}^{-1}\right)\right)$ we obtain

$$
\begin{gathered}
=\left(\delta^{-i},\left(a_{1}^{-1}, a_{1}^{i} a_{2}^{-1}\right)\right)\left(\delta^{-n},\left(z_{1}^{-1}, z_{1}^{n} z_{2}^{-1}\right)\right)\left(\delta^{i+n},\left(a_{1}, a_{2}\right)^{\delta^{n}}\left(z_{1}, z_{2}\right)\right) \\
=\left(\delta^{-i-n},\left(a_{1}^{-1} z_{1}^{-1}, a_{1}^{i+n} a_{2}^{-1} z_{1}^{n} z_{2}^{-1}\right)\left(\delta^{i+n},\left(a_{1} z_{1}, a_{1}^{n} a_{2} z_{2}\right)\right)\right. \\
=\left(\delta^{0},\left(a_{1}^{-1} z_{1}^{-1} a_{1} z_{1},\left(a_{1}^{-1} z_{1}^{-1}\right)^{i+n} a_{1}^{i+n} a_{2}^{-1} z_{1}^{n} z_{2}^{-1} a_{1}^{n} a_{2} z_{2}\right)\right.
\end{gathered}
$$

$=\left(\left(1,\left(1, z_{1}^{-i} a_{1}^{n}\right) \in Z(G)\right.\right.$. Hence $G^{\prime} \leq Z(G)$. In particular choosing $i=1$ and $a_{1}=1$ we obtain every element of $Z(G)$ is in G^{\prime}. Hence $Z(G)=G^{\prime} \cong A$. It follows that $G / Z(G)$ is abelian.
$Z(G / Z(G))=Z_{2}(G) / Z(G)=G / Z(G)$ and G is clearly not abelian, it follows that G is nilpotent of class 2 .
(b) Assume that G is a torsion group. Then $\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)$ has finite order for any $i \in \mathbb{Z}$ and $\left(a_{1}, a_{2}\right) \in A$. Then
$\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)^{n}=(1,(1,1))$. Then
$\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)\left(\delta^{i},\left(a_{1}, a_{2}\right)\right) \ldots\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)$
$\left.=\left(\delta^{2 i},\left(a_{1}, a_{2}\right)\right)^{\delta^{i}},\left(a_{1}, a_{2}\right)\right)\left(\delta^{i},\left(a_{1}, a_{2}\right)\right) \ldots\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)$
$\left.=\left(\delta^{2 i},\left(a_{1}, a_{1}^{i} a_{2}\right)\right)\left(a_{1}, a_{2}\right)\right)\left(\delta^{2 i},\left(a_{1}^{2}, a_{1}^{i} a_{2}^{2}\right)\right) \ldots\left(\delta^{i},\left(a_{1}, a_{2}\right)\right)$ implies that $\delta^{n i}=1$ and $a_{1}^{n}=1$. If order of δ is m, then for any $(a, b) \in A \times A$
$(a, b)^{\delta^{m}}=(a, b)=\left(a, a^{m} b\right)$ implies $a^{m}=1$ for all $a \in A$. In particular A has finite exponent and this exponent is bounded by the order of δ.

Conversely if A has finite exponent say m then $(a, b)^{\delta^{m}}=\left(a, a^{m} b\right)=$ (a, b) for any $(a, b) \in A \times A$. Hence δ^{m} is the identity automorphism of $A \times A$. This implies $G=\langle\delta\rangle \ltimes D$ is a torsion group as $D=A \times A$ is a torsion group. In particular $\left(\delta^{i},(a, b)\right)^{m}$ is an element in $A \times A$ since A has finite exponent we obtain $\left(\left(\delta^{i},(a, b)^{m}\right)^{n}=(1,(1,1))\right.$.
(c) Let A be the direct product of cyclic groups Z_{n} for any $n \in \mathbb{N}$. Then by the above observation $G=\langle\delta\rangle \ltimes D$ is a nilpotent group of class 2 .

Since exponent of A is not finite by (b) we obtain that G is not a torsion group. Hence G contains elements of infinite order.

3. SOLUBLE AND NILPOTENT GROUPS

3.1. Suppose that G is a finite nilpotent group. Then the following statements are equivalent
(i) G is cyclic.
(ii) G / G^{\prime} is cyclic.
(iii) Every Sylow p-subgroup of G is cyclic.

Solution: $\quad(i) \Rightarrow(i i)$: Homomorphic image of a cyclic group is cyclic.
$(i i) \Rightarrow(i i i)$: Assume that G / G^{\prime} is cyclic. G is nilpotent so every maximal subgroup of G is normal in G. As G is nilpotent $G^{\prime} \leq G$. For any maximal subgroup $M, \quad G / M \cong Z_{p}$ for some prime $p . G^{\prime} \leq M$ It follows that $G^{\prime} \leq \bigcap_{M \text { max in } G} M=\Phi(G)$. Now $G / G^{\prime}=\left\langle x G^{\prime}\right\rangle$. Then $\left\langle x, G^{\prime}\right\rangle=G$ so $\langle x, \Phi(G)\rangle=G$. Hence $\langle x\rangle=G$ as Frattini subgroup is a non-generator group in G. This implies that G is cyclic hence every Sylow subgroup is cyclic.
$(i i i) \Rightarrow(i)$ Now assume every Sylow subgroup is cyclic. G is nilpotent hence it is a direct product of its Sylow subgroups $G=$ $O_{p_{1}}(G) \times O_{p_{2}}(G) \times \ldots \times O_{p_{k}}(G)$. Since direct product of Cyclic $p-$ groups of different primes is cyclic we have G is cyclic.
3.2. Let G be a finite group. Prove that G is nilpotent if and only if every maximal subgroup of G is normal in G.

Solution: Assume that G is nilpotent. Then every maximal subgroup is normal in G as nilpotent satisfies normalizer condition.

Assume every maximal subgroup of G is normal in G. Let $M_{1}, M_{2}, \ldots, M_{k}$ be the maximal subgroups of $G . M_{i} \triangleleft G . G / M_{i} \cong Z_{p}$ for some prime p. Then $G / \bigcap M_{i}=G / \Phi(G) \hookrightarrow G / M_{1} \times G / M_{2} \times \ldots \times G / M_{k}$ is abelian. Hence $G / \Phi(G)$ is abelian hence $G / \Phi(G)$ is nilpotent. It follows that G is nilpotent.
3.3. Let p, q, r be primes prove that a group of order pqr is soluble.

Solution If $p=q=r$, then the group becomes a p-group and hence it is nilpotent so soluble. If $p=q$, then the group has order $p^{2} q$ these groups are soluble .

So we may assume that p, q, r are distinct primes and $p>q>r$.
Let $|G|=p q r$. Assume that G is the minimal counter example. i.e G is the smallest insoluble group of order $p q r$. So G has no nontrivial normal subgroup. Because any group of order product of two primes is soluble and extension of a soluble group by a soluble group is soluble. Hence we may assume that G is simple. Let P, Q, R be the Sylow p, q, r subgroups of G respectively and n_{p} denotes the number of Sylow p-subgroups of G. $n_{p} \equiv 1(\bmod p)$ and n_{p} divides $q r$. Since G is simple $n_{p} \neq 1$ so either $n_{p}=q$, or $n_{p}=r$ or $n_{p}=q r$.

If $n_{p}=q=\left|G: N_{G}(P)\right|$ we obtain $\left|N_{G}(P)\right|=p r$. Then G acts on the cosets of $N_{G}(P)$ from right. Then G over kernel of the action say $\operatorname{Ker}(\phi)$ is isomorphic to a subgroup of $\operatorname{Sym}(q)$. It follows that $|G / \operatorname{Ker}(\phi)|$ divides q !. Since $p>q$ we obtain $1 \neq \operatorname{Ker}(\phi) \triangleleft G$ contradiction. Similarly $n_{p} \neq r$. Hence $n_{p}=q r$. So we have $(p-1) q r$ nontrivial elements of order p.

Now consider Sylow q-subgroups of $G . n_{q} \equiv 1(\bmod q)$ and divides $p r$. So $n_{q}=r$ is impossible because if $\left|G: N_{G}(Q)\right|=r$ and r is the smallest prime in p, q, r. So kernel of the action of G on the right cosets of $N_{G}(Q)$ is nontrivial and our group is simple.

Now we have $(p-1) q r=p q r-q r p$-elements.
$(q-1) p=p q-p$ at least $p q-p \quad q$-elements.
$r \quad r$-elements and identity. So at least $p q r-q r+p q-p+r$ elements. But this number is greater than pqr. This is a contradiction. Hence G is soluble.

3.4. A nontrivial finitely generated group cannot equal to its Frat-

 tini subgroup.Solution Let $G=\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$. Assume if possible that Frat $G=G$. We may discard any of the g_{i} if necessary and assume that n is the smallest integer such that $G=\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$. Therefore the subgroup
$K_{i}=\left\langle g_{1}, g_{2}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{n}\right\rangle$ is a proper subgroup of G. If Frat $G=G$, then every element of G is a nongenerator but $\left\langle K_{i}, g_{i}\right\rangle=$ G and $\left\langle K_{i}\right\rangle \neq G$ which is impossible.

3.5. Prove that $\operatorname{Frat}(\operatorname{Sym}(n))=1$

Solution The alternating group $\operatorname{Alt}(n)$ is a maximal subgroup of $(\operatorname{Sym}(n))$ as the index of $\operatorname{Alt}(n)$ in $(\operatorname{Sym}(n))$ is 2. So Frat $(\operatorname{Sym}(n))$ $\leq \operatorname{Alt}(n)$. On the other hand $(\operatorname{Sym}(n))$ acts 2-transitively on the set $\Omega_{n}=\{1,2, \ldots, n\}$ Because for any $(i, j),(k, l)$ where $i \neq j$ and $k \neq l$ the permutation $(i, k)(j, l)$ takes (i, j) to (k, l). Every 2-transitive group is a primitive permutation group. Hence stabilizer of a point is a maximal subgroup. Hence for any $i \in \Omega_{n}$ the stabilizer of a
point i say $(\operatorname{Sym}(\mathrm{n}))_{i}$ is a maximal subgroup of $(\operatorname{Sym}(n))$. Hence $\operatorname{Frat}((\operatorname{Sym}(\mathrm{n}))) \leq \cap_{i=1}^{n}\left((\operatorname{Sym}(\mathrm{n}))_{i}=1\right.$. It follows that $\operatorname{Frat}(\operatorname{Sym}(n))=$ 1.
3.6. Show that $\operatorname{Frat}\left(D_{\infty}\right)=1$.

Solution Let $G=\left\langle x, y \mid x^{2}=1, y^{2}=1\right\rangle$ Let $a=x y$. Then $G=\langle x, a\rangle, x^{-1} a x=y x=a^{-1}$. The subgroup generated by an element a is isomorphic to \mathbb{Z} and maximal in G. Hence $D_{\infty}=\langle a, t\rangle \cong \mathbb{Z} \rtimes\langle t\rangle$ Moreover $\quad x \in \mathbb{Z}$ implies $x^{t}=x^{-1}$. Then $\left\langle a^{2}, t\right\rangle \triangleleft D_{\infty}$, Indeed $t^{a}=a^{-1} t a=t t^{-1} a^{-1} t a=t a^{2} \in\left\langle a^{2}, t\right\rangle$ and $t^{-1} a^{2} t=a^{-2} \in\left\langle a^{2}, t\right\rangle$, $D_{\infty} /\left\langle a^{2}, t\right\rangle$ is of order 2 . So $\left\langle a^{2}, t\right\rangle$ is a maximal normal subgroup of G. Then $\operatorname{Frat}\left(D_{\infty}\right) \leq\langle a\rangle \cap\left\langle a^{2}, t\right\rangle$.

Moreover $\left\langle a^{p}, t\right\rangle$ is a maximal subgroup of D_{∞} for any prime p. Since $\left|D_{\infty}:\left\langle a^{p}, t\right\rangle\right|=p$ for any prime p. Then $\operatorname{Frat}\left(D_{\infty}\right) \leq\langle a\rangle \cap\left\langle a^{2}, t\right\rangle \cap_{p}$ $\left\langle a^{p}, t\right\rangle=\langle a\rangle \cap\left(\cap_{p}\right.$ prime $\left.\left\langle a^{p}, t\right\rangle\right)$. If u is an element in the intersection then $u=a^{r}$ for some r. Since all primes divide r we obtain $r=0$. Hence $\operatorname{Frat}\left(D_{\infty}\right)=1$.
3.7. If G has order $n>1$, then \mid Aut $G \mid \leq \prod_{i=0}^{k}\left(n-2^{i}\right)$ where $k=\left[\log _{2}(n-1)\right]$.

Solution We show that, if $d(G)$ is the smallest number of elements to generate a finite group G, then $|G| \geq 2^{d(G)}$. In particular this says that $d(G) \leq \log _{2}|G|=\log _{2} n$.

If G is elementary abelian 2-group, then G becomes a vector space over the field \mathbb{Z}_{2} hence it has a basis consisting of $(0, \ldots, 1,0 \ldots 0)$. If basis contains k elements, then $|G|=2^{k}$. The dimension of a vector space is the smallest number of elements that generate the vector space. Hence $|G|=2^{d(G)}$ is possible.

Now back to the solution of the problem. Let α be an element in $\operatorname{Aut}(G)$. Then α sends generators of G to generators of G. Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be the smallest set of generators of G. Then by first paragraph $k \leq \log _{2} n$ We have $x_{1}^{\alpha} \in G$ and order of x_{1}^{α} is at least 2, because α is 1-1 and x_{1} is a generator. For x_{1}^{α} we have at most $n-1$ possibilities. For x_{2}^{α} we have $x_{2}^{\alpha} \in G \backslash\left\langle x_{1}\right\rangle$. Because if $x_{2}^{\alpha}=\left(x_{1}^{\alpha}\right)^{j}$ we obtain $x_{2}^{\alpha} \in\left\langle x_{1}^{\alpha}\right\rangle$ but this is impossible as x_{2} is a generator and we choose the smallest number of generators. Moreover $x_{2}^{\alpha}=\left(x_{1}^{\alpha}\right)^{i}$ case may occur as identity but since α is an automorphism this is also impossible.

Hence $x_{2}^{\alpha} \in G \backslash\left\langle x_{1}^{\alpha}\right\rangle$ as order of x_{1} is at least 2. Hence for x_{2}^{α} we have at most $n-2$ possibilities. For x_{3} we have $x_{3}^{\alpha} \in G \backslash\left\langle x_{1}^{\alpha}, x_{2}^{\alpha}\right\rangle$, the order of the group $\left\langle x_{1}^{\alpha}, x_{2}^{\alpha}\right\rangle$ is at least 4 hence for x_{3}^{α} we have $|G| \backslash 2^{2}$ possibilities. Continuing like this on the generating set we get the image of G. Observe that α is uniquely determined by its image on the generating set. Hence

$$
|\operatorname{Aut}(G)| \leq(n-1)(n-2)\left(n-2^{2}\right) \ldots\left(n-2^{k-1}\right)=\prod_{i=0}^{k-1} n-2^{i}
$$

3.8. Let G be a finitely generated group. Prove that G has a unique maximal subgroup if and only if G is a nontrivial cyclic p-group for some prime p. Also give an example of a noncyclic abelian group with a unique maximal subgroup.

Solution Let $G=\left\langle g_{1}, g_{2}, \ldots g_{n}\right\rangle$. We may assume that if we discard any of the g_{i} the remaining elements generate a proper subgroup. Then for any i let $H_{i}=\left\langle g_{1}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{n}\right\rangle$. It is clear that by assumption $g_{i} \notin H_{i}$ and H_{i} is a proper subgroup of G. Let Σ_{i} be the set of subgroups T of G such that $T \supseteq H_{i}$ and $g_{i} \notin T$. Then Σ_{i} is nonempty since $H_{i} \in \Sigma_{i}$ and Σ_{i} is partially ordered with respect to set inclusion. Then one can show by Zorn's Lemma that Σ_{i} has a maximal element M_{i}. Hence $M_{i} \supseteq H_{i}$ and $g_{i} \notin M_{i}$. The group M_{i} is a maximal subgroup of G. If x is any element of $G \backslash M_{i}$ then $\left\langle M_{i}, x\right\rangle>M_{i}$ hence $g_{i} \in\left\langle M_{i}, x\right\rangle$ it follows that $\left\langle M_{i}, x\right\rangle=G$, since $\left\langle H_{i}, g_{i}\right\rangle=G$. So if G is generated by two elements g_{1} and g_{2}, then we may construct two maximal subgroups M_{1} and M_{2} in G such that $g_{i} \notin M_{i}$. Hence it follows that $M_{1} \neq M_{2}$.

So if G has a unique maximal subgroup, then G is a cyclic group. In an infinite cyclic group $\langle a\rangle$ for any prime $p,\left\langle a^{p}\right\rangle$ is a maximal subgroup of $\langle a\rangle$. So if G has a unique maximal subgroup, then G is a finite cyclic group. Then it can be written as a direct product of of its Sylow subgroups. Then for each prime p_{i}, Sylow p_{i} subgroup P_{i} has a unique maximal subgroup M_{i}. Hence $P_{1} \times \ldots \times M_{i} \times P_{i+1} \times \ldots \times P_{n}$ is maximal subgroup of G. It follows that $n=1$ and hence G is a cyclic p-group for some prime p.

Conversely every cyclic p-group has a unique maximal subgroup is clear because every finite cyclic group G has a unique subgroup for any divisor of the order of G.
$C_{p^{\infty}} \times \mathbb{Z}_{p}=G$ is a noncyclic p-group. It is not finitely generated since $C_{p^{\infty}}$ is not finitely generated. But $C_{p^{\infty}}$ is a maximal subgroup of G. Since $C_{p^{\infty}}$ does not have a maximal subgroup $C_{p^{\infty}}$ is the unique maximal subgroup of G.
3.9. Suppose G is an infinite group in which every proper nontrivial subgroup is maximal. Show that G is simple.

Solution Assume that G is not simple. Let N be a proper normal nontrivial subgroup of G. Then by assumption N is a maximal subgroup of G. It follows that G / N does not have any proper subgroup. Hence it is a finite cyclic group of order p for some prime p.

Let $1 \neq x \in G$. Then $\langle x\rangle$ is a maximal subgroup of G. If x has infinite order, then the group $\left\langle x^{2}\right\rangle$ is a proper subgroup and by assumption it is maximal. It follows that $G=\langle x\rangle \cong \mathbb{Z}$. But in this group every subgroup is not maximal. Hence G is a torsion group. Again if x has order a composite number then for any prime p dividing order of x the subgroup generated by x^{p} is a maximal subgroup implies $G=\langle x\rangle$ and so G is a finite cyclic group which is impossible as G is infinite. Hence every element of G is of prime order p. Let $1 \neq x \in N$, then $\langle x\rangle$ is a maximal subgroup implies $N=\langle x\rangle$ and it is of finite order p. Hence G / N and N have finite order. This implies G is a finite group. This contradicts to the assumption that G is an infinite group.
3.10. A free group is abelian if and only if it is infinite cyclic.

Solution It is clear that an infinite cyclic group is abelian. It is also free because for any group G and a function $\gamma: X \rightarrow G$ say $(x) \gamma=g$

a map $\beta,(x) \sigma \beta=g$ gives a homomorphism. We may consider σ as identity map hence $(x) \sigma=x$ and $F=\langle x\rangle$. So β becomes a homomorphism from the cyclic group F to the cyclic group $\langle g\rangle$.

Conversely, by the above problem if the rank of a free group is greater than one, then it's center is identity. Hence a free abelian group must have rank one. But indeed a free group of rank one is an infinite cyclic group as every element in the normal form is of type x^{i}.
3.11. Let B be a variety. If G is a B-group with a normal subgroup N such that G / N is a free B-group show that there is a subgroup H such that $G=H N$ and $H \cap N=1$

Solution Asume that G / N is a free B-group on a set X. We know that the map $\sigma: X \rightarrow G / N$ is an injection. Let T be a transversal of N in G. Define a map $f: X \rightarrow T \subseteq G$ such that $f(x)=g_{x}$ where $g_{x} \in T$ and $\sigma(x)=g_{x} N$. Since G is a B-group and G / N is a free B-group there exists a unique homomorphism γ such that $f=\sigma \gamma$.

Since γ is a homomorphism $\gamma(G / N)=H$ is a subgroup of G. We now show that H is the required subgroup. Since $\gamma \sigma=f$ and $f(X)=T$ we obtain $H=\langle T\rangle$. Now it is clear that $H N=G$. Now if $y \in H \cap N$, then y can be written as a product of transversals. $y=(y N) \gamma=(N) \gamma=1$ as γ is a homomorphism. So $y=1$.
3.12. Prove that every variety is closed with respect to forming subgroups, images and subcartesian products.

Solution Let B be a variety and $w=w\left(x_{1}, \ldots, x_{r}\right)$ be a law of B. Let $G \in B$ and $H \leq G$. Since for any $g_{1}, \ldots g_{r} \in G \quad w\left(g_{1}, \ldots, g_{r}\right)=1$ in particular for the elements of H we obtain $W(H)=1$.

Let N be a normal subgroup of $G \in B$. Then
$w\left(g_{1} N, \ldots, g_{r} N\right)=w\left(g_{1}, \ldots, g_{r}\right) N=N$. Hence $G / N \in B$
Now let G be a subcartesian product of the groups $G_{\lambda} \in B$. Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ and let $i: G \rightarrow C r_{\lambda \in \Lambda} G_{\lambda}$ be an injection.

For $g_{1}, \ldots, g_{r} \in G$ we have $w\left(g_{1}, \ldots, g_{r}\right)^{i}=\left(w\left(g_{1}^{i}, \ldots, g_{r}^{i}\right)\right)_{\lambda \in \Lambda}=$ $(1)_{\lambda \in \Lambda}$ since $G_{\lambda} \in B$. Since i is an injection this implies $w\left(g_{1}, \ldots, g_{r}\right)=$ 1.
3.13. Prove that a subgroup which is generated by W-marginal subgroups is itself W-marginal.

Solution Let W be a nonempty set of words. Recall that a normal subgroup N of G is called W - marginal if for any $g_{i} \in G$, and $a \in N, \quad w\left(g_{1}, \ldots, g_{i} a, \ldots, g_{n}\right)=w\left(g_{1}, \ldots, g_{n}\right)$. Since the group M generated by normal subgroups is a normal subgroup we need to show that for any element $y \in M, w\left(g_{1}, \ldots, g_{n}\right)=w\left(g_{1}, \ldots, g_{i} y, \ldots, g_{n}\right)$. Let $y=a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}$ where $a_{i_{j}} \in N_{i_{j}}$ and $N_{i_{j}}$ is a W-marginal subgroup of G. Hence for any $g_{1}, \ldots, g_{n} \in G$ we have
$w\left(g_{1}, \ldots g_{j} y, \ldots, g_{n}\right)=w\left(g_{1}, \ldots, g_{j} a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}, \ldots, g_{n}\right)$. Since $N_{i_{1}}$ is W-marginal we obtain $w\left(g_{1}, \ldots, g_{j} a_{i_{2}} \ldots a_{i_{k}}, \ldots, g_{n}\right)=w\left(g_{1}, \ldots, g_{j} a_{i_{k}}, \ldots, g_{n}\right)=$ $w\left(g_{1}, \ldots, g_{n}\right)=w\left(g_{1}, \ldots, g_{j}, \ldots, g_{n}\right)$. Hence M is W-marginal.
3.14. Prove that \mathbb{Q} is not a subcartesian product of infinite cyclic groups.

Solution Recall that a group G is subcartesian product of X groups if and only if G is a residually X-group. So in order to show that \mathbb{Q} is not a subcartesian product of infinite cyclic group we will show that \mathbb{Q} is not residually infinite cyclic group. Assume on the contrary that \mathbb{Q} is residually infinite cyclic. Then for any $0 \neq \frac{m}{n} \in \mathbb{Q}$ there exists $N_{\frac{m}{n}}$ such that $\frac{m}{n} \notin N_{\frac{m}{n}}$ and $\mathbb{Q} / N_{\frac{m}{n}}$ is infinite cyclic. So for any $k \in \mathbb{Z} \quad k \cdot \frac{m}{n} \notin N_{\frac{m}{n}}$. Clearly \mathbb{Q} is not cyclic so there exists $0 \neq \frac{a}{b} \in N_{\frac{m}{n}}$. Hence $m a=b m \frac{a}{b} \in N_{\frac{m}{n}}$. It follows that $\mathbb{Q} / N_{\frac{m}{n}}$ is finite which is a contradiction. On the other hand $m a=a n \cdot \frac{m}{n}$.
3.15. If p and q are distinct primes, prove that a group of order $p q$ has a normal Sylow subgroup. If $p \not \equiv 1(\bmod q)$ and $q \not \equiv 1(\bmod$ p), then the group is cyclic.

Solution Assume that the prime $p<q$. Let S be a Sylow q subgroup of G where $|G|=p q$. Then $|G: S|=p$. Number of Sylow q-subgroups n_{q} is congruent to 1 modulo q. Moreover n_{q} divides $\mid G$: $S \mid=p$. So $n_{q}=1+k q$ for some $k \in \mathbb{N}$. But $q>p$ implies $n_{q}=1$. Hence Sylow q-subgroup S is unique, it follows that S is normal in G.

For the second part consider a Sylow p-subgroup P of G. Let n_{p} be the number of Sylow p-subgroups. So n_{p} divides $|G: P|=q$ and $n_{p} \equiv 1(\bmod p)$. Then $n_{p}=1+k p$ and $1+k p$ divides q. So n_{p} is equal to 1 or q. But it is given that $q=n_{p} \not \equiv 1(\bmod p)$. Hence $n_{p}=1$ and P is a normal subgroup of $G .|P|=p,|Q|=q$ and $p \neq q$ implies $P \cap Q=1$. Then for any $x \in P$ and $y \in Q, x^{-1} y^{-1} x y \in P \cap Q$. Hence $x y=y x$ for all $x \in P, \quad y \in Q$. The group $G=P Q . G$ is an abelian group. Assume that $P=\langle x\rangle$ and $Q=\langle y\rangle, \quad x y \in G$ and $\langle x y\rangle=\left\{x^{i} y^{i}: \quad i \in \mathbb{N}\right\}, \quad(x y)^{p}=x^{p} y^{p}=y^{p} \neq 1$
$(x y)^{q}=x^{q} y^{q}=x^{q} \neq 1$ since p does not divide q.
$(x y)^{q}=x^{q} y^{q}=x^{q} \neq 1$ So $\left\langle x^{q}\right\rangle=\langle x\rangle \leq\langle x y\rangle$ and
$(x y)^{p}=x^{p} y^{p}=y^{p} \neq 1$ so $\left\langle y^{p}\right\rangle=\langle y\rangle \leq\langle x y\rangle$. Hence p divides $|\langle x y\rangle|$ and q divides $|\langle x y\rangle|$ implies $p q$ divides $|\langle x y\rangle|$. On the other hand $\langle x y\rangle \leq G$ and $|G|=p q$. Hence $\langle x y\rangle=G$ and G is cyclic.
3.16. Let G be a finite group. Prove that elements in the same conjugacy class have conjugate centralizers. If $c_{1}, c_{2}, \ldots, c_{n}$ are the orders of the centralizers of elements from the distinct conjugacy classes, prove that $\frac{1}{c_{1}}+\frac{1}{c_{2}}+\ldots+\frac{1}{c_{n}}=1$. Deduce that there exist only finitely many finite groups with given class number h. Find all finite groups with class number 3 or less.

Solution Let x and x^{g} be two elements in the same conjugacy class. Then $C_{G}(x)^{g}=C_{G}\left(x^{g}\right)$. Indeed if $y \in C_{G}(x)^{g}$, then $y^{g^{-1}} \in$ $C_{G}(x)$ and $x y^{g^{-1}}=y^{g^{-1}} x$. Taking conjugation of both sides by g gives $x^{g} y=y x^{g}$. i.e. $y \in C_{G}\left(x^{g}\right)$. Hence $C_{G}(x)^{g} \subseteq C_{G}\left(x^{g}\right)$. Similarly $C_{G}\left(x^{g}\right) \subseteq C_{G}(x)^{g}$. Hence $C_{G}\left(x^{g}\right)=C_{G}(x)^{g}$.

By class equation $|G|=\sum_{i=1}^{n}\left|G: C_{G}\left(x_{i}\right)\right|$. So $\left|C_{G}\left(x_{i}\right)\right|=\left|C_{G}\left(x_{i}^{g}\right)\right|$ we have $1=\sum_{i=1}^{n} \frac{1}{\left|C_{G}\left(x_{i}\right)\right|}=\sum_{i=1}^{n} \frac{1}{c_{i}}$.

So $\frac{1}{c_{1}}+\frac{1}{c_{2}}+\ldots+\frac{1}{c_{n}}=1$.
The set of all groups with only 1 equivalence class satisfy $\frac{1}{c_{1}}=1$ where c_{1} is the order of the centralizer of identity. Hence $G=\{1\}$.

The set of all groups with two equivalence class satisfy $\frac{1}{c_{1}}+\frac{1}{c_{2}}=1$. Then $c_{1}=\left|C_{G}(1)\right|=|G|$. Hence $\frac{1}{c_{2}}=1-\frac{1}{|G|}=\frac{|G|-1}{|G|}$ and so $c_{2}=\frac{|G|}{|G|-1}$ $(|G|,|G|-1)=1$ implies $|G|-1=1$. Hence $|G|=2$.

The set of all groups with three equivalence class satisfy $\frac{1}{c_{1}}+\frac{1}{c_{2}}+\frac{1}{c_{3}}=$ 1. Since the identity is an equivalence class we have

$$
\frac{1}{c_{2}}+\frac{1}{c_{3}}=1-\frac{1}{|G|}=\frac{|G|-1}{|G|}
$$

Then $\frac{c_{2}+c_{3}}{c_{2} c_{3}}=\frac{|G|-1}{|G|}$.
So we obtain $\left(c_{2}+c_{3}\right)|G|=c_{2} c_{3}(|G|-1)$. As $(|G|,|G|-1)=1$ we have $|G|$ divides $c_{2} c_{3}$. And c_{2} divides $|G|, \quad c_{3}$ divides $|G|$ implies that $(|G|-1)$ divides $c_{2}+c_{3}$.

First consider the case $c_{2}=c_{3}$. Then $c_{2}^{2}\left((|G|-1)=2 c_{2}|G|\right.$. Hence $c_{2}(|G|-1)=2|G|$. Since $\quad(|G|-1)$ divides 2 we obtain $|G|-1=2$. Hence $|G|=3$ and G is a cyclic group of order 3 .

Assume without loss of generality that $c_{2}<c_{3}$. Then $\left(c_{2}+c_{3}\right)|G|=$ $c_{2} c_{3}(|G|-1)$ implies that
$2 c_{2}|G| \leq\left(c_{2}+c_{3}\right)|G|=c_{2} c_{3}(|G|-1) \leq c_{3}^{2}(|G|-1)$ and $\left(c_{2}+\right.$ $\left.c_{3}\right)|G|=c_{2} c_{3}(|G|-1)<2 c_{3}|G|$. It follows that $c_{2}(|G|-1)<2|G|$. By dividing both sides with c_{2} we obtain $|G|-1<\frac{2}{c_{2}}|G|$. Then we obtain $|G|<\frac{2}{c_{2}}|G|+1$.
c_{2} is the order of a centralizer of an element. Hence $c_{2} \geq 2$.
If $c_{2}>2$, then $|G|<\frac{2}{c_{2}}|G|+1$ is impossible for $|G| \geq 4$. Hence $c_{2}=2$.

Then $\left(2+c_{3}\right)|G|=2 c_{3}(|G|-1)$ implies that $2|G|+c_{3}|G|=2 c_{3}|G|-$ $2 c_{3}$

Then we obtain $c_{3}|G|=2|G|+2 c_{3}$.

But $c_{3}>2$ implies that $\left(c_{3}-2\right)|G|=2 c_{3}$ and hence $|G|=\frac{2 c_{3}}{c_{3}-2}$.
If $c_{3}=3$, then $|G|=6$ and G is isomorphic to S_{3}.
If $c_{3}=4$, then $|G|=4$. This is impossible as G is abelian
If $c_{3}=6$, then $|G|=3$ which is impossible as G is abelian.

If $c_{3}>6$, then $|G|=\frac{2 c_{3}}{c_{3}-2} \leq 4$. Then we are done as we reach similar groups as above.
3.17. Let G be a permutation group on a finite set X. If $\pi \in G$ define Fix (π) to be the set of fixed points of π that is all $x \in X$ such that $x \pi=x$. Prove that the number of G orbits equals $\frac{1}{|G|} \Sigma_{\pi \in G}|F i x(\pi)|$

Solution Consider the following set

$$
\Omega=\{(x, \pi) \mid x \pi=x, x \in X, \pi \in G\} .
$$

We count the number of elements in Ω in two ways. First fix an element $x \in X$. Then each x appears as many as $\left|\operatorname{Stab}_{G}(x)\right|$ times in Ω. Then $|\Omega|=\Sigma_{x \in X}\left|\operatorname{Stab}_{G}(x)\right|$.

Secondly we fix an element $\pi \in G$. Then π appears $\operatorname{Fix}(\pi)$ times in Ω. Hence $|\Omega|=\Sigma_{\pi \in G}|F i x(\pi)|$.Then we have $\Sigma_{x \in X}\left|\operatorname{Stab}_{G}(x)\right|=$ $\Sigma_{\pi \in G}|\operatorname{Fix}(\pi)|$. But we know that $\left|G: \operatorname{Stab}_{G}(x)\right|=$ length of the orbit of G containing the element x. Let us denote it by \mid orbit $x \mid$. Hence $\left|\operatorname{Stab}_{G}(x)\right|=\frac{|G|}{\mid \text { Orbit } x \mid}$. It follows that $\Sigma_{x \in X}\left|\operatorname{Stab}_{G}(x)\right|=\Sigma_{x \in X} \frac{|G|}{\mid \text { orbit } x \mid}=$ $\Sigma_{\pi \in G}|F i x(\pi)|$. On the other hand $\Sigma_{x \in X} \frac{1}{\mid \text { orbit } x \mid}=$ number of orbits of G on X. This is because, if x and y belong to the same orbit, then \mid orbit $x|=|$ orbit $y \mid$. We write X as a disjoint union of orbits say O_{1}, \ldots, O_{k}. Then
$\Sigma_{x \in X} \frac{1}{\mid \text { orbit } x \mid}=\sum_{i=1}^{k} \Sigma_{x \in O_{i} \frac{1}{\mid \text { orbit } x \mid}}=k$ Since
$\Sigma_{x \in O_{i} \frac{1}{\mid \text { orbit } x \mid}}=1$. Hence we have $|G| k=\Sigma_{\pi \in G}|\operatorname{Fix}(\pi)|$. Then the number of orbits $k=\frac{1}{|G|} \Sigma_{\pi \in G}|F i x(\pi)|$.
3.18. Prove that a finite transitive permutation group of order greater than 1 contains an element with no fixed point.

Solution By previous question we have the formula

$$
1=\frac{1}{|G|} \Sigma_{\pi \in G}|F i x(\pi)|
$$

Then we obtain $|G|=\Sigma_{\pi \in G}|F i x(\pi)|$. We know that the identity element of G fixes all points in X. So $|G|=\Sigma_{1 \neq \pi \in G}|F i x(\pi)|+|X|$. Since G is transitive on X, for any $y \in X,\left|G: \operatorname{Stab}_{G}(y)\right|=|X|$. G is a permutation group implies $\operatorname{Stab}_{G}(y) \neq G$. It follows that $\mid G$: $\operatorname{Stab}_{G}(y)|=|X|>1$. Hence the formula $| G\left|=\Sigma_{1 \neq \pi \in G}\right|$ Fix $(\pi)|+|X|$ and $|F i x(\pi)| \geq 0$ implies there exists a permutation $\pi \in G$ such that $|F i x(\pi)|=0$ as the sum is over all non-identity elements of G.

Otherwise $\operatorname{Stab}_{G}(y)=G$ for all $y \in X$ Hence G acts trivially on X. But the action is transitive implies $|X|=1$ But this is impossible as G is a permutation group of order greater than 1 .
3.19. Show that the identity $\left[u^{m}, v\right]=[u, v]^{u^{m-1}+u^{m-2}+\ldots+u+1}$ holds in any group where $x^{y+z}=x^{y} x^{z}$. Deduce that if $[u, v]$ belongs to the center of $\langle u, v\rangle$, then $\left[u^{m}, v\right]=[u, v]^{m}=\left[u, v^{m}\right]$.

Solution We show the equality by induction on m.
If $m=1$, then $\left[u^{1}, v\right]=[u, v]$. Assume that

$$
\left[u^{m-1}, v\right]=[u, v]^{u^{m-2}+u^{m-3}+\ldots+u+1} .
$$

Then

$$
\left[u^{m}, v\right]=\left[u u^{m-1}, v\right]=[u, v]^{u^{m-1}}\left[u^{m-1}, v\right]
$$

. By induction assumption we obtain

$$
\left[u^{m}, v\right]=[u, v]^{u^{m-1}}[u, v]^{u^{m-2}+u^{m-3}+\ldots+u+1}
$$

$=[u, v]^{u^{m-1}+u^{m-2}+\ldots+u+1}$. Now if $[u, v]$ belongs to the center of $\langle u, v\rangle$, then

$$
\left[u^{m}, v\right]=[u, v]^{m}=\left[u, v^{m}\right] \text { as }[u, v]^{u}=[u, v]^{v}=[u, v]
$$

3.20. A finite p-group G will be called generalized extra-special if $Z(G)$ is cyclic and G^{\prime} has order p.

Prove that $G^{\prime} \leq Z(G)$ and $G / Z(G)$ is an elementary abelian p group of even rank.

Solution G is a finite p-group, hence nilpotent. Then $\gamma_{2}(G)=$ $[G, G]=G^{\prime}$ and $\gamma_{3}(G)=\left[G, G^{\prime}\right]<G^{\prime}$ and G^{\prime} has order p and proper implies $\left[G, G^{\prime}\right]=1$. It follows that $G^{\prime} \leq Z(G)$. Then $G / Z(G)$ is an abelian group as $G^{\prime} \leq Z(G)$. Moreover $\left[x^{p}, y\right]=[x, y]^{p}$ since $[x, y] \in$ $G^{\prime} \leq Z(G)$ and $\left|G^{\prime}\right|=p$ implies that $\left[x^{p}, y\right]=[x, y]^{p}=1$. Then $x^{p} \in Z(G)$ for any $x \in G$. This implies $G / Z(G)$ is an elementary
abelian p-group. So we may view $G / Z(G)$ as a vector space over a field \mathbb{Z}_{p}. Let m be the dimension of $G / Z(G)$. Define

$$
\begin{array}{ccc}
f: & G / Z(G) \times G / Z(G) \rightarrow & \mathbb{Z}_{p} \\
(x Z(G), y Z(G)) \rightarrow & i
\end{array}
$$

where $[x, y]=c^{i}$ and c is a generator of G^{\prime}.
Firs we show that f is well defined.
Indeed if $(x Z(G), y Z(G))=\left(x^{\prime} Z(G), y^{\prime} Z(G)\right)$, then $x=x^{\prime} z_{1}, y=$ $y^{\prime} z_{2}$ where $z_{i} \in Z(G), i=1,2$. Then $[x, y]=\left[x^{\prime} z_{1}, y^{\prime} z_{2}\right]=\left[x^{\prime}, y^{\prime}\right]$. So $[x, y]=c^{i}$ implies $\left[x^{\prime}, y^{\prime}\right]=c^{i}$.
$f(x Z(G), y Z(G))=f\left(x^{\prime} Z(G), y^{\prime} Z(G)\right)$. Moreover f is a bilinear form.
$f\left(x_{1} x_{2} Z(G), y Z(G)\right)=\left[x_{1} x_{2}, y\right]=\left[x_{1}, y\right]^{x_{2}}\left[x_{2}, y\right]=\left[x_{1}, y\right]\left[x_{2}, y\right]$ as $G^{\prime} \leq Z(G)$. Moreover

$$
f\left(x_{1} x_{2} Z(G), y Z(G)\right)=i+j=f\left(x_{1} Z(G), y Z(G)\right)+f\left(x_{2} Z(G), y Z(G)\right.
$$

and for the other component

$$
f\left(x Z(G), y_{1} y_{2} Z(G)\right)=f\left(x Z(G), y_{1} Z(G)\right)+f\left(x Z(G), y_{2} Z(G)\right.
$$

Finally we show that f is alternating. Indeed if $x Z(G) \in \operatorname{Rad}(f)$, then $f(x Z(G), y Z(G))=0$ for all $y Z(G) \in G / Z(G)$ implies $[x, y]=c^{0}$ for all $y \in G$ i.e $x \in Z(G)$. Hence $x Z(G)=Z(G)$ so $\operatorname{Rad}(f)=0$ implies f is a non-degenerate bilinear form.

Now m is even follows from the linear algebra that if f is a nondegenerate alternating form on a vector space, then the dimension will be even.
3.21. Let \mathbb{Q}_{p} be the additive group of rational numbers of the form $m p^{n}$ where $m, n \in \mathbb{Z}$ and p is a fixed prime. Describe End \mathbb{Q}_{p} and Aut \mathbb{Q}_{p}.

Solution Let α be an endomorphism of \mathbb{Q}_{p}. Every element of \mathbb{Q}_{p} is of the form $m p^{n}$ for some $m, n \in \mathbb{Z}$. Let $\alpha(1)=k p^{m}$ for some $k, m \in \mathbb{Z}$ and $\alpha(0)=\alpha(1-1)=\alpha(1)+\alpha(-1)=0$ implies $\alpha(-1)=-k p^{m}$.

For any integer $n, \alpha(n)=n \alpha(1)=n k p^{m}$. Now consider $k p^{m}=$ $\alpha(1)=\alpha\left(\frac{p^{r}}{p^{r}}\right)=p^{r} \alpha\left(\frac{1}{p^{r}}\right)$ implies that $\alpha\left(\frac{1}{p^{r}}\right)=\frac{k p^{m}}{p^{r}}=\frac{\alpha(1)}{p^{r}}$.

So $\alpha\left(\frac{i}{p^{r}}\right)=\frac{i k p^{m}}{p^{r}}$ and we observe that the endomorphism α is determined by $\alpha(1)$

Conversely for any $k p^{m} \in \mathbb{Q}_{p}$, the map

$$
\begin{array}{cc}
\alpha: \mathbb{Q}_{p} & \rightarrow \mathbb{Q}_{p} \\
x & \rightarrow k p^{m} x
\end{array}
$$

is an endomorphism of the additive group \mathbb{Q}_{p}. Indeed $\alpha(x+y)=$ $k p^{m}(x+y)=k p^{m} x+k p^{m} y$. Since $k p^{m} \in \mathbb{Q}_{p}$ and $x \in \mathbb{Q}_{p}, k p^{m} x \in \mathbb{Q}_{p}$. Hence α is an endomorphism. So for any element of \mathbb{Q}_{p} we may define an endomorphism and for any endomorphism there exists an element of \mathbb{Q}_{p}.

Every automorphism is an endomorphism. So if $\alpha \in A u t(G)$, then $\alpha(1)=k p^{m}$ for some $k, m \in \mathbb{Z}$. Then
$\alpha\left(\frac{n}{p^{r}}\right)=\frac{n k p^{m}}{p^{r}}$. So

$$
\operatorname{ker}(\alpha)=\left\{\frac{n}{p^{r}}: \quad \alpha\left(\frac{n}{p^{r}}\right)=0 \quad\right\}=\{0\} .
$$

For any element $l p^{r} \in \mathbb{Q}_{p}, \quad \alpha\left(x p^{y}\right)=l p^{r}$ implies $x k p^{m} p^{y}=l p^{r}$. We need to solve x and y. In particular for $l=1, x k p^{m} p^{y}=p^{r}$ implies that $x t=p^{t}$. Then k is also a power of p and we can solve x and then solve y accordingly and we obtain automorphisms of \mathbb{Q}_{p} of the form $\alpha(1)=p^{s}$ for some $s \in \mathbb{Z}$. Moreover for any α satisfying $\alpha(1)=p^{s}$ for some $s \in \mathbb{Z}$ we have an automorphism of \mathbb{Q}_{p}. If $\alpha(1)=k p^{m}$ and $(k, p)=1 \alpha\left(x p^{m}\right)=x k p^{m+y}=l p^{r}$ where $(l, p)=1 x k=l$ and so $x=\frac{l}{k} \in \mathbb{Z}$ for any l this has a solution if $k= \pm 1$.
3.22. Prove that a periodic locally nilpotent group is a direct product of its maximal p-subgroups .

Solution Recall that a periodic locally nilpotent group is a locally finite group, i.e every finitely generated subgroup of G is a finite group. Let Σ be the set of all finite subgroups of G. If S and R are two elements in Σ, then $\langle S, R\rangle \in \Sigma$. Hence $G=\bigcup_{S \in \Sigma} S$. Since for any S in Σ the group S is finite nilpotent implies that S is a direct product of its Sylow p-subgroups.

For a fixed prime p Sylow p-subgroups of S is unique but Sylow p-subgroup of Q is also unique. By Sylow's theorem every p-subgroup of S is contained in a Sylow p-subgroup of Q but there is only one Sylow subgroup of Q implies Sylow p - subgroup of S is contained in a

Sylow p-subgroup of Q. Let $S \leq Q$ and $S, Q \in \Sigma$. Let $P=\bigcup_{S \in \Sigma} P_{S}$ where P_{S} is a unique Sylow p subgroup of S.
P is a subgroup of G. Because if $x, y \in P$, then there exist $S_{1} \in \Sigma$ and $S_{2} \in \Sigma$ such that $x \in P_{S_{1}}$ and $y \in P_{S_{2}}$ Then $\left\langle S_{1}, S_{2}\right\rangle \in \Sigma$ and $P_{\left\langle S_{1}, S_{2}\right\rangle}$ and $P_{\left\langle S_{1}, S_{2}\right\rangle} \supseteq P_{S_{1}}$ and $P_{S_{2}}$. Therefore $x, y \in P_{\left\langle S_{1}, S_{2}\right\rangle}$ and so $x y^{-1} \in P_{\left\langle S_{1}, S_{2}\right\rangle}$ and $P_{\left\langle S_{1}, S_{2}\right\rangle} \subseteq P$ hence P is a subgroup. In fact P is a p-subgroup of G. Indeed the above argument shows that every finitely generated subgroup of P is contained in a subgroup P_{S} for some $S \in \Sigma$.
P is a maximal subgroup. If there exists $P_{1}>P$, then let $x \in P_{1} \backslash P$, the element x is a p-element, hence $\langle x\rangle \in \Sigma$ Then $\langle x\rangle=P_{\langle x\rangle} \subseteq P$

The group P is normal in G, since for any $g \in G$ and $x \in P$ there exists an $S \in \Sigma$ such that $x \in P_{S}$ and the group $\langle S, g\rangle \in \Sigma$ and $x \in P_{\langle S, g\rangle}$. Since $P_{\langle S, g\rangle} \triangleleft\langle S, g\rangle$ we obtain $g^{-1} x g \in P_{\langle S, g\rangle} \subseteq P$. This is true for any prime p. Hence all maximal subgroups of G are normal for any prime p. Since every element $g \in G$ is contained in a finite group $S \in \Sigma$ and S is a direct product of its Sylow subgroups. We obtain $G=\prod_{p} P$.

4. SYLOW THEOREMS AND APPLICATIONS

4.1. Let S be a Sylow p-subgroup of the finite group G. Let $S \cap S^{g}=$ 1 for all $g \in G \backslash N_{G}(S)$. Then $\left|S y l_{p}(G)\right| \equiv 1(\bmod |S|)$.

Solution: By Sylow's theorems $\left|S y l_{p}(G)\right|=\left|G: N_{G}(S)\right|$ and any two Sylow p-subgroup of G are conjugate in G and $\left|S y l_{p}(G)\right| \equiv 1($ $\bmod p)$. The group S acts by right multiplication on the set $\Omega=$ $\left\{N_{G}(S) x \mid x \in G\right\}$ of right cosets of $N_{G}(S)$ in G. Now we look to the lengths of the orbits of S on Ω. As $S \leq N_{G}(S), N_{G}(S) S=N_{G}(S)$. Hence the orbit of S containing $N_{G}(S)$ is of length 1. $N_{G}(S) x S=$ $N_{G}(S) x$ implies $N_{G}(S) x S x^{-1}=N_{G}(S)$ i.e, $x S x^{-1} \leq N_{G}(S)$. But then $x S x^{-1}$ and S are both Sylow p-subgroups of $N_{G}(S)$, and there exists only one Sylow p-subgroup of $N_{G}(S)$. This implies that $x S x^{-1}=S$, i.e., $x \in N_{G}(S)$.

Moreover the length of the orbit of S on Ω is equal to $\left|S: \operatorname{Stab}_{S}\left(N_{G}(S)\right) x\right|$.
$N_{G}(S) x s=N_{G}(S) x$ implies $x s x^{-1} \in N_{G}(S)$. Then $s \in N_{G}\left(S^{x}\right)$.
But s is a p-element, $\langle s\rangle$ normalizes S^{x} implies $\langle s\rangle S^{x}$ is a subgroup,
S^{x} is a Sylow p-groups implies $\langle s\rangle S^{x}=S^{x}$ i.e. $s \in S^{x}$. But then $s \in S \cap S^{x}=1$. Hence $N_{G}(S) x s \neq N_{G}(S) x$ for all non-trivial cosets of $N_{G}(S)$ in G. Then the length of the orbit of S on Ω is $|S|$.
$|\Omega|=1+k|S|$, i.e, $|\Omega| \equiv 1(\bmod |S|)$.
4.2. Show that a group G of order $90=2.3^{2} .5$ is not simple.

Solution Let n_{i} denote the number of Sylow i subgroups of G. Let S_{i} denote a Sylow i subgroup of G. If $n_{5}=1$, then S_{5} is a normal subgroup of G and $\left|G / S_{5}\right|=2.3^{2}$. Hence it follows that G is soluble. If $n_{5}=6$, then consider n_{3}. If $n_{3}=1$, then $S_{3} \triangleleft G$ and $\left|G / S_{3}\right|=2.5$. So G / S_{3} is soluble and S_{3} is soluble implies that G is soluble and we are done. So assume if possible that $n_{3}=10$. If the intersection of two Sylow 3 -subgroup is the identity, then we have 8.10 elements of order 3 and 24 elements of order 5 so we obtain 105 elements which is impossible. Hence there exists Sylow 3 -subgroups P and Q such that $1 \neq P \cap Q \neq$ the groups P and Q. Moreover $|P \cap Q|=3$ and $P \cap Q \triangleleft\langle P, Q\rangle$. Then $|P Q| \geq \frac{|P||Q|}{|P \cap Q|}=\frac{81}{3}=27$. So $|\langle P, Q\rangle| \geq 27$. So if $|\langle P, Q\rangle|=45$ and so G is soluble. If $\langle P, Q\rangle=G$, then $P \cap Q \triangleleft G$ implies $|G /(P \cap Q)|=2.3 .5$ is soluble hence we obtain G is soluble.

4.3. Show that a group of order 144 is not simple.

Solution Assume that G is simple. Let S_{3} be a Sylow 3-subgroup of G. The number of Sylow 3-subgroups $n_{3}=4$ implies that $\mid G$: $N_{G}\left(S_{3}\right) \mid=4$. Then G acts on the right cosets of $N_{G}\left(S_{3}\right)$. This implies that there exists

$$
\phi: G \rightarrow \operatorname{Sym}(4)
$$

Then $G / \operatorname{Ker}(\phi)$ is isomorphic to a subgroup of $\operatorname{Sym}(4)$. But $|\operatorname{Sym}(4)|=$ 24 and $|G|=144$. Then $\operatorname{Ker}(\phi) \neq 1$. Then $G / \operatorname{Ker}(\phi)$ is soluble as $\operatorname{Sym}(4)$ is soluble.

We may assume that $n_{3}=16$. If any two Sylow 3 -subgroup intersect trivially, then $8.16=128$ hence we have only one Sylow 2 -subgroup. It follows that G is soluble. So there exists Sylow 3 -subgroups P and Q such that $1 \neq P \cap Q$. So $|P \cap Q|=3$. Then $P \cap Q \triangleleft\langle P, Q\rangle$. Then $|P Q| \geq 27$ implies that $|\langle P, Q\rangle| \geq 36$. Hence $|G /\langle P, Q\rangle|=4$. Then as in the first paragraph we obtain $G / \operatorname{Ker}(\phi)$ is isomorphic to a subgroup
of $\operatorname{Sym}(4)$ and $|\operatorname{Ker}(\phi)| \leq 36$ soluble implies G is soluble. Hence we obtain G is not simple.

4.4. Prove that

(a) every group of order $3^{2} .5 .17$ is abelian.
(b) Every group of order $3^{3} .5 .17$ is nilpotent.

Solution Let G be group of order $3^{2} .5 .17$ and let n_{p} denotes the number of Sylow p subgroups of G. By Sylow's theorem $n_{p} \equiv 1$ ($\bmod p)$ and $n_{p}=\left|G: N_{G}(P)\right|$.
$n_{17} \equiv 1(\bmod 17)$ and n_{17} divides $3^{2} .5$ implies $n_{17}=1$. This implies that Sylow 17-subgroup of G is unique and hence normal in G.

Let Q be a Sylow 5 -subgroup. Then $n_{5}=1$ or 51 and $n_{5}=\mid G$: $N_{G}(Q) \mid$ Since Sylow 17-subgroup R is normal in G we obtain $R Q \leq G$. The group Q is a Sylow 5 -subgroup of $R Q$. Since $|R Q|=5.17$ Sylow 5 -subgroup is unique in $R Q$. That implies $\left|R Q: N_{R Q}(Q)\right|=1$. i.e. $N_{R Q}(Q)=R Q$. Then $N_{R Q}(Q) \leq N_{G}(Q)$. Therefore $\left|N_{G}(Q)\right| \geq|R Q|=$ 5.17. Therefore $\left|G: N_{G}(Q)\right| \leq 3^{2}$ and n_{5} cannot be equal to 51 . It follows that $n_{5}=1$. So Sylow 5 -subgroup Q is normal in G. Let S be a Sylow 3-subgroup of G. Then $n_{3}=1$, or 85 . Since $R S \leq G$ and S is a Sylow 3 -subgroup of $R S 4,7,10$, does not divide 17. Then Sylow 3-subgroup is unique in $R S$. It follows that $R S=N_{R S}(S) \leq N_{G}(S)$. And $\left|N_{G}(S)\right| \geq 17.3^{2}$. So $n_{3}=\left|G: N_{G}(S)\right| \leq 5$. So Sylow 3 -subgroup of G is normal in G. Hence all Sylow subgroups of G are normal. Then G is nilpotent. Hence G is a direct product of its Sylow subgroups.

Since any group of order p^{2} is abelian we obtain S is an abelian group and Q and R are cyclic. Hence G is an abelian group.
(b) Every group of order $3^{3} \cdot 5 \cdot 17$ is nilpotent.

Let $G=3^{3} .5 .17$. Then $n_{17}=1$ so Sylow 17 -subgroup is normal in G, say R. By the same argument above Sylow 5 -subgroup is unique and so normal in G say Q.

Let S be a Sylow 3 -subgroup. It is unique in $R S$ hence $n_{3}=\mid G$: $N_{G}(S) \mid \leq 5$ and $n_{3} \equiv 1(\bmod 3)$ and n_{3} does not divide 5 implies S is unique. Hence G is nilpotent. Therefore $G=S \times Q \times R$ where $|S|=3^{3}$.

A group G is called a supersoluble group if G has a series of normal subgroups $N_{i} \triangleleft G$ in which each factor N_{i} / N_{i+1} in the series is cyclic for all i. The group A_{4} is soluble but not a supersoluble group.
4.5. Prove that the product of two normal supersoluble groups need not be supersoluble.

Hint: Let X be a subgroup of $G L(2,3)$ generated by

$$
a=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { and } b=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Thus $X \cong D_{8}$. Let X act in the natural way on $A=\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ and write $G=X \ltimes A$. Show that G is not supersoluble. Let L and M be the disjoint Klein 4-subgroups of X and consider $H=L A$ and $K=M A$.

Solution Observe that $|a|=4,|b|=2$, and $b^{-1} a b=a^{-1}$. Then $|X /\langle a\rangle|=2, \quad|X|=8$. Let $D_{8}=\langle x, y\rangle$. Then

$$
\begin{aligned}
\phi: & D_{8} \rightarrow X \\
& x \rightarrow a \\
& y \rightarrow b
\end{aligned}
$$

By Von Dyck's theorem ϕ is a homomorphism. Since ϕ is onto, $|X|=8$, we obtain ϕ is an isomorphism.

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{i}{j}=\binom{-j}{i}
$$

So $G=X \ltimes A$ and $|G|=72$. Moreover G has a series $G \triangleright A \triangleright 1$, $G / A \cong D_{8}$.

If G is supersoluble, then there exists a normal subgroup of G contained in A. Let J be such a normal subgroup of order 3. Arbitrary element of J is of the form $\binom{a}{b}$. Then J is invariant under the action of X. Let

$$
J=\left\{\binom{0}{0},\binom{a}{b},\binom{-a}{-b}\right\}
$$

Then

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{a}{b}=\binom{-b}{a} \notin J
$$

Therefore G is not supersoluble.
Let

$$
L=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & -1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\}
$$

and

$$
M=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)\right\}
$$

Then $\langle L, M\rangle=X=L M$ and $H=L A, K=M A$ implies $|L A|=$ $|M A|=36$. The groups H, K are normal in G hence $H K=G$ since $H K \geq\langle A, L, M, X\rangle=G$. The groups H, K are supersoluble.

$$
J=\left\{\binom{0}{0},\binom{a}{a},\binom{-a}{-a}\right\}
$$

J is invariant under the action of L.
$H \triangleright L_{1} \triangleright A \triangleright J \triangleright 1$ so L is supersoluble.

$$
B=\left\{\binom{0}{0},\binom{1}{0},\binom{-1}{0}\right\}
$$

is invariant under the action of $M . B \triangleleft K$
$K \triangleright K_{1} \triangleright A \triangleright B \triangleright 1$. Hence K is supersoluble.
4.6. Let $G=G L(2,3)$ and $G_{1}=S L(2,3)$.
(a) Find $|G|$ and $\left|G_{1}\right|$. Moreover show that $\left|G / G_{1}\right|=2$ and $|Z(G)|=$ 2 and $Z(G) \leq G_{1}$
(b) Show that $G_{1} / Z(G) \cong \operatorname{Alt}(4)$ and that G_{1} has a normal Sylow 2-subgroup say J.
(c) Show that J is nonabelian. Deduce that $G_{1}^{\prime}=J$.
(d) Deduce that $G^{\prime}=G_{1}$. Hence G_{1} has derived length 3 and G has derived length 4.

Solution (a) $|G|=\left(3^{2}-1\right)\left(3^{2}-3\right)=8.6=48$. Consider determinant homomorphism det : $G \rightarrow Z_{3}^{*}=\{1,-1\}$. Then $\operatorname{Ker}($ det $)=G_{1}$ and $G / G_{1} \cong\{1,-1\}$. Hence $\left|G_{1}\right|=24=3.2^{3}$.

$$
Z(G)=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
-1 & 0 \\
0 & -1
\end{array}\right)\right\} \leq G_{1}
$$

(b) Sylow 3-subgroup of G (and G_{1}) has order 3. Then

$$
U_{1}=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), x \in \mathbb{Z}_{3}\right\}, \quad \text { and } U_{2}=\left\{\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right), y \in \mathbb{Z}_{3}\right\}
$$

are Sylow 3 -subgroups. $n_{3} \equiv 1(\bmod 3)$ and $n_{3}=\left|G_{1}: N_{G_{1}}\left(U_{1}\right)\right|$. Since the number of Sylow 3-subgroups is greater than or equal to 2 and $n_{3}=\left|G_{1}: N_{G_{1}}\left(U_{1}\right)\right|$ we obtain $n_{3}=4$ and $\left|N_{G_{1}}\left(U_{1}\right)\right|=6$. Since $Z(G) \leq N_{G_{1}}\left(U_{1}\right)$ we obtain $N_{G_{1}}\left(U_{1}\right)$ is a cyclic subgroup of order 6 as Sylow 2-subgroup is in the center and any group of order 6 is either isomorphic to S_{3} or cyclic group of order 6 . Then G_{1} acts by right multiplication on the set of right cosets of $N_{G_{1}}\left(U_{1}\right)$ in G_{1}. The homomorphism $\phi: G_{1} \rightarrow \operatorname{Sym}(4)$ gives; $G_{1} / \operatorname{Ker} \phi$ is isomorphic to a subgroup of $\operatorname{Sym}(4)$. Then $\operatorname{Ker} \phi=\cap_{x \in G_{1}} N_{G_{1}}\left(U_{1}\right)^{x}$. As $Z(G) \leq$ $\operatorname{Ker} \phi$ and

$$
N_{G_{1}}\left(U_{1}\right) \cap N_{G_{2}}\left(U_{2}\right)=\left\{\left(\begin{array}{cc}
a & c \\
0 & a
\end{array}\right)\right\} \cap\left\{\left(\begin{array}{cc}
x & 0 \\
z & x
\end{array}\right)\right\} \leq Z\left(G_{1}\right)
$$

we obtain $Z\left(G_{1}\right)=\operatorname{Ker} \phi$.
$G_{1} / Z\left(G_{1}\right)$ is isomorphic to a subgroup of $\operatorname{Sym}(4)$. Since $\operatorname{Sym}(4)$ has only one subgroup of order 12 we obtain $G_{1} / Z\left(G_{1}\right) \cong \operatorname{Alt}(4)$.

The group Alt(4) has a normal subgroup of order 4, we have $J / Z\left(G_{1}\right) \triangleleft$ $G_{1} / Z\left(G_{1}\right) \cong \operatorname{Alt}(4)$ and we obtain $\left|J / Z\left(G_{1}\right)\right|=4$ and $|J|=8$, Sylow 2-subgroup J of G_{1} is a normal 2-subgroup.

Moreover $J / Z(G)$ char $G_{1} / Z(G) \triangleleft G / Z(G)$ implies $J / Z(G) \triangleleft G / Z(G)$. Hence $J \triangleleft G$. In fact

$$
\begin{gathered}
J=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right),\right. \\
\left.\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right),\left(\begin{array}{ll}
-1 & -1 \\
-1 & 1
\end{array}\right),\left(\begin{array}{ll}
-1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & -1 \\
-1 & -1
\end{array}\right),\left(\begin{array}{ll}
-1 & 0 \\
0 & -1
\end{array}\right)\right\}
\end{gathered}
$$

(c) Observe that

$$
\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right) \neq\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

So J is non-abelian.

For $G_{1}^{\prime}=J ;$ as $J \triangleleft G_{1}$ and $G_{1} / J \cong \mathbb{Z}_{3}$ we obtain $G_{1}^{\prime} \leq J$ and $J^{\prime} \neq 1$ as J is non-abelian. Then $J / Z\left(G_{1}\right) \leq G_{1} / Z\left(G_{1}\right) \cong \operatorname{Alt}(4)$. Then J is non-abelian of order 8 , implies that $J^{\prime \prime}=1$ and $J^{\prime} \leq Z\left(G_{1}\right)$. Recall that $\left(1 \triangleleft V \triangleleft \operatorname{Alt}(4), \quad \operatorname{Alt}(4)^{\prime \prime}=1\right)$.

The order $\left|G_{1}^{\prime} Z\left(G_{1}\right) / Z\left(G_{1}\right)\right|=4$ implies $G_{1}^{\prime} \neq 1$ and $G_{1}^{\prime \prime} \leq Z\left(G_{1}\right)$. So $G_{1}^{(3)}=1$. If $G_{1}^{\prime}=J$ we are done. Now $\left|G_{1}^{\prime}\right|=2$ or $\left|G_{1}^{\prime}\right|=4$. $\left|G_{1}^{\prime}\right|=2$ implies G_{1} is nilpotent hence Sylow 3-subgroup is unique which is impossible as we already found two distinct Sylow 3-subgroup.

If $\left|G_{1}^{\prime}\right|=4$, then Sylow 2-subgroup is a quaternion group of order 8 implies that G_{1}^{\prime} is cyclic. Hence $\left|\operatorname{Aut}\left(G_{1}^{\prime}\right)\right|=2$. Therefore $G_{1} / C_{G_{1}}\left(G_{1}^{\prime}\right)$ is isomorphic to a subgroup of $\operatorname{Aut}\left(G_{1}^{\prime}\right)$. Since $N_{G_{1}}\left(G_{1}^{\prime}\right)=G_{1}$ and 3 divides $\left|C_{G}\left(G_{1}^{\prime}\right)\right|$ we obtain Sylow 3 -subgroup is unique in $C_{G_{1}}\left(G_{1}^{\prime}\right) \triangleleft G_{1}$. Then Sylow 3 -subgroup is unique in G_{1} This is a contradiction. Hence $G_{1}^{\prime}=J$.

As $\left[1+x e_{12}, y e_{11}-y e_{22}\right]=1-2 x e_{12}$ and $\left[1+x e_{21}, y e_{11}-y e_{22}\right]=$ $1+2 x e_{21}$ we obtain U_{1} and U_{2} are contained in G^{\prime}. And hence the subgroup $\left\langle U_{1}, U_{2}\right\rangle \leq G^{\prime}$. Then the elements of the form

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right)=\left(\begin{array}{ll}
1+x y & x \\
y & 1
\end{array}\right) \in G^{\prime}
$$

In particular for $x=y=1$ the elements

$$
a=\left(\begin{array}{ll}
-1 & 1 \\
1 & 1
\end{array}\right) \in G^{\prime}
$$

$|a|=4$ and for $x=y=-1$

$$
b=\left(\begin{array}{ll}
-1 & -1 \\
-1 & 1
\end{array}\right) \in G^{\prime}
$$

is an element of order 4. Moreover a and b are contained in J. Since these elements generate J we obtain $J \leq G^{\prime}$. Hence 3 divides $\left|G^{\prime}\right|$ and 8 divides $\left|G^{\prime}\right|$ and $G^{\prime} \leq G_{1}$ implies that $\left|G^{\prime}\right|=24$ and $G^{\prime}=G_{1}$.
4.7. Let G be a finite group with trivial center. If G has a nonnormal abelian maximal subgroup A, then show that $G=A N$ and $A \cap N=1$ for some elementary abelian p-subgroup N which is minimal normal in G. Also A must be cyclic of order prime to p.

Solution Let A be an abelian maximal subgroup of G such that A is not normal in G. Then for any $x \in G \backslash A$. So we obtain $\langle A, x\rangle=G$. Therefore for any $x \in G \backslash A$, we have $A^{x} \neq A$ otherwise A would be normal in G. But then consider $A \cap A^{x}$. Since $A^{x} \neq A$ and A is maximal, $\left\langle A, A^{x}\right\rangle=G$. If $w \in A \cap A^{x}$, then $C_{G}(w) \geq\left\langle A, A^{x}\right\rangle=G$. Since A is abelian and A^{x} is isomorphic to A so that A^{x} is also maximal and abelian in G. But $C_{G}(w)=G$ implies $w \in Z(G)=1$. Hence $A \cap A^{x}=1$. This shows that A is Frobenius complement in G. Hence there exists a Frobenius kernel N such that $G=A N$ and $A \cap N=1$. By Frobenius Theorem, Frobenius kernel is a normal subgroup of G. So $G=A N$ implies $G / N=A N / N=A / A \cap N$, hence G is soluble. It follows from the fact that minimal normal subgroup of a soluble group is elementary abelian p-group for some prime p, N is an elementary abelian p-group.

If there exists a normal subgroup M in G such that $G=A M$ and $M \leq N$. Then $A \cap M \leq A \cap N=1$. Moreover $|G|=\frac{|A||M|}{|A \cap M|}=\frac{|A||N|}{|A \cap N|}=$ $|A||M|=|A||N|$. Hence $|M|=|N|$, this implies $M=N$. Hence N is minimal normal subgroup of G.

Since N is elementary ableian p-group if A contains an element g of order power of p, then the group $H=N\langle g\rangle$ is a p-group. Hence $Z(H) \neq 1$. Let $x \in Z(H)$. If $x \in A$, then $C_{G}(x) \geq\langle A, N\rangle=G$. This implies that $x \in Z(G)=1$ which is impossible. So $x \in G \backslash A$. Then $\langle g\rangle \cap\langle g\rangle^{x} \leq A \cap A^{x}=1$. But $\langle g\rangle \cap\langle g\rangle^{x}=\langle g\rangle$. Hence $(|A|, p)=1$. i.e. $p \nmid|A|$.

Claim: A is cyclic: By Frobenius Theorem, Sylow q-subgroups of Frobenius complement A are cyclic if $q>2$ and cyclic or generalized quaternion if $p=2$ (Burnside Theorem, Fixed point free Automorphism in $[\mathbf{1}]$). Since A is abelian Sylow subgroup can not be generalized quaternion group. Hence all Sylow subgroups of A are cyclic. This implies that A is cyclic.
4.8. Let G be a finite group. If G has an abelian maximal subgroup, then show that G is soluble with derived length at most 3.

Solution Let A be an abelian maximal subgroup of G. If A is normal in G, then for any $x \in G \backslash A$, we have $A\langle x\rangle=G$. Hence $G / A \cong$ $A\langle x\rangle / A \cong x\rangle /\langle x\rangle \cap A$. Then G / A is cyclic and A is abelian implies $G^{\prime \prime}=1$ and hence G is soluble. Now consider $Z(G)$. If $Z(G)$ is not a subgroup of A, then $A Z(G)=G$. This implies that G is abelian. Hence we may assume that $Z(G)$ is a subgroup of A. Then $A \cap A^{x} \geq Z(G)$, on the other hand if $w \in A \cap A^{x}$, then $C_{G}(w) \geq\left\langle A, A^{x}\right\rangle=G$. Hence $w \in Z(G)$. It follows that $A \cap A^{x}=Z(G)$.

Now, consider the group $\bar{G}=G / Z(G)$. Then \bar{G} has an abelian maximal subgroup \bar{A}. Then for any $\bar{x} \in \bar{G} \backslash \bar{A}$. We obtain $\bar{A} \cap \bar{A}^{x}=$ $\overline{1}$. Hence \bar{G} is a Frobenius group with Frobenius complement \bar{A} and Frobenius kernel \bar{N}. Then $\bar{G}=G / Z(G)=(A / Z(G))(N / Z(G))$. The group \bar{G} is soluble hence G is soluble. As in [1] Lemma 2.2.8 \bar{N} is an elementary abelian p-group and \bar{N} is a minimal normal subgroup of \bar{G}.

Since $\bar{G}=\bar{A} \bar{N}$ and A is abelian, we obtain $\bar{G}^{\prime} \leq \bar{N}$ and $\bar{G}^{\prime \prime} \leq Z(\bar{G})$ as \bar{N} is abelian. Hence $(G / Z(G))^{\prime} \leq N / Z(G)$ and $G^{\prime \prime} Z(G) / Z(G) \leq$ $Z(G) / Z(G)$. i.e $G^{\prime \prime} \leq Z(G)$. Hence $G^{(3)}=1$.
4.9. Let α be a fixed point free automorphism of a finite group G. If α has order a power of a prime p, then p does not divide $|G|$. If $p=2$, infer via the Feit-Thompson Theorem that G is soluble.

Solution: Recall that a fixed point free automorphism α stabilizes a Sylow p-subgroup of G. The point is $P_{0}^{\alpha}=P_{0}^{g}$ for some $g \in G$ where P_{0} is a Sylow p-subgroup of G. Since the map

$$
\begin{array}{cc}
G \rightarrow & G \\
x \rightarrow & x^{-1} x^{\alpha}
\end{array}
$$

is a bijective map we may write every element $g=h^{-1} h^{\alpha}$ for some $h \in G$. Let $P=P_{0}^{h^{-1}}$. Then

$$
P^{\alpha}=\left(\left(P_{0}^{h^{-1}}\right)^{\alpha}=\left(P_{0}^{\alpha}\right)^{\left(h^{-1}\right)^{\alpha}}=\left(P_{0}^{g}\right)^{\left(h^{-1}\right)^{\alpha}}=\left(P_{0}^{h^{-1} h^{\alpha}}\right)^{\left(h^{-1}\right)^{\alpha}}=P^{h^{\alpha}\left(h^{-1}\right)^{\alpha}}=P\right.
$$

So α becomes an automorphism of P. Then let $H=P \rtimes\langle\alpha\rangle$. If $\langle\alpha\rangle$ is a p-group, then H is a p-group. So $Z(H) \neq 1$. This implies that if $1 \neq Z(H)$, then $z^{\alpha}=z$ which is impossible by fixed point free action. Hence α can not be a power of a prime dividing $|G|$. i.e. $(|\alpha|,|G|)=1$.

So if a group G has a fixed point free automorphism of order 2^{n} for some n, then $(2,|G|)=1$. Hence by Feit-Thompson theorem $|G|$
is odd and G is soluble. It follows that a group has a fixed point free automorphism α of order power of a prime 2 is soluble.
4.10. If X is a nontrivial fixed point free group of automorphisms of a finite group G, then $X \ltimes G$ is a Frobenius group.

Solution: We need to show that for any

$$
\alpha \in(X \ltimes G) \backslash X, \quad X \cap X^{\alpha}=1
$$

Let $\alpha=x g$ where $g \neq 1$ and assume that $w \in X \cap X^{\alpha}=X \cap$ $X^{x g}=X \cap X^{g}$. Then $w=x=y^{g}$ for some $x, y \in X$. The element $y y^{-1} g^{-1} y g=x=w \in X$ implies that $y^{-1} g^{-1} y g=y^{-1} x \in X$ as $x, y \in X$. Moreover $y\left(g^{-1}\right)^{y} g=x \in G X$. Then $\left(g^{-1}\right)^{y} g \in X \cap G=1$. Hence $\left(g^{-1}\right)^{y} g=1$ which implies $\left(g^{-1}\right)^{y}=g^{-1}$. But y is a fixed point free automorphism, this implies that $g=1$ which is a contradiction.

Hence $X \cap X^{\alpha}=1$ for all $\alpha \in(X \ltimes G) \backslash X$. It follows that $X \ltimes G$ is a Frobenius group with Frobenius Kernel G and Frobenius complement X.

4.11. A soluble p-group is locally nilpotent.

Solution: A group G is called a p-group if every element of G has order a power of a fixed prime p. A periodic soluble group is a locally finite group. One can see this by induction on the derived length n of G. For $n=1$, then G is a periodic abelian group which is clearly locally nilpotent. Assume $n>1$ and let S be a finitely generated subgroup of G. Then $S G^{\prime} / G^{\prime}$ is finite as it is abelian and finitely generated p group. Moreover $S G^{\prime} / G^{\prime} \cong S / S \cap G^{\prime}$. As S is finitely generated and $S /\left(S \cap G^{\prime}\right)$ is finite we have $S \cap G^{\prime}$ is a finitely generated subgroup of the p-group G^{\prime}. By induction assumption $S \cap G^{\prime}$ is finite and $S / S \cap G^{\prime}$ is finite implies S is finite. It follows that G is locally finite.

A locally finite p-group is locally nilpotent because every finitely generated subgroup is a finite p-group. Hence it is nilpotent.
4.12. A finite group has a fixed-point-free automorphism of order 2 if and only if it is abelian and has odd order.

Solution: Let G be an abelian group of odd order.

$$
\alpha: G \rightarrow G
$$

$$
x \rightarrow x^{-1}
$$

α is a fixed-point-free automorphism of G. Indeed if $\alpha(x)=x$ implies $x=x^{-1}$. Then $x^{2}=1$. Hence there exists a subgroup of order 2 . This implies $|G|$ is even. Hence $x=1$.

Conversely let α be a fixed point free automorphism of a finite group G. Then the map

$$
\begin{aligned}
\beta: G & \rightarrow G \\
x & \rightarrow x^{-1} \alpha(x)
\end{aligned}
$$

is a $1-1$ map. Indeed $\beta(x)=\beta(y)$ implies $x^{-1} \alpha(x)=y^{-1} \alpha(y)$. Then $y x^{-1}=\alpha(y) \alpha(x)^{-1}=\alpha\left(y x^{-1}\right)$. Since α is fixed-point-free we obtain $x=y$. Now, for any $g \in G$, there exists $x \in G$ such that $g=x^{-1} \alpha(x)$. Then $\alpha(g)=\alpha\left(x^{-1} \alpha(x)\right)=\alpha(x)^{-1} \alpha^{2}(x)=\alpha(x)^{-1} x=g^{-1}$. Now $\alpha\left(g_{1} g_{2}\right)=\left(g_{1} g_{2}\right)^{-1}=\alpha\left(g_{1}\right) \alpha\left(g_{2}\right)=g_{1}^{-1} g_{2}^{-1}=\left(g_{1} g_{2}\right)^{-1}=g_{2}^{-1} g_{1}^{-1}$. It follows that $g_{1} g_{2}=g_{2} g_{1}$. Hence G is an abelian group.

Moreover if there exists an element y of order 2, then $\alpha(y)=y^{-1}=$ y. Which is impossible as α is a fixed-point-free automorphism of order 2.
4.13. Let G be a finite Frobenius group with Frobenius kernel K. If $|G: K|$ is even, prove that K is abelian and has odd order.

Solution: Frobenius kernel K is a normal subgroup of G. Let X be a Frobenius complement. Then $G=K X$ and $K \cap X=1$. Since order of G / K is even, we obtain $|G / K|=|X K / K|=|X / X \cap K|=|X|$. Then there exists an element $x \in X$ of order 2 . Then

$$
\left.\begin{array}{rl}
\alpha_{x} & : K
\end{array}\right) K K
$$

is an automorphism of K. Moreover $\left|\alpha_{x}\right|=2$ and α_{x} is fixed-point-free.
If $x^{-1} k x=k$ for some $k \in K$. Then $k x k^{-1}=x$ and $X \cap X^{k} \neq 1$ where $k \in G \backslash X$. Which is impossible. Hence α_{x} is a fixed point free automorphism of K of order 2 . Then by question $4.12 K$ is abelian of odd order.

Recall that if G is a finite group and p_{1}, \cdots, p_{k} denote the distinct prime divisors of $|G|$ and Q_{i} is a Hall p_{i}^{\prime}-subgroup of G. Then the set $\left\{Q_{1}, \cdots, Q_{k}\right\}$ is called a Sylow system of G. By Hall's theorem every
soluble group has a Sylow-system. $N=\bigcap_{i=1}^{k} N_{G}\left(Q_{i}\right)$ is called system normalizer of G.
4.14. Locate the system normalizers of the groups:
(a) S_{3}
(b) A_{4}
(c) S_{4}
(d) $S L(2,3)$

Solution:

(a) S_{3} is soluble and $H_{1}=\{(1),(12)\}, H_{2}=\{1,(13)\}, H_{3}=$ $\{1,(23)\}$. are Hall 2-subgroups of S_{3} or Hall 3^{\prime}-subgroup of S_{3}, and $A_{3}=\{1,(123),(132)\}$ is a Hall 2^{\prime}-subgroup or Hall 3 -subgroup of S_{3}. Then $\left\{H_{1}, A_{3}\right\}$ is a Sylow system of G. $N_{S_{3}}\left(H_{i}\right) \cap N_{S_{3}}\left(A_{3}\right)=H_{i} \cap S_{3}=$ H_{i} system normalizer of $S_{3} i=1,2,3$.
(b) Observe that $V=\{1,(12)(34),(13)(24),(14)(23)\}$ is a Hall 2subgroup or Hall 3^{\prime}-subgroup of A_{4}. The group $V \triangleleft A_{4}$, hence there is only one Hall 2 -subgroup of A_{4}.

$$
\begin{gathered}
H_{1}=\{(1),(123),(132)\}, H_{2}=\{(1),(124),(142)\}, \\
H_{3}=\{(1),(134),(143)\}, H_{4}=\{1,(234),(243)\}
\end{gathered}
$$

are Hall 3 -subgroups or Hall 2^{\prime}-subgroups of A_{4}.
Since A_{4} has no subgroup of index 2 and H_{i} is not normal in A_{4} we obtain $N_{A_{4}}\left(H_{i}\right)=H_{i} . \quad\left\{H_{i}, V\right\}$ is Sylow System of A_{4} and $N_{A_{4}}\left(H_{i}\right) \cap N_{A_{4}}(V)=H_{i} \cap A_{4}=H_{i}$, System normalizers of A_{4}.
(c) S_{4} is a soluble group of derived length 3 . Sylow 2-subgroup becomes Hall 2-subgroup or equivalently Hall 3 '-subgroup.

Sylow 3-subgroup of S_{4} becomes Hall 3-subgroup equivalently Hall 2^{\prime}-subgroup of S_{4}. Let H_{1} be a Sylow 2-subgroup of order 8 in S_{4}. Then H_{1} is not normal in S_{4}. Hence $N_{S_{4}}\left(H_{1}\right)=H_{1}$. There are 4 Sylow 3-subgroups. Hence $K_{1}=\{1,(123),(132)\}$ as in A_{4} every 3cycle generates a Sylow 3-subgroup of S_{4}. But $\left|S_{4}: N_{S_{4}}\left(K_{i}\right)\right|=4$ implies $\left|N_{S_{4}}\left(K_{i}\right)\right|=6$.

Namely $N_{S_{4}}\left(K_{1}\right) \cong S_{3}$. Similarly $N_{S_{4}}\left(K_{i}\right) \cong S_{3}$. For K_{1} we obtain $N_{S_{4}}\left(K_{1}\right)=\{1,(13),(12),(23),(123),(132)\},\left\{K_{1}, H_{1}\right\}$ is a Sylow System. Since $V \triangleleft S_{4}$ every Sylow 2-subgroup contains V.

$$
H_{1}=\{1,(12),(34),(13)(24),(14)(23),(23),(1342),(1243),(14)\}
$$

$N_{S_{4}}\left(H_{1}\right) \cap N_{S_{4}}\left(K_{1}\right)=H_{1} \cap S_{3}=\{(1),(23)\}$ system normalizer of S_{4}.
(d)

$$
\begin{gathered}
|S L(2,3)|=\frac{\left(3^{2}-1\right)\left(3^{2}-3\right)}{2}=\frac{8 \cdot 6}{2}=24 \\
H_{1}=\left\{\left.\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] \right\rvert\, x \in \mathbb{Z}_{3}\right\} \quad \text { is a Sylow 3-subgroup } \\
H_{2}=\left\{\left.\left[\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right] \right\rvert\, y \in \mathbb{Z}_{3}\right\} \quad \text { is a Sylow 3-subgroup } \\
H_{3}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], y=\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right], y^{2}=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]\right\}
\end{gathered}
$$

$$
\text { is a Sylow 3-subgroup of } S L(2,3) \text {. }
$$

Then the number of Sylow 3 -subgroups is 4 .

$$
Z(S L(2,3))=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right\}
$$

$N_{S L(2,3)}\left(H_{1}\right) \geq\left\langle Z(S L(2,3)), H_{1}\right\rangle=H_{1} \times Z(S L(2,3))$
The index $\left|S L(2,3): N_{S L(2,3)}\left(H_{1}\right)\right|=4$ implies $\left|N_{S L(2,3)}\left(H_{1}\right)\right|=6$. So $N_{S L(2,3)}\left(H_{1}\right)$ is a cyclic group of order 6 and generated by the element

$$
t=\left[\begin{array}{ll}
-1 & 1 \\
0 & -1
\end{array}\right]
$$

All Sylow 2-subgroup contains $Z(S L(2,3))$. Let S be a Sylow 2subgroup of order 8. Then $N_{S L(2,3)}(S)=S L(2,3)$ since by Question $4.6 S$ is normal in $S L(2,3),\left\{S, H_{1}\right\}$ is a Sylow system.

$$
N_{S L(2,3)}(S) \cap N_{S L(2,3)}\left(H_{1}\right)=Z(S L(2,3)) \times H_{1} .
$$

So $Z(S L(2,3)) \times H_{1}$ is a System normalizer of $S L(2,3)$.
4.15. Let G be a finite soluble group which is not nilpotent but all of whose proper quotients are nilpotent. Denote by L the last term of the lower central series. Prove the following statements:
(a) L is minimal normal in G.
(b) L is an elementary abelian p-group.
(c) there is a complement $X \neq 1$ of L which acts faithful on L
(d) the order of X is not divisible by p.

Solution: (a) Let $\gamma_{1}(G) \geq \gamma_{2}(G) \geq \cdots>\gamma_{k}(G)=L \neq 1$. Since G is not nilpotent, there exists k such that $L=\gamma_{k}(G)=\gamma_{k+1}(G) \neq 1$. The group L is a normal subgroup of G as each term in the lower central series is a characteristic subgroup of G. If there exists a normal subgroup $N \triangleleft G$, and $N \leq L$, then by assumption G / N is a nilpotent group. Hence $\gamma_{n}(G / N)=1$. Equivalently $\gamma_{n}(G / N) \leq N$. But this implies $N / N=\gamma_{n}(G / N)=\gamma_{n}(G) N / N=L / N$. This implies $L=N$ contradiction. Hence L is a minimal normal subgroup of G.
(b) For a finite soluble group minimal normal subgroup is an elementary abelian p-group for some prime p.
(c) Now by Gaschutz-Schenkman, Carter Theorem, if G is a finite soluble group and L is the smallest term of the Lower central series of G. If N is any system normalizer in G, then $G=N L$. If in addition L is abelian, then also $N \cap L=1$ and N is a complement of L.

Now by the above theorem L has a complement N where N is a system normalizer in G. For solvable groups system normalizer exists. Hence there exists X such that $G=X L$. By the same theorem since L is abelian we obtain $X \cap L=1$, so X is a complement of L in G.

Claim X acts faithfully on L.
Since L is a minimal normal subgroup of G, the group X acts on L by conjugation. Let K be the kernel of the action of X on L. Then $K \triangleleft X$ and K commutes with L. Hence $N_{G}(K) \geq X L=G$. It follows that K is normal in G. Then G / K is nilpotent by assumption. Hence $L=\gamma_{n}(G) \leq K \leq X$. But $X \cap L=1$. Hence $K=1$ and X acts on L faithfully.
(d) Assume that $p||X|$. Let P be a Sylow p-subgroup of G containing L. Then for $x \in P \backslash L$ and $x \in X,\langle x\rangle$ acts an L faithfully. Consider $T=L\langle x\rangle$. Then T is a p-group $Z(T) \neq 1$. Let $1 \neq w \in Z(T), w=\ell x^{i}$ for some i. Then for any $g \in L, g^{\ell x^{i}}=g^{x^{i}}=g \quad$ as $\quad L \quad$ is abelian.

Then x^{i} acts trivially on L implies $x^{i}=1$. This implies $Z(T) \leq L$. X system normalizer is nilpotent, implies that $G=X L$.

Let $X=P_{1} \times P_{2} \times \cdots \times P_{n}$, where P_{i} 's are Sylow p_{i}-subgroups of X. Let $L P_{1}=P$ Sylow p-subgroup of G.

Since $G=L X$ and $P_{1} \triangleleft X$ we obtain $N_{G}(P)=G$ so $P \triangleleft G$. Then $Z(P)$ char $P \triangleleft G$ so $Z(P) \triangleleft G$. Then $G / Z(P)$ is nilpotent hence $L=\gamma_{n}(G) \leq Z(P)$. So $\left[L, P_{1}\right]=1$. Since X normalizes P_{1} and [$\left.L, P_{1}\right]=1$ we obtain $P_{1} \triangleleft G$. If $P_{1} \neq 1$, then G / P_{1} is nilpotent. Hence $L=\gamma_{n}(G) \leq P_{1}$ but $L \cap P_{1}=1$. Hence $L \leq P_{1}$ is impossible. So $P_{1}=1$.
4.16. Write H asc K to mean that H is an ascendant subgroup of a group K. Establish the following properties of ascendant subgroups.
(a) H asc K and K asc G imply that H asc G.
(b) H asc $K \leq G$ and L asc $M \leq G$ imply that $H \cap L$ asc $K \cap M$
(c) If H asc $K \leq G$ and α is a homomorphism from G, then H^{α} is asc K^{α}. Deduce that $H N$ asc $K N$ if $N \triangleleft G$.

Solution: (a) H asc K implies, there exists a series $H=H_{0} \triangleleft$ $H_{1} \triangleleft \cdots \triangleleft H_{\alpha}=K$ for some ordinal α. Similarly there exists an ordinal β such that $K=K_{0} \triangleleft K_{1} \triangleleft \cdots \triangleleft K_{\beta}=G$. Then

$$
H=H_{0} \triangleleft H_{1} \cdots \triangleleft H_{\alpha}=K \triangleleft K_{\alpha+1} \triangleleft \cdots \triangleleft K_{\alpha+\beta}=G
$$

be an ascending series of H in G.
(b) Let $L=L_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft L_{\beta}=M$ be a series of L in M. Then

$$
L \cap H=L_{0} \cap H \triangleleft L_{1} \cap H \triangleleft \cdots \triangleleft L_{\beta} \cap H=M \cap H
$$

Moreover

$$
M \cap H \triangleleft M \cap H_{1} \triangleleft \cdots \triangleleft M \cap H_{\alpha}=M \cap K
$$

Hence $L \cap H$ asc $M \cap K$.
(c) If H asc K, then there exists an ordinal γ such that $H=$ $H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{\gamma}=K$. Then $H^{\alpha} \leq H_{1}^{\alpha} \leq \cdots \leq H_{\gamma}^{\alpha}=K^{\alpha}$ is an ascending series of H^{α} in K^{α}.
$H N=H_{0} N \triangleleft H_{1} N \triangleleft \cdots \triangleleft H_{\gamma} N=K N$. Hence $H N$ asc $K N$. Observe that $H \triangleleft H_{1}$ and $N \triangleleft G$ implies $H N \triangleleft H_{1} N$
4.17. A group is called radical if it has an ascending series with locally nilpotent factors. Define the upper Hirsch Plotkin series of a group G to be the ascending series $1=R_{0} \leq R_{1} \leq \ldots$ in which $R_{\alpha+1} / R_{\alpha}$ is
the Hirsch-Plotkin radical of G / R_{α} and $R_{\lambda}=\bigcup_{\alpha \backslash \lambda} R_{\alpha}$ for limit ordinals λ. Prove that the radical groups are precisely those groups which coincide with a term of their upper Hirsch-Plotkin series.

Solution: It is clear by definition of a radical group that, if a group coincides with a term of its upper Hirsch Plotkin series then it is an ascending series with locally nilpotent factors. Hence it is a radical group.

Conversely assume that G is a radical group with an ascending series $1 \leq H_{0} \leq H_{1} \leq \cdots \leq H_{\beta}=G$ such that $H_{i} \triangleleft H_{i+1}$ and H_{i+1} / H_{i} is locally nilpotent.

Recall from $[\mathbf{1}, 12.14]$ that if G is any group the Hirsch-Plotkin radical contains all the ascendent locally nilpotent subgroups.

Let R_{i} denote $i^{\text {th }}$ term in Hirsch-Plotkin series of G.
Claim: $H_{i} \leq R_{i}$ for all i. For $i=0$ clear.
Assume that $H_{i-1} \leq R_{i-1}$ we know that H_{i} / H_{i-1} is locally nilpotent. Then $H_{i} R_{i-1} / R_{i-1} \leq G / R_{i-1}$. Moreover $H_{i} R_{i-1} / R_{i-1}$ is an ascendent subgroup of G / R_{i-1} and $H_{i} R_{i-1} / R_{i-1}$ is locally nilpotent. Hence by $[\mathbf{1}, 12.1 .4]$ it is contained in the Hirsch Plotkin radical of G / R_{i-1} i.e. $H_{i} R_{i-1} \leq R_{i}$. It follows that $H_{i} \leq R_{i}$.
4.18. Show that a radical group with finite Hirsch-Plotkin radical is finite and soluble.

Solution: Let H be a Hirsch-Plotkin radical of a radical group G. By previous question $C_{G}(H)=Z(H)$. Now consider $G / C_{G}(H)=$ $G / Z(H)$ which is isomorphic to a subgroup of Aut H. If H is finite, then Aut H is finite. Hence $G / Z(H)$ is a finite group. Hence $G / Z(H)$ is finite and H is finite implies G is a finite group. Then $1 \leq H_{1} \leq H_{2} \leq \cdots \leq H_{n}=G$ implies G is soluble as $\gamma_{k}\left(H_{n}\right) \leq H_{n-1}$. So $G^{(k)} \leq H_{n-1}$ and so on.
4.19. $T(2, \mathbb{Z}) \cong D_{\infty} \times \mathbb{Z}_{2}$ where D_{∞} is the infinite dihedral group.

Solution:

$$
T(2, \mathbb{Z})=\left\{\left.\left[\begin{array}{cc}
\mp 1 & t \\
0 & \mp 1
\end{array}\right] \right\rvert\, t \in \mathbb{Z}\right\}
$$

$C=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\right\}$ is equal to the center of $T(2, \mathbb{Z})$.
Indeed $\left[\begin{array}{ll}a & c \\ 0 & b\end{array}\right]$ is in the $Z(T(2, \mathbb{Z}))$

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & c \\
0 & b
\end{array}\right]\left[\begin{array}{cc}
1 & t \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & t \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
a & c \\
0 & b
\end{array}\right]} \\
\Rightarrow\left[\begin{array}{cc}
a & a t-c \\
0 & -b
\end{array}\right]=\left[\begin{array}{cc}
a & c+t b \\
0 & -b
\end{array}\right], \forall t \in \mathbb{Z} \\
a t-c=c+t b \Rightarrow(a-b) t=2 c \text { Since } t \text { is arbitrary } \\
\text { for } t=0 \text { we have } c=0 \text { and so } a=b
\end{gathered}
$$

Hence the center $C \cong \mathbb{Z}_{2}$.
Now consider

$$
H=\left\langle\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \left.\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right] \right\rvert\, b \in \mathbb{Z}\right\rangle
$$

H is a subgroup of $T(2, \mathbb{Z})$

$$
\begin{aligned}
& N=\left\{\left.\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right] \right\rvert\, b \in \mathbb{Z}\right\} \leq H \\
& N \cong \mathbb{Z} \\
& \varphi: N \rightarrow \mathbb{Z} \\
& {\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right] \rightarrow b} \\
& \varphi\left(\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right]\right)=a+b \\
& \varphi\left(\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\right)+\varphi\left(\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]\right)=a+b \Rightarrow \varphi \text { is a homomorphism } \\
& N \triangleleft H \text {. Indeed } \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & b \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right]=}
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
1 & -b \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]^{-1} \in N
$$

$\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right]$ is an element of order 2.
So $H=N \rtimes\left\langle\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right\rangle \quad$ Let $a=\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right]$
Every element of N is inverted by a and $a^{2}=1$. The group N is a cyclic group isomorphic to \mathbb{Z}. So, H is isomorphic to infinite dihedral group.
\{ The dihedral group D_{∞} is a semidirect product of infinite cyclic group and a group of order 2$\} . H \cap C=\{1\}$
$[H, C]=1$
$H \times C \leq T(2, \mathbb{Z})$
We take an arbitrary element from $T(2, \mathbb{Z})$. If the entry $a_{11}=-1$ by multiplying

$$
\left[\begin{array}{cc}
-1 & b \\
0 & \mp 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & -b \\
0 & \mp 1
\end{array}\right] \in H
$$

Therefore, every element in $T(2, \mathbb{Z})$ can be written as a product of an element from H.

4.20. Show that $Q_{2^{n}} / Z\left(Q_{2^{n}}\right)$ is isomorphic to $D_{2^{n-1}}$ for $n>2$.

Solution: Recall that

$$
Q_{2^{n}}=\left\langle x, y \mid x^{2}=y^{2^{n-2}}, y^{2^{n-1}}=1, x^{-1} y x=y^{-1}, n>2\right\rangle
$$

$$
\left(y^{2^{n-2}}\right)^{x}=\left(y^{-1}\right)^{2^{n-2}}=\left(x^{2}\right)^{x}=x^{2} y^{2^{n-2}} \text { as } y^{2^{n-2}} \text { has order 2. So } y^{2^{n-2}}
$$ commutes with x and y hence $y^{2^{n-2}}$ is in the center of $Q_{2^{n}}$. The group $\langle y\rangle$ has index 2 in $Q_{2^{n}}$ as $x^{2} \in\langle y\rangle$. Hence $\langle y\rangle$ is normal in $Q_{2^{n}}$. Moreover $x\langle y\rangle \neq\langle y\rangle$ and $\left|Q_{2^{n}}\right|=2^{n}$ and every element of $Q_{2^{n}}$ can be written as $x^{i} y^{j}$ where $i=0,1$ and $0 \leq j \supsetneqq 2^{n-1}$.

The writing of every element is unique, as

$$
x^{i} y^{j}=x^{m} y^{k}, \quad 0 \leq i, m \leq 1, \quad 0 \leq k, j \leq 2^{n-1}
$$

implies $x^{m-i}=y^{k-j}$. Then $m-i=0$ or 1 but if $m-i=1$ we obtain $x \in\langle y\rangle$ which is impossible. Hence $m-i=0$ and $k-j=0$. This
implies every element of $Q_{2^{n}}$ can be written uniquely in the form $x^{i} y^{j}$.
Now assume that an element $x^{i} y^{j} \in Z\left(Q_{2^{n}}\right)$. Then $\left(x^{i} y^{j}\right)^{x}=$ $x^{i}\left(y^{j}\right)^{x}=x^{i} y^{-j}=x^{i} y^{j}$. Hence $y^{2 j}=1$. Since there exists a unique subgroup of order 2 in $\langle y\rangle$ we obtain $j=2^{n-2}$. Then
$\left(x^{i} y^{2^{n-2}}\right)^{y}=\left(x^{i}\right)^{y} y^{2^{n-2}}=y^{-1} x^{i} y y^{2^{n-2}}$
$=x^{i} x^{-i} y^{-1} x^{i} y y^{2^{n-2}}=x^{i}\left(y^{-1}\right)^{x^{i}} y y^{2^{n-2}}=x^{i} y^{2^{n-2}}$.
It follows that $\left(y^{-1}\right)^{x^{i}} y=1$ and so $(y)^{x^{i}}=y$. Since $i=0$ or 1 , in case $i=1$ we obtain $y^{2}=1$ and $Q_{2^{n}}=Q_{4}$ abelian case.

So the center $Z\left(Q_{2^{n}}\right)=\left\langle y^{2^{n-2}}\right\rangle$ and $\left|Z\left(Q_{2^{n}}\right)\right|=2$. Moreover $\left|Q_{2^{n}} / Z\left(Q_{2^{n}}\right)\right|=2^{n-1}$.

$$
Q_{2^{n}} / Z\left(Q_{2^{n}}\right)=\langle x, y| x^{2}=y^{2^{n-2}}, y^{2^{n-1}}=1, x^{-1} y x=y^{-1}>/ Z\left(Q_{2^{n}}\right)
$$

Let $\bar{x}=x Z\left(Q_{2^{n}}\right.$ and $\bar{y}=y Z\left(Q_{2^{n}}\right)$. Then $\bar{x}^{2}=1$ and $\bar{y}^{2^{n-2}}=1$. Moreover $\bar{x}^{-1} \overline{y x}=\bar{y}^{-1}$.

The map

$$
\varphi: Q_{2^{n}} / Z\left(Q_{2^{n}}\right) \longrightarrow D_{2^{n-1}}
$$

where

$$
\begin{gathered}
D_{2^{n-1}}=\left\langle a, b \mid a^{2}=1=b^{2^{n-2}}, a^{-1} b a=b^{-1}\right\rangle . \\
\bar{x} \longrightarrow a \\
\bar{y} \longrightarrow b
\end{gathered}
$$

φ is an epimorphism both groups have the same order hence $Q_{2^{n}} / Z\left(Q_{2^{n}}\right) \cong D_{2^{n-1}}$
4.21. Let $G=\left\langle x, y \mid x^{3}=y^{3}=(x y)^{3}=1\right\rangle$. Prove that $G \cong A \ltimes<$ $t>$ where $t^{3}=1$ and $A=\langle a\rangle \times\langle b\rangle$ is the direct product of two infinite cyclic groups, the action of t being $a^{t}=b, b^{t}=a^{-1} b^{-1}$.

Hint: prove that $\left\langle x y x, x^{2} y\right\rangle$ is a normal abelian subgroup.
Solution: Let $N=\left\langle x y x, x^{2} y\right\rangle$. The group N is a normal subgroup of G. Indeed, $x^{-1}(x y x) x=y x^{2}=y x^{-1}$.

The product of two elements of N is $x y x \cdot x^{2} y=x y^{2}=x y^{-1}=$ $\left(y x^{-1}\right)^{-1}=\left(y x^{2}\right)^{-1} \in N$ hence $y x^{-1} \in N$
$x(x y x) x^{-1}=x^{2} y \in N$
$\left(x^{2} y\right)^{x}=x^{-1} x^{2} y x=x y x \in N$, and $x\left(x^{2} y\right) x^{-1}=y x^{-1} \in N$. Hence $N \triangleleft G$.

By previous paragraph $x y x \cdot x^{2} y=x y^{2}=x y^{-1}$ and now

$$
x^{2} y \cdot x y x=x \cdot(x y)(x y) \cdot x=x \cdot(x y)^{2} \cdot x=x \cdot y^{2} x^{2} \cdot x=x y^{2}=x y^{-1} .
$$

Hence $x^{2} y$ and $x y x$ commute.
Observe that

$$
x y \cdot x y=(x y)^{-1}=y^{-1} x^{-1}=y^{2} x^{2} .
$$

Hence N is abelian normal subgroup of G. For the order of the element $x y x$ we have

$$
(x y x)^{2}=x y x \cdot x y x=x y x^{2} y x=x y x^{-1} y x
$$

Since $x y^{-1} \in N$ we obtain $x N=y N$. But $x^{3}=1$ implies $x^{3} N=N$. It is clear that $x \notin N$; otherwise $N=G$, then G is abelian, but $x y \neq y x$, $\langle x N\rangle$ has order 3 ; otherwise $x^{2} \in N$ implies $y \in N$ as $y x^{2} \in N$. So $x N$ has order 3 and $\langle x\rangle \cap N=1$

$$
\left(x^{2} y\right)^{x}=x^{-1} x^{2} y x=x y x
$$

Moreover

$$
\begin{gathered}
(x y x)^{x}=y x^{2}=y^{-1}\left(x^{-2} x^{-1}\right) y^{-1} x^{-1} \text { as } y^{3}=1 \text { and } x^{2}=x^{-1} \\
=y^{-2} x^{-1}=y x^{-1}=y x^{2}=\left(x^{2} y\right)^{-1}(x y x)^{-1} \text { as } y^{-2}=y \text { and } x^{2}=x^{-1}
\end{gathered}
$$

Now let $x^{2} y=a$, and $x y x=b$. Then $a^{x}=\left(x^{2} y\right)^{x}=x^{-1} x^{2} y x=x y x$ and

$$
\begin{aligned}
b^{x}=(x y x)^{b}= & y x^{2}=\left(x^{2} y\right)^{-1}=y^{-1} x^{-2} x^{-1} y^{-1} x^{-1} \\
& =y^{-2} x^{-1}=y x^{-1}=y x^{2}=a^{-1} b^{-1} .
\end{aligned}
$$

Then by von Dyck's theorem we obtain the isomorphism.
4.22. Show that S_{3} has the presentation

$$
\left\langle x, y \mid x^{2}=y^{3}=(x y)^{2}=1\right\rangle
$$

Solution: Let $G=\left\langle x, y \mid x^{2}=y^{3}=(x y)^{2}=1\right\rangle$. Then $(x y)^{2}=$ $x y x y=1$. This implies $x y x=y^{-1}=x^{-1} y x$ as $x^{2}=1$. Hence the subgroup generated by y is a normal subgroup of order 3 . Let $N=\langle y\rangle$. Since G is generated by x and $y, G=\langle x, N\rangle, N \triangleleft G$ implies $|G| \leq 6$ on the other hand $x^{i} y^{j}=x^{r} y^{s}$ implies $x^{-r+i}=y^{s-j} \in\langle x\rangle \cap\langle y\rangle=1$ as $|\langle x\rangle|=2$ and $|\langle y\rangle|=3$. This implies
$x^{i-r}=1$ i.e. $x^{i}=x^{r}$ and $y^{s}=y^{j}$. Hence two possibilities for i and three possibilities for j implies we have 6 elements of the form $x^{i} y^{j}$. Hence $|G|=6$.

Recall that $S_{3}=\langle(12),(123)\rangle$
$(12)(123)(12)=(132)=(123)^{-1}$
$(12)(123)(12)(123)=(132)(123)=1$.
Now let $\alpha=(12), \beta=(123)$. Then every relation in G holds in S_{3}. So by Von Dycks Theorem there exists an epimorphism

$$
\begin{aligned}
& \varphi \quad \begin{aligned}
\varphi & \longrightarrow \\
x & \longrightarrow \\
y & \\
y & \beta
\end{aligned} \\
& \begin{aligned}
\left.\operatorname{Ker}(\varphi)=\left\{\alpha^{i} \beta^{j}\right) \mid \varphi\left(\alpha^{i} \beta^{j}\right)=x^{i} y^{j}=1\right\} \\
\left.=\left\{\alpha^{i} \beta^{j}\right) \mid x^{i}=y^{-j} \in\langle x\rangle \cap\langle y\rangle=1\right\} \\
=\{1\} .
\end{aligned}
\end{aligned}
$$

Hence $G \cong S_{3}$
4.23. Let G be a finite group with trivial center. If G has a nonnormal abelian maximal subgroup A, then $G=A N$ and $A \cap N=1$ for some elementary abelian p-subgroup N which is minimal normal in G. Also A must be cyclic of order prime to p.

Solution: Let A be an abelian maximal subgroup of G such that A is not normal. Then for any $x \in G \backslash A$. So we obtain $\langle A, x\rangle=G$. Therefore for any $x \in G \backslash A$, we have $A^{x} \neq A$ otherwise A would be normal in G. But then consider $A \cap A^{x}$. Since $A^{x} \neq A$ and A is maximal, $\left\langle A, A^{x}\right\rangle=G$. If $w \in A \cap A^{x}$, then $C_{G}(w) \geq\left\langle A, A^{x}\right\rangle=G$. Since A is abelian and A^{x} is isomorphic to A so that A^{x} is also maximal and abelian in G. But $C_{G}(w)=G$ implies $w \in Z(G)=1$. Hence $A \cap A^{x}=1$. This shows that A is Frobenius complement in G. Hence there exists a Frobenius kernel N such that $G=A N$ and $A \cap N=1$. By Frobenius Theorem, Frobenius kernel is a normal subgroup of G. So $G=A N$ implies $G / N=A N / N=A / A \cap N$, hence G is soluble as Frobenius kernel N is nilpotent. It follows from the fact that minimal normal subgroup of a soluble group is elementary abelian p-group for some prime $p N$ is an elementary abelian p-group.

If there exists a normal subgroup M in G such that $G=A M$ and $M \leq N$. Then $A \cap M \leq A \cap N=1$. Moreover $|G|=\frac{|A||M|}{|A \cap M|}=\frac{|A||N|}{|A \cap N|}=$
$|A||M|=|A||N|$. Hence $|M|=|N|$, this implies $M=N$. Hence N is minimal normal subgroup of G.

Since N is elementary abelian p-group if A contains an element g of order power of p, then the group $H=N\langle g\rangle$ is a p-group. Hence $Z(H) \neq 1$. Let $x \in Z(H)$. If $x \in A$, then $C_{G}(x) \geq\langle A, x\rangle=G$. This implies that $x \in Z(G)=1$ which is impossible. So $x \in G \backslash A$. Then $\langle g\rangle \cap\langle g\rangle^{x} \leq A \cap A^{x}=1$. But $\langle g\rangle \cap\langle g\rangle^{x}=\langle g\rangle$. Hence $(|A|, p)=1$. i.e. $p \nmid|A|$.

Now we show that A is cyclic. Indeed by Frobenius Theorem, Sylow q-subgroups of Frobenius complement A are cyclic if $q>2$ and cyclic or generalized quaternion if $p=2$ (Burnside Theorem, Fixed point free Automorphism in [1]). Since A is abelian Sylow subgroup can not cannot be generalized quaternion group. Hence all Sylow subgroups of A are cyclic. This implies that A is cyclic.
4.24. Let G be a finite group. If G has an abelian maximal subgroup, then G is soluble with derived length at most 3.

Solution: Let A be an abelian maximal subgroup of G. If A is normal in G, then for any $x \in G \backslash A$, we have $A\langle x\rangle=G$. Hence $G / A \cong A\langle x\rangle / A \cong\langle x\rangle /\langle x\rangle \cap A$. Then G / A is cyclic and A is abelian implies $G^{\prime \prime}=1$.

Consider $Z(G)$. If $Z(G)$ is not a subgroup of A, then $A Z(G)=G$. This implies that G is abelian. Hence we may assume that $Z(G)$ is a subgroup of A. Then $A \cap A^{x} \geq Z(G)$, on the other hand if $w \in A \cap A^{x}$, then $C_{G}(w) \geq\left\langle A, A^{x}\right\rangle=G$. Hence $w \in Z(G)$. It follows that $A \cap A^{x}=$ $Z(G)$.

Now, consider the group $\bar{G}=G / Z(G)$. Then \bar{G} has an abelian maximal subgroup \bar{A}. Then for any $\bar{x} \in \bar{G} \backslash \bar{A}$. We obtain $\bar{A} \cap \bar{A}^{x}=$ $\overline{1}$. Hence \bar{G} is a Frobenius group with Frobenius complement \bar{A} and Frobenius kernel \bar{N}. Then $\bar{G}=G / Z(G)=(A / Z(G))(N / Z(G))$. The group \bar{G} is soluble hence G is soluble. As in [1, Lemma 2.2.8] \bar{N} is an elementary abelian p-group and \bar{N} is a minimal normal subgroup of \bar{G}.

Since $\bar{G}=\bar{A} \bar{N}$ and A is abelian, we obtain $\bar{G}^{\prime} \leq \bar{N}$ and $\bar{G}^{\prime \prime} \leq Z(\bar{G})$ as \bar{N} is abelian. Hence $(G / Z(G))^{\prime} \leq N / Z(G)$ and $G^{\prime \prime} Z(G) / Z(G) \leq$ $Z(G) / Z(G)$. i.e $G^{\prime \prime} \leq Z(G)$. Hence $G^{\prime \prime \prime}=1$.
4.25. Let M be a maximal subgroup of a locally finite group G. If M is inert and abelian, then G is soluble.

Solution: If M is normal, then for any $x \in G \backslash M$, we have $\langle M, x\rangle=G$ implies that $G / M=\langle x\rangle M / M \cong \underbrace{\langle x\rangle /\langle x\rangle \cap M}_{\text {abelian }}$.
Then $[G, G] \leq M$. So $[G, G]$ is abelian. Therefore, $G \geq[G, G] \geq 1$. So that G is soluble of derived length 2 .

Assume M is not normal in G. Then $N_{G}(M)=M$ as M maximal. Then for any $x \in G \backslash M$ we have $M^{x} \neq M$. Hence $\left\langle M, M^{x}\right\rangle=G$. By inertness we have $\left|M: M \cap M^{x}\right|<\infty$ and $\left|M^{x}: M \cap M^{x}\right|<\infty$. Then by [?, Belyaev's Paper] this implies that $\left|G: M \cap M^{x}\right|=\mid\left\langle M, M^{x}\right\rangle$: $M \cap M^{x} \mid<\infty$. So $M \cap M^{x} \nexists G$. Indeed, $N_{G}\left(M \cap M^{x}\right) \geq\left\langle M, M^{x}\right\rangle=G$. Then the group $G / M \cap M^{x}$ is a finite group with abelian maximal subgroup, then by [$\mathbf{1}$, Theorem 2.2.1] $G / M \cap M^{x}$ is soluble. It follows that G is soluble as $M \cap M^{x}$ is abelian.
4.26. Let G be soluble and $\Phi(G)=1$. If G contains exactly one minimal normal subgroup N, then $N=F(G)$.

Solution: Let N be a minimal normal subgroup of the soluble G. Then N is an elementary abelian group and so it is a normal nilpotent subgroup of G. Hence $N \leq F(G)$.

The group $F(G)$ is a characteristic nilpotent subgroup of G so

$$
F(G)=O_{p_{1}}(F(G)) \times \ldots \times O_{p_{k}}(F(G))
$$

where each $O_{p_{i}}(F(G)) \triangleleft G$ and G contains only one minimal normal subgroup implies that, there exists only one prime p.
$Z(F(G)) \operatorname{char} F(G) \operatorname{char} G$ implies there exists a minimal normal subgroup in $Z(F(G))$. Uniqueness of N implies every element of order p in $Z(F(G))$ is contained in N. So $\Omega_{1}(Z(F(G))) \leq N$. Moreover every maximal subgroup of $F(G)$ is contained in a maximal subgroup of G. Hence $\Phi(F(G)) \leq \Phi(G)=1$. Then

$$
F(G) \cong F(G) / \Phi(F(G)) \rightarrow \operatorname{Dr} F(G) / M_{i}
$$

M_{i} is maximal in $F(G)$. Since each $F(G) / M_{i}$ is cyclic of order p we obtain $F(G))$ is an elementary abelian p group. Then $\Omega_{1}(Z(F(G))) \leq$ N implies $F(G) \leq N$ and hence we have the equality $F(G)=N$.
4.27. Let G be a group of order $2 n$. Suppose that half of the elements of G are of order 2 and the other half form a subgroup H of order n. Prove that H is of odd order and H is an abelian subgroup of G.

Solution: Since H is a subgroup of index 2 in G we have H is a normal subgroup of G. There is only one coset of H in G other than itself say $x H$ is the second coset and $x H \neq H$. Hence by assumption every element in $x H$ has order 2. In particular G / H is of order 2 and x is an element of G of order 2 . Then for any $h \in H$ we have $(x h)^{2}=(x h)(x h)=1$. It follows that $x h x=x^{-1} h x=h^{-1}$ as x has order 2. Then the inner automorphism i_{x} is of order 2 and inverts every element $h \in H$. Then for any $h_{1}, h_{2} \in H$ we have $x^{-1}\left(h_{1} h_{2}\right) x=\left(h_{1} h_{2}\right)^{-1}=h_{2}^{-1} h_{1}^{-1}=\left(x^{-1} h_{1} x\right)\left(x^{-1} h_{2} x\right)=h_{1}^{-1} h_{2}^{-1}$. Hence $h_{2}^{-1} h_{1}^{-1}=h_{1}^{-1} h_{2}^{-1}$ for all $h_{1}, h_{2} \in H$. By taking inverse of each side we have $h_{1} h_{2}=h_{2} h_{1}$. Hence H is abelian. If $|H|$ is even, then by Cauchy theorem there will be an element of order 2 in H. But then there will be $n+1$ elements of order 2 in G which is impossible. Hence H is a subgroup of odd order.
4.28. Show that Sym(6) has an automorphism that is not inner, $\operatorname{Out}(\operatorname{Sym}(6)) \neq 1$

Solution: (a) We first show that there is a faithful, transitive representation of $\operatorname{Sym}(5)$ of degree 6 .

First we show that there exists a subgroup of $\operatorname{Sym}(5)$ of order 20 hence the index $|\operatorname{Sym}(5): G|=6$. Then the action of $\operatorname{Sym}(5)$ on the right cosets of G is
$\gamma: \operatorname{Sym}(5) \hookrightarrow \operatorname{Sym}(6), \gamma$ is faithful and transitive on 6 letters.
Let
$G=\left\{f_{a, b}: G F(5) \rightarrow G F(5) \mid f_{a, b}(x)=a x+b\right.$ where $a, b \in G F(5)$ and $\left.a \neq 0\right\}$
Then we may consider G as a subgroup of $\operatorname{Sym}(5)$ as each element being a permutation on 5 elements. Then $G \leq \operatorname{Sym}(5)$ and $|G|=20$ as there are 4 choices for a and 5 choices for b. Therefore $|\operatorname{Sym}(5): G|=$ 6. Then $\operatorname{Sym}(5)$ acts on the right cosets of G in $\operatorname{Sym}(5)$ by right multiplication.

Then we may write the element of G as permutations of 5 elements and then G contains both even and odd permutations. For example, $f_{2,2}$ corresponds to the permutation of $G F(5)$ as $2 x+2$. Then $f_{2,2}=$ $(1,4,0,2)$ so $f_{2,2}$ defines an odd permutation. On the other hand
$f_{1,1}:(1,2,3,4,0)$ which is an even permutation and
$f_{2,0}:(1,2,4,3)$ which is an odd permutation.
If K is the kernel of the action of $\operatorname{Sym}(5)$ on the cosets of G in $\operatorname{Sym}(5)$, then $K \unlhd \operatorname{Sym}(5)$. Since the kernel of the action is $\cap_{x \in \operatorname{Sym}(5)} G^{x}$ which lies inside G and $G \nsupseteq \operatorname{Sym}(5)$ and the only normal subgroup of $\operatorname{Sym}(5)$ is either $\operatorname{Alt}(5)$ or $\{1\}$. Since $|K| \leq$ $|G| \lesseqgtr|\operatorname{Alt}(5)|$, we have $K=\{1\}$. Hence $\operatorname{Sym}(5)$ acts faithfully and transitively on the set of cosets of G in $\operatorname{Sym}(5)$ where degree of the action is 6 .
(b) The groups $\operatorname{Sym}(6)_{1}, \operatorname{Sym}(6)_{2}, \ldots, \operatorname{Sym}(6)_{6}$ which are mutually conjugate and isomorphic to $\operatorname{Sym}(5)$, but these subgroups fixes a point as a subgroup of $\operatorname{Sym}(6)$.

The symmetric group $\operatorname{Sym}(6)$ has a subgroup $H \cong \operatorname{Sym}(5)$ which is transitive on 6 elements.
$\operatorname{Sym}(5)$ has 6 Sylow 5 -subgroups. Indeed the number of Sylow 5 subgroups $n_{5} \equiv 1(\bmod 5)$ so it can be $1,6,11,16$ or 21 and moreover $n_{5}\left|24=\left|\operatorname{Sym}(5): N_{\operatorname{Sym}(5)}\left(C_{5}\right)\right|\right.$ implies that $n_{5}=6$ as we have 6 Sylow subgroup and so Sylow 5-subgroup is not normal in $\operatorname{Sym}(5)$. So Sym(5) acts on the set of Sylow 5-subgroups by conjugation. Hence there exists a homomorphism

$$
\varphi: \operatorname{Sym}(5) \hookrightarrow \operatorname{Sym}(6)
$$

representing members of $\operatorname{Sym}(5)$ as permutation of Sylow 5 -subgroups. Kernel of the action is either Alternating group $\operatorname{Alt}(5)$ or $\{1\}$. Kernel cannot be $\operatorname{Alt}(5)$ since the set of the Sylow 5 -subgroups of $\operatorname{Sym}(5)$ are also the set of Sylow 5-subgroups of $\operatorname{Alt}(5)$ and $\operatorname{Alt}(5)$ can act on this set transitively. Hence the kernel of the action is $\{1\}$. Hence $H=\operatorname{Im}(\varphi) \cong \operatorname{Sym}(5)$ and $\operatorname{Im}(\varphi) \leq \operatorname{Sym}(6)$ and $\operatorname{Im}(\varphi)$ acts transitively and faithfully on the set of Sylow 5 -subgroups. One can observe that the subgroup G of order 20 corresponds to $N_{S y m(5)}\left(C_{5}\right)$
and recall that $N_{\operatorname{Sym}(5)}\left(C_{5}\right)$ does not lie in $\operatorname{Alt}(5)$ as it contains odd and even permutations.
(c) Let

$$
\pi_{1}: \operatorname{Sym}(6) \hookrightarrow \operatorname{Sym}\left\{\operatorname{Sym}(6)_{1} y_{1}, \operatorname{Sym}(6)_{1} y_{2}, \ldots, \operatorname{Sym}(6)_{1} y_{6}\right\}
$$

The natural representation of $\operatorname{Sym}(6)$ on the cosets of $\operatorname{Sym}(6)_{1}$ gives an isomorphism

$$
\begin{aligned}
\operatorname{Sym}(6) & \hookrightarrow \pi_{1}(\operatorname{Sym}(6)) \\
\sigma & \longrightarrow \pi_{1}(\sigma)
\end{aligned}
$$

The representation of $\operatorname{Sym}(6)$ on the cosets of $H=\operatorname{Im}(\varphi) \cong \operatorname{Sym}(5)$ is faithful since the kernel is as in first lemma, a normal subgroup of $\operatorname{Sym}(6)$ smaller than $\operatorname{Alt}(6)$. Hence kernel is $\{1\}$. Thus one obtains a second isomorphism

$$
\pi_{2}: \operatorname{Sym}(6) \longrightarrow \operatorname{Sym}(6)=\operatorname{Sym}\left(H x_{1}, H x_{2}, \ldots, H x_{6}\right)
$$

$H x_{i}^{\prime}$ s are cosets of H in $\operatorname{Sym}(6)$.
The correspondence

$$
\begin{aligned}
\operatorname{Sym}(6) & \longrightarrow \operatorname{Sym}(6) \\
\pi_{1}(\sigma) & \longrightarrow \pi_{2}(\sigma)
\end{aligned}
$$

is then an automorphism of $\operatorname{Sym}(6)$.

$$
\pi_{1}(\sigma \delta)=\pi_{1}(\sigma) \pi_{1}(\delta)=\pi_{2}(\sigma \delta)=\pi_{2}(\sigma) \pi_{2}(\delta)
$$

This automorphism associates $\left\langle\pi_{1}(\sigma) \mid \sigma \in H\right\rangle$ with $\left\langle\pi_{2}(\sigma) \mid \sigma \in H\right\rangle$.

However, $\left\langle\pi_{2}(\sigma) \mid \quad \sigma \in H\right\rangle$ fixes all the elements in H while $\left\langle\pi_{1}(\sigma) \mid \sigma \in H\right\rangle$ fixes no elements, indeed if $(\operatorname{Sym}(6))_{1} \tau=\operatorname{Sym}(6)_{1} \tau \sigma$ for all $\sigma \in H$ then $\tau \sigma \tau^{-1} \in \operatorname{Sym}(6)_{1}$ for all $\sigma \in H$, it follows that, $\tau H \tau^{-1}=\operatorname{Sym}(6)_{1}$ which makes $\operatorname{Sym}(6)_{1}$ and H conjugate. Both H and $\operatorname{Sym}(6)_{1}$ are isomorphic to $\operatorname{Sym}(5)$ as a subgroup of $\operatorname{Sym}(6)$ but they cannot be conjugate since $\operatorname{Sym}(6)_{1}$ is transitive on 5 elements and H on 6 elements. This automorphism of $\operatorname{Sym}(6)$ is not inner.

Observe that π_{1} and π_{2} gives two inequivalent permutation representation of the group $\operatorname{Sym}(6)$ but the representations π_{1} and π_{2} are permutational isomorphic.

5. A

Let F be any field and n any positive integer. Then the set of all invertible $n \times n$ matrices with entries in F form a group with respect to matrix multiplication. This is called the general linear group of degree n over F and denoted by $G L_{n}(F)$. Let X be a metric space with distance function $d: X \times X \rightarrow \mathbb{R}$. Then a bijective map $\varphi: X \rightarrow X$ is structure preserving if $d(x \varphi, y \varphi)=d(x, y)$ for all $x, y \in X$ such a map φ is called isometry of X.
5.1. Assume that a set G with an operation satisfying the associative law satisfies the following two conditions (a) and (b):
(a) There exists an element e of G such that $g e=g$ for all $g \in G$.
(b) For any element a of G, there exists an element a^{\prime} such that $a a^{\prime}=e$.
Then, show that G is a group with respect to the given operation.
Solution We need to show that there exists a left identity and each element has a left inverse. Apply (b) to the element a^{\prime}. So there exists $a^{\prime \prime} \in G$ with $a^{\prime} a^{\prime \prime}=e$. By the associative law; $e a^{\prime \prime}=\left(a a^{\prime}\right) a^{\prime \prime}=a\left(a^{\prime} a^{\prime \prime}\right)=a e=a$ by part (a). So we have $e a^{\prime \prime}=a$

On the other hand; $e a=(e a) e=(e a)\left(a^{\prime} a^{\prime \prime}\right)=e\left(a a^{\prime}\right) a^{\prime \prime}=(e e) a^{\prime \prime}=$ $e a^{\prime \prime}=a$ by the above paragraph.
Therefore for any element $a \in G$ we have $e a=a=a e$ for all $a \in G$. So, e is the identity element of G.
Since we have $e a^{\prime \prime}=a$ and e is the identity element, we get $a^{\prime \prime}=a$. So we have $a a^{\prime}=e$ and $a^{\prime} a^{\prime \prime}=a^{\prime} a=e=a a^{\prime}$. So a^{\prime} is the inverse of a. Therefore, G is a group with the given conditions.
5.2. For a given subset X of a group G, let \mathscr{H} be the set of subgroups H satisfying $H \cap X=\emptyset$ (the empty set). The set \mathscr{H} becomes
a partially ordered set by defining $H \leq K$ if and only if H and K are members of \mathscr{H} and H is a subgroup of K. Show that, if \mathscr{H} is not empty, \mathscr{H} is inductively ordered, so \mathscr{H} has at least one maximal element by Zorn's lemma.
Pick a subgroup H_{0} satisfying $H_{0} \cap X=\emptyset$, and let \mathscr{H}_{0} denote the subset of \mathscr{H} consisting of the members which contain H_{0}. Show that \mathscr{H}_{0} is also inductively ordered, and has a maximal element.

Solution Assume \mathscr{H} is non-empty. It is clear that \mathscr{H} is a partially ordered set as being a subgroup is a partially ordered set on the set of all subgroups of G. This is the restriction of this relation to \mathscr{H}. Since $\mathscr{H} \neq \emptyset$, there exists a subgroup $H_{0} \in \mathscr{H}$ such that $H_{0} \cap X=\emptyset$. Let

$$
\mathscr{H}_{0}=\left\{H \in \mathscr{H} \mid H_{0} \leq H\right\}
$$

Let $H_{i}, i \in I$ be a chain of subgroups in \mathscr{H}_{0}. Then $T=\bigcup_{i \in I} H_{i}$ is a subgroup of G and $T \in \mathscr{H}_{0}$ as $T \cap X=\emptyset$. Hence every ascending chain of members in \mathscr{H}_{0} has an upper bound in \mathscr{H}_{0}. Then by Zorn's lemma there exists a maximal element in \mathscr{H}_{0}. i.e. There exists a subgroup M of G such that M is a maximal element in \mathscr{H}_{0}. Therefore every subgroup containing M will have a non-empty intersection.

5.3.

$$
\text { Let } \begin{aligned}
G & =\oplus_{n \in \mathbb{N}+} \mathbb{Z}_{2^{n+1}}=\mathbb{Z}_{4} \oplus \mathbb{Z}_{8} \oplus \mathbb{Z}_{16} \oplus \cdots \\
H & =\oplus_{n \in \mathbb{N}+} \mathbb{Z}_{2^{n}}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{8} \oplus \mathbb{Z}_{16} \oplus \cdots
\end{aligned}
$$

Show that G is not isomorphic to H.
Solution: Observe first that $H=\mathbb{Z}_{2} \oplus G$. Then there exists a projection from H to \mathbb{Z}_{2}.

If $G \cong H$, then there exists a projection from G to \mathbb{Z}_{2}. Then
$\pi: G \rightarrow \mathbb{Z}_{2}$ such that $G / \operatorname{ker}(\pi) \cong \mathbb{Z}_{2} . \pi^{2}=\pi$. By the property of the projection we have $G=\mathbb{Z}_{2} \oplus \operatorname{Ker}(\pi)$.

Then there exists an epimorphism from finite group

$$
\mathbb{Z}_{4} \oplus \mathbb{Z}_{8} \oplus \ldots \oplus \mathbb{Z}_{2^{n+1}} \rightarrow \mathbb{Z}_{2}
$$

Then

$$
\begin{gathered}
\mathbb{Z}_{4} \oplus \mathbb{Z}_{8} \oplus \cdots \oplus \mathbb{Z}_{2^{n+1}} \cong \mathbb{Z}_{2} \oplus \operatorname{Ker}(\pi) \\
\quad=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus+\cdots+\mathbb{Z}_{2^{n}}
\end{gathered}
$$

But this is impossible as direct sums has different maximal elementary abelian subgroups.
5.4. Let G be the group of 2×2 nonsingular matrices over \mathbb{R}. Show that G is a semidirect product of the group of matrices with determinant 1 and the multiplicative group \mathbb{R}^{*}. Describe an action associated with this semidirect product.
(Hint. The action is not unique. Why not?)
Solution Let $G=G L(2, \mathbb{R})$ Show that $G \cong S L(2, \mathbb{R}) \rtimes \mathbb{R}^{*}$
Define $\varphi: \mathbb{R}^{*} \rightarrow G L(2, \mathbb{R})$ by $\varphi(r)=\left(\begin{array}{cc}r & 0 \\ 0 & 1\end{array}\right)$. Say $\varphi\left(\mathbb{R}^{*}\right)=H$.
$\operatorname{Ker}(\varphi)=1$, so φ is one-to-one. Then we have $\mathbb{R}^{*} \cong H \leq G L(2, \mathbb{R})$.
We now show that $S L(2, \mathbb{R}) \unlhd G L(2, \mathbb{R})$
Define $\theta: G L(2, \mathbb{R}) \rightarrow \mathbb{R}^{*}$ by $\theta(A)=\operatorname{det}(A)$.
We know that determinant is a homomorphism. Then
$\operatorname{Ker}(\theta)=\{A \in G L(2, \mathbb{R}) \mid \theta(A)=\operatorname{det}(A)=1\}=S L(2, \mathbb{R})$
Being the kernel of a homomorphism, we have $S L(2, \mathbb{R}) \unlhd G L(2, \mathbb{R})$.
Now, $H \cap S L(2, \mathbb{R})=\{A \in H \mid \operatorname{det}(A)=1\}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$
So we have $G \cong S L(2, \mathbb{R}) \rtimes \mathbb{R}^{*}$.
Arbitrary element of G can be written as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a d-b c & o \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{a}{a d-b c} & \frac{b}{a d-b c} \\
c & d
\end{array}\right) \text { where }\left(\begin{array}{cc}
a d-b c & o \\
0 & 1
\end{array}\right)
$$

is in H and $\left(\begin{array}{cc}\frac{a}{a d-b c} & \frac{b}{a d-b c} \\ c & d\end{array}\right)$ is in $S L(2, \mathbb{R})$
Remark In the above question $G=G L(2, \mathbb{R})$, but the proof will work exactly the same manner for $G L(n, \mathbb{R})$ or $G L(n, \mathbb{F})$.

One may take $K=\left(\begin{array}{cc}1 & 0 \\ 0 & a d-b c\end{array}\right)$. Then $K \cong \mathbb{R}^{*}$ then the homomorphism and the action is not the same.
5.5. Find the number of left cosets of K which are contained in the double coset $H x K$, also show that G is the disjoint union of its (H, K)-double cosets.

Solution

5.6. Let H be a proper subgroup of a finite group G. Show that there exists an element of G which is not conjugate to any element of H.

Solution Assume for any $x \in G$, there exists $g \in G$ such that $x \in H^{g}$. Then $G=\bigcup H^{g}$. Let $|G|=n$ and $|H|=k$. The number of distinct conjugates of H is $\left[G: N_{G}(H)\right]$.

Then we have $|G|=\left[G: N_{G}(H)\right]\left|N_{G}(H)\right| \geq\left[G: N_{G}(H)\right]|H|$ as $N_{G}(H) \geq H$. Let $\left|G: N_{G}(H)\right|=m$. Then H has m distinct conjugates in G. Say $H=H^{1}, H^{g_{2}}, \ldots, H^{g_{m}}$. As each $H^{g_{i}}$ contain $|H|-1$ nonidentity element we have at most $\left|H^{g_{i}}\right|-1$ non-identity element in $H^{g_{i}}$. If $G=\bigcup_{i=1}^{m} H^{g_{i}}$. Then $|G|=\sum_{i=1}^{m}\left(\left|\left(H^{g_{i}}-i d\right)\right| \leq(k-1) m+1\right.$ as $H \leq N_{G}(H)$ we have $m k-m+1 \geq|G|=m\left(\left|N_{G}(H)\right| \geq m k\right.$. So we have $-m+1 \geq 0$ and $m \leq 1$. But $m=1$ implies that $H \triangleleft G$ and in this case $H^{g}=H$ for all $g \in G$. This implies that $H=G$. This contradicts to the assumption that H is a proper subgroup of G. So G cannot be a union of conjugates of a proper subgroup H.
5.7. For any proper subgroup H of a group $G, H H^{x} \neq G$ for any $x \in G$.

Solution Assume that $H H^{x}=G$ for some $x \in G$. Since H is a proper subgroup, clearly $x \neq 1$. Then $x=h_{1} h_{2}^{x}$ for some $h_{1}, h_{2} \in H$. Then $x=h_{1} x^{-1} h_{2} x$. It follows that $1=h_{1} x^{-1} h_{2}$ and so $h_{1}^{-1} h_{2}^{-1}=x^{-1}$. Since H is a subgroup and $h_{1}, h_{2} \in H$ we have $h_{1}^{-1} h_{2}^{-1} \in H$ i.e. $x \in H$. But then, $G=H H^{x}=H$. This contradicts to H is a proper subgroup. Hence $H H^{x} \neq G$.
5.8. (a) Prove that any subgroup of index 2 is normal. (b) Let G be a finite group, and let p be the smallest prime divisor of the order $|G|$. Show that any subgroup of index p is normal.

Solution (a) Let $H \leq G$ with $[G: H]=2$.
Then H has two distinct right cosets, and also two distinct left cosets in G. For any $h \in H$, we have $h H=H h=H$ and for any $a \in G$ with $a \notin H$, we have $a H \neq H$ and $H a \neq H$. Since there are exactly two cosets of H in G, we have $H a=a H=G \backslash H$ for all $a \in G$.
Therefore $H \unlhd G$.
(b) Let H be a subgroup of G of index p. Then we need to show that H is a normal subgroup of G. Indeed G acts from right on the set of right cosets of H in G. Then there exists a homomorphism from G into $\operatorname{Sym}(p)$. Then $G / \operatorname{Ker}(\phi)$ is isomorphic to a subgroup of $\operatorname{Sym}(p)$. Recall that $\operatorname{Ker}(\phi)=\bigcap_{x \in G} H^{x}$. So $\operatorname{Ker}(\phi) \leq H$. If H is not normal in G, then $\operatorname{Ker}(\phi)$ will be a proper subgroup of H and hence $1 \neq H / \operatorname{Ker}(\phi)<G / \operatorname{Ker}(\phi)$. i.e a prime divisor of $|H / \operatorname{Ker}(\phi)|$ divides $|G| /|\operatorname{Ker}(\phi)|$ which divides $\frac{p!}{|\operatorname{Ker}(\phi)|}$. Hence it divides $|G|$ which is impossible as any prime dividing $p!$ is less than p and p is the smallest prime dividing $|G|$.

Definition 5.1. An endomorphism σ of a group G is said to be normal if σ commutes with all inner automorphisms of G.
5.9. Let σ be a normal endomorphism of a group G. Set $\sigma(G)=H$ and $\sigma(g)=z(g)^{-1} g$ for any $g \in G$.
(a) Show that z is a homomorphism from G into $C_{G}(H)$.
(b) Show that H is a normal subgroup of G such that $G=H C_{G}(H)$, and $H \cap C_{G}(H)=Z(H) \subset Z(G)$.
(c) Show that both H and $C_{G}(H)$ are invariant by σ. Prove that the restriction ρ of σ on $C_{G}(H)$ is a homomorphism from $C_{G}(H)$ into $Z(H)$, and that for any element x of $Z(H)$, we have $x=\zeta(x) \rho(x)$ where ζ is the restriction of z on H.

Solution

(a) Let σ be a normal endomorphism of a group G. Then σ is an endomorphism of G, commuting with all the inner automorphisms
of G. Let $\sigma(G)=H$ and $\sigma(g)=z(g)^{-1} g$. We may view this as $z(g)=g \sigma(g)^{-1}$.

First observe that $z(g)=g \sigma(g)^{-1} \in C_{G}(H)$. Indeed;
$i_{g} \sigma=\sigma i_{g}$ implies for any $x \in G\left((x) i_{g}\right) \sigma=((x) \sigma) i_{g}$. Then $\left(g^{-1} x g\right) \sigma=g^{-1}((x) \sigma) g$. It follows that
$\left(\left(g^{-1}\right) \sigma\right)((x) \sigma)((g) \sigma)=g^{-1}((x) \sigma) g$. Multiply from left by g and from right by g^{-1} we have $\left.\left[g\left(\left(g^{-1}\right) \sigma\right)\right]((x) \sigma)(g) \sigma\right) g^{-1}=(x) \sigma$ for any $x \in G$. So for any $(x) \sigma \in H$ we have $z(g)=g\left(g^{-1}\right) \sigma \in C_{G}(H)$.

Now for any g and h in G we have;

$$
(g h) z=g h((g h) \sigma)^{-1}=g h((g) \sigma(h) \sigma)^{-1}=g h((h) \sigma)^{-1}((g) \sigma)^{-1}
$$

By first paragraph $h\left(h^{-1}\right) \sigma \in C_{G}(H)$ so $h\left(h^{-1}\right) \sigma$ commutes with $\left(g^{-1}\right) \sigma$ and we obtain

$$
(g h) z=g\left(\left(g^{-1}\right) \sigma\right) h\left(\left(h^{-1}\right) \sigma\right)=(g) z(h) z . \text { Hence } z \text { is a homomor- }
$$ phism from G into $C_{G}(H)$.

(b) $H=(G) \sigma$. For any $g \in G$ and $(x) \sigma \in H$

$$
g^{-1}(x) \sigma g=g^{-1}(x) \sigma g((g) \sigma)^{-1}(g) \sigma \text { as } g((g) \sigma)^{-1} \in C_{G}(H) \text { we have }
$$

$$
=g^{-1} g((g) \sigma)^{-1}(x) \sigma(g) \sigma=((g) \sigma)^{-1}(x) \sigma(g) \sigma=\left(g^{-1} x g\right) \sigma \in H
$$

So H is a normal subgroup of G.
Now for any $g \in G$
$g=(g) \sigma g((g) \sigma)^{-1}$ as $g((g) \sigma)^{-1} \in C_{G}(H)$ and $(g) \sigma \in H$ we have
$G=H C_{G}(H)$ and $H \cap C_{G}(H)=Z(H)$.
Indeed if $x \in H \cap C_{G}(H)$, then for any $g \in G$
$g x=(g) \sigma g\left(\left(g^{-1}\right) \sigma\right) x$
$=(g) \sigma x g\left(\left(g^{-1}\right) \sigma\right)$ as $x \in H$ and $g\left(\left(g^{-1}\right) \sigma\right) \in C_{G}(H)$
$=x(g) \sigma g\left(\left(g^{-1}\right) \sigma\right)$ as $x \in C_{G}(H)$ and $(g) \sigma \in H$.
$=x g$.
So $x \in Z(G)$ and hence $Z(H)=H \cap C_{G}(H) \leq Z(G)$.
(c)(i) H is invariant as $(H) \sigma=((G) \sigma) \sigma \subseteq(G) \sigma=H$

Let $x \in C_{G}(H)$. Then for any $h \in H, x h=h x$.
i.e. $x(g) \sigma=(g) \sigma x$ for any $g \in G$. Then $x(g) \sigma x^{-1}=(g) \sigma$ for all $g \in G$.

Now we consider the following $(x) \sigma(g) \sigma=(g) \sigma(x) \sigma$?

$$
\begin{aligned}
& (x) \sigma x^{-1} x(g) \sigma=(x) \sigma x^{-1}(g) \sigma x \\
& =(g) \sigma(x) \sigma x^{-1} x \text { as }(x) \sigma x^{-1}=\left(x\left(x^{-1}\right) \sigma\right)^{-1} \in C_{G}(H) \text { and }(g) \sigma \in H
\end{aligned}
$$

$=(g) \sigma(x) \sigma$
Hence $(x) \sigma \in C_{G}(H)$.
(ii) The restriction ρ :

Let $x, y \in C_{G}(H)$. Then $(x) \rho=(x) \sigma=((x) z)^{-1} x . ~((x) z)^{-1} x \in$ $Z(H)$ as for any $(g) \sigma \in H$, we have $((x) z)^{-1} x(g) \sigma=((x) z)^{-1}(g) \sigma x$ as $x \in C_{G}(H)$ and $(g) \sigma \in H$. Now as $(x) z \in C_{G}(H)$ we have $((x) z)^{-1} x(g) \sigma=(g) \sigma((x) z)^{-1} x$. It follows that $((x) z)^{-1} x \in Z(H)$ and $(x) \rho \in Z(H)$.

Moreover $(x y) \rho=(x y) \sigma=(x) \sigma(y) \sigma=(x) \rho(y) \rho$
(iii) Let $x \in Z(H)$. Then $x=x((x) \sigma)^{-1}(x) \sigma$.

Now $x((x) \sigma)^{-1}=(x) z=(x) \zeta$ where ζ is the restriction of z on H. And $(x) \sigma=(x) \rho$ where ρ is the restriction of σ on $C_{G}(H)$.
5.10. Let G be a group with $Z(G)=1$. Show that the centralizer in $\operatorname{Aut}(G)$ of $\operatorname{Inn}(G)$ is $\{1\}$ and in particular, $Z(\operatorname{Aut}(G))=\{1\}$.

Solution: Let $\phi \in C_{\operatorname{Aut}(G)}(\operatorname{Inn}(G))$. Then
$\phi^{-1} i_{g} \phi=i_{g}$ for any $i_{g} \in \operatorname{Inn}(G)$. For any element $x \in G, \phi^{-1} i_{g} \phi(x)=$ $i_{g}(x)$ and so $\phi^{-1} i_{g}(\phi(x))=g^{-1} x g$. It follows that $\phi^{-1}\left(g^{-1} \phi(x) g\right)=$ $g^{-1} x g$ iff $\phi^{-1}\left(g^{-1}\right) x \phi^{-1}(g)=g^{-1} x g$. Then we have

$$
g \phi^{-1}\left(g^{-1}\right) x \phi^{-1}(g) g^{-1}=x . \text { Hence }
$$

$\left(g^{-1}\right)^{-1}\left(\phi^{-1}(g)\right)^{-1} x \phi^{-1}(g) g^{-1}=x$ for all $x \in G$.
Hence, $\phi^{-1}(g) g^{-1} \in Z(G)=\{1\}$. It follows that $\phi^{-1}(g)=g$ for all $g \in G$. Then the automorphism ϕ^{-1} fixes all the elements of G. i.e. ϕ^{-1} and hence ϕ is the identity automorphism of G.

As $Z(\operatorname{Aut}(G))=C_{\operatorname{Aut}(G)}(\operatorname{Aut}(G)) \leq C_{\operatorname{Aut}(G)}(\operatorname{Inn}(G))=\{1\}$, we have $Z(\operatorname{Aut}(G))=\{1\}$. It follows that $Z(G)=\{1\}$ implies $Z(\operatorname{Aut}(G))=$ $\{1\}$.
5.11. Let G be a nonabelian simple group. Show that any automorphism of $\operatorname{Aut}(G)$ is inner.

Solution: As G is nonabelian simple group, $Z(G)=\{1\}$. Then by Question 5.10, $Z(\operatorname{Aut}(G))=\{1\}$. Then by Question ??, any automorphism of $A=\operatorname{Aut}(G)$ is an inner automorphism.
5.12. If two subgroups H and K of a group G satisfy the conditions $H \cap K=\{1\}, H \leq N_{G}(K)$ and $K \leq N_{G}(H)$, then every element of H commutes with every element of K.

Solution: Consider the element $h^{-1} k^{-1} h k$. Since $K \leq N_{G}(H)$, $k^{-1} h k \in H$. So $h^{-1} k^{-1} h k \in H$. Similarly, $H \leq N_{G}(K)$ implies $k^{-1} h k \in K$. So $h^{-1} k^{-1} h k \in K$. Hence, $h^{-1} k^{-1} h k \in H \cap K=\{1\}$. It follows that $h^{-1} k^{-1} h k=1$ and so $h k=k h$ for any $h \in H$ and $k \in K$.
5.13. Let G be a group with a composition series and let N be a normal subgroup of G. Show that there is a composition series of G having N as a term.

Solution: Let G be a group with a composition series $G=G_{0} \triangleright$ $G_{1} \triangleright . . \triangleright G_{n}=\{1\}$.

Take the intersection of each subgroup in the series with the normal subgroup N. We have $G_{0} \cap N=N \triangleright G_{1} \cap N \triangleright G_{2} \cap N \triangleright . \triangleright G_{n} \cap N=\{1\}$.

Now, we need to show $G_{i+1} \cap N \unlhd G_{i} \cap N$. Indeed, let $x \in G_{i+1} \cap N$ and $g \in G_{i} \cap N$. Then $g^{-1} x g \in N$ as $x \in N$ an N is a normal subgroup of G. Moreover, $x \in G_{i+1}$ and $g \in G_{i}$ and G_{i+1} is normal in G_{i} implies $g^{-1} x g \in G_{i+1}$. Hence, $x \in G_{i+1} \cap N$ and so $G_{i+1} \cap N \unlhd G_{i} \cap N$.

$$
\left(G_{i} \cap N\right) /\left(G_{i+1} \cap N\right) \simeq\left(G_{i} \cap N\right) G_{i+1} / G_{i+1} \unlhd G_{i} / G_{i+1}
$$

But G_{i} / G_{i+1} is a composition factor of the group G. So $\left(G_{i} \cap\right.$ $N) /\left(G_{i+1} \cap N\right)$ is either equal to G_{i} / G_{i+1} or $\{1\}$.

So it is simple or $\left(G_{i} \cap N\right) G_{i+1} / G_{i+1}$ is the trivial group.

So N has a series where each factor is either simple and the simple factor is isomorphic to a simple factor of G or it is trivial group. By
deleting the trivial terms from the series, we obtain a composition series of N.

Now we may look at the series $G \triangleright G_{1} N \triangleleft G_{2} N \ldots N$ this series also give a series from G to N with factors are either trivial or simple apply the same procedure above and obtain a series of G where N is a term of this series.
5.14. Show that the following two conditions on a group G are equivalent:
(1) There is a homomorphism φ from G into $\operatorname{Sym}(n)$ such that $\varphi(g) \neq 1$ for some $g \in G$.
(2) The group G contains a proper subgroup of index at most n.

Solution (a) \Rightarrow (b): Assume that there is a homomorphism $\varphi: G \rightarrow \operatorname{Sym}(n)$ such that $\varphi(g) \neq 1$ for some $g \in G$.

Let G act on the set $X=\{1,2, . ., n\}$. As

$$
\operatorname{Ker}(\varphi)=\{g \in G \mid \varphi(g)=1\}
$$

and $\varphi(g) \neq 1$ for some $g \in G$, the action of G on X is no-trivial.

Let $x \in X$ such that $x^{g} \neq x>$ for some $g \in G$. Then $O_{x} \neq\{x\}$. This implies that $\left|O_{x}\right|>1$.

By Orbit-Stabilizer Theorem, $\left|G: \operatorname{Stab}_{G}(x)\right|=\left|O_{x}\right| \leq n$. This implies that $\operatorname{Stab}_{G}(x)$ is a proper subgroup of G as $\left|O_{x}\right|>1$ and the index of $\operatorname{Stab}_{G}(x)$ is at most n.
(b) \Rightarrow (a): Assume that H is a proper subgroup of G of index at most n, say $[G: H]=k$. Let Ω be the set of right cosets of H in G. Then G act on Ω by right multiplication. Observe that $|\Omega|=k$.

As G act on Ω, there exists a homomorphism $\varphi: G \rightarrow \operatorname{Sym}(k)$ by $\varphi(g) H x=H x g$.

As $\operatorname{Ker}(\varphi)$ contains all elements $g \in G$ such that $g \in \bigcap_{x \in G} H^{x}$ we have $\operatorname{Ker}(\varphi) \leq H$. Hence, for any $g \in G \backslash H$ we have $\varphi(g) \neq 1$.

References

[1] D. J. S. Robinson, A course in Group Theory, GTM 80, Springer-Verlag.

