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I have given some group theory courses in various years. These

problems are given to students from the books which I have followed

that year. I have kept the solutions of exercises which I solved for the

students. These notes are collection of those solutions of exercises.
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GROUP THEORY EXERCISES AND

SOLUTIONS

M. Kuzucuoğlu

1. SEMIGROUPS

Definition A semigroup is a nonempty set S together with an

associative binary operation on S. The operation is often called mul-

tiplication and if x, y ∈ S the product of x and y (in that ordering) is

written as xy.

1.1. Give an example of a semigroup without an identity element.

Solution Z+ = {1, 2, 3, ...} is a semigroup without identity with

binary operation usual addition.

1.2. Give an example of an infinite semigroup with an identity

element e such that no element except e has an inverse.

Solution N= {0, 1, 2, ...} is a semigroup with binary operation

usual addition. No non-identity element has an inverse.

1.3. Let S be a semigroup and let x ∈ S. Show that {x} forms a

subgroup of S (of order 1) if and only if x2 = x such an element x is

called idempotent in S.

Solution Assume that {x} forms a subgroup. Then {x} ∼= {1}
and x2 = x.

1
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Conversely assume that x2 = x. Then associativity is inherited

from S. So Identity element of the set {x} is itself and inverse of x is

also itself. Then {x} forms a subgroup of S.

2. GROUPS

Let V be a vector space over the field F . The set of all linear in-

vertible maps from V to V is called general linear group of V and

denoted by GL(V ).

2.1. Suppose that F is a finite field with say |F | = pm = q and

that V has finite dimension n over F . Then find the order of GL(V ).

Solution Let F be a finite field with say |F | = pm = q and

that V has finite dimension n over F . Then |V | = qn for any base

w1, w2, ..., wn of V , there is unique linear map θ : V → V such that

viθ = wi for i = 1, 2, ..., n.

Hence |GL(V )| is equal to the number of ordered bases of V , in form-

ing a base w1, w2, ..., wn of V we may first choose w1 to be any nonzero

vector of V then w2 be any vector other than a scalar multiple of w1.

Then w3 to be any vector other than a linear combination of w1 and

w2 and so on. Hence

|GL(V )| = (qn − 1)(qn − q)(qn − q2)....(qn − qn−1).

2.2. Let G be the set of all matrices of the form

(
a b

0 c

)
where

a, b, c are real numbers such that ac 6= 0.

(a) Prove that G forms a subgroup of GL2(R).

Indeed (
a b

0 c

)(
d e

0 f

)
=

(
ad ae+ bf

0 cf

)
∈ G

ac 6= 0, df 6= 0, implies that acdf 6= 0 for all a, c, d, f ∈ R. Since

determinant of the matrices are all non-zero they are clearly invertible.

(b) The set H of all elements of G in which a = c = 1 forms a subgroup

of G isomorphic to R+. Indeed H = {

(
1 b

0 1

)
| b ∈ R }
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1 b1

0 1

)(
1 b2

0 1

)
=

(
1 b1 + b2

0 1

)
(

1 b1

0 1

)−1

=

(
1 −b1

0 1

)
∈ H. So H ≤ G.

Moreover H ∼= R+

ϕ : H → R+(
1 b1

0 1

)
→ b1

ϕ[

(
1 b1

0 1

)(
1 b2

0 1

)
]= b1 + b2 = ϕ

(
1 b1

0 1

)
ϕ

(
1 b2

0 1

)

Kerϕ= {

(
1 b1

0 1

)
| ϕ

(
1 b1

0 1

)
= 0 = b1} = Id. So ϕ is one-to-

one.

Then for all b ∈ R, there exists h ∈ H such that ϕ(h) = b, where h =(
1 b

0 1

)
. Hence ϕ is an isomorphism.

2.3. Let α ∈ Aut G and let H = {g ∈ G : gα = g}. Prove that H

is a subgroup of G, it is called the fixed point subgroup of G under α.

Solution Let g1, g2 ∈ H. Then gα1 = g1 and gα2 = g2. Now

(g1g2)α = gα1 g
α
2 = g1g2

(g−1
2 )α = (gα2 )−1 = g−1

2 ∈ H. So H is a subgroup.

2.4. Let n be a positive integer and F a field. For any n×n matrix

y with entries in F let yt denote the transpose of y. Show that the map

φ : GLn(F ) → GLn(F )

x → (x−1)t

for all x ∈ GLn(F ) is an automorphism of GLn(F ) and that the corre-

sponding fixed point subgroup consist of all orthogonal n × n matrices

with entries in F . ( That is matrices y such that yty = 1)
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Solution

φ(x1x2) = [(x1x2)−1]t

= [x−1
2 x−1

1 ]t

= (x−1
1 )t(x−1

2 )t = φ(x1)φ(x2)

Now if φ(x1) = 1 = (x−1
1 )t, then x−1

1 = 1. Hence x1 = 1. So φ is a

monomorphism. For all x ∈ GLn(F ) there exists x1 ∈ GLn(F ) such

that φ(x1) = x. Let x1 = (x−1)t. So we obtain φ is an automorphism.

Let H = {x ∈ GLn(F ) : φ(x) = x}. We show in the previous exercise

that H is a subgroup of GLn(F ). Now for x ∈ H φ(x) = x = (x−1)t

implies xxt = 1. That is the set of the orthogonal matrices.

Recall that if G = G1 × G2, then the subgroup H of G may not

be of the form H1×H2 as H = {(0, 0), (1, 1)} is a subgroup of Z2×Z2

but H is not of the form H1 ×H2 where Hi is a subgroup of Gi. But

the following question shows that if |G1| and |G2| are relatively prime,

then every subgroup of G is of the form H1 ×H2.

2.5. Let G = G1 × G2 be a finite group with gcd(|G1|, |G2|)) = 1.

Then every subgroup H of G is of the form H = H1 ×H2 where Hi is

a subgroup of Gi for i = 1, 2.

Solution: Let H be a subgroup of G. Let πi be the natural

projection from G to Gi. Then the restriction of πi to H gives homo-

morphisms from H to Gi for i = 1, 2. Let Hi = πi(H) for i = 1, 2. Then

clearly H ≤ H1×H2 and Hi ≤ Gi for i = 1, 2. Then H/Ker(π1) ∼= H1

implies that |H1| | |H| similarly |H2| | |H|. But gcd(|H1|, |H2|) = 1

implies that |H1||H2| | |H|. So H = H1 ×H2.

2.6. Let H �G and K �G. Then H ∩K �G. Show that we can

define a map

ϕ : G/H ∩K −→ G/H ×G/K
g(H ∩K) −→ (gH, gK)

for all g ∈ G and that ϕ is an injective homomorphism. Thus

G/(H ∩K) can be embedded in G/H×G/K. Deduce that if G/H and

G/K or both abelian, then G/H ∩K abelian.
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Solution As H and K are normal in G, clearly H ∩K is normal

in G.

ϕ : G/H ∩K −→ G/H ×G/K

ϕ(g(H ∩K)g′(H ∩K)) = ϕ(gg′(H ∩K))

= (gg′H, gg′K)

= (gH, gK)(g′H, g′K)

= ϕ(g(H ∩K))ϕ(g′(H ∩K)).

So ϕ is an homomorphism. Kerϕ = {g(H ∩K) : ϕ(g(H ∩K)) =

(ē, ē) = (gH, gK)}. Then g ∈ H and g ∈ K implies that g ∈ H∩K. So

Kerϕ = H∩K. If G/H and G/K are abelian, then g1Hg2H = g1g2H =

g2g1H. Similarly g1g2K = g2g1K for all g1, g2 ∈ G, g−1
2 g−1

1 g2g1 ∈
H, g−1

2 g−1
1 g2g1 ∈ K. So for all g1, g2 ∈ G, g−1

2 g−1
1 g2g1 ∈ H ∩ K.

g−1
2 g−1

1 g2g1(H ∩K) = H ∩K. So g2g1(H ∩K) = g1g2(H ∩K).

2.7. Let G be finite non-abelian group of order n with the property

that G has a subgroup of order k for each positive integer k dividing n.

Prove that G is not a simple group.

Solution Let |G| = n and p be the smallest prime dividing |G|.
If G is a p-group, then 1 6= Z(G) � G. Hence G is not simple. So

we may assume that G has composite order. Then by assumption G

has a subgroup M of index p in G. i.e. |G : M | = p. Then G acts

on the right cosets of M by right multiplication. Hence there exists

a homomorphism φ : G ↪→ Sym(p). Then G/Kerφ is isomorphic

to a subgroup of Sym(p). Since p is the smallest prime dividing the

order of G we obtain |G/Kerφ|| p! which implies that |G/Kerφ| = p.

Hence Kerφ 6= 1 otherwise Ker φ = 1 implies that G is abelian and

isomorphic to Zp. But by assumption G is non-abelian.

2.8. Let M ≤ N be normal subgroups of a group G and H a

subgroup of G such that [N,H] ≤ M and [M,H] = 1. Prove that for

all h ∈ H and x ∈ N
(i) [h, x] ∈ Z(M)
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(ii)The map

θx : H → Z(M)

h→ [h, x]

is a homomorphism.

(iii) Show that H/CH(N) is abelian.

Solution: Let h ∈ H and x ∈ N . Then [h, x] = h−1x−1hx ∈
[N,H] ≤ M. Moreover for any m ∈ M, we need to show m[h, x] =

[h, x]m if and only if m−1h−1x−1hxm = h−1x−1hx if and only if

m−1h−1x−1hxmx−1h−1xh = 1 if and only ifm−1h−1x−1(xmx−1)hh−1xh =

1 . That is true as mh = hm and M is normal in G we have,

xmx−1 ∈M and xmx−1h = hxmx−1

(ii)

θx(h1h2) = [h1h2, x]

= [h1, x]h2 [h2, x]

= [h1, x][h2, x]

as [h1, x] ∈ Z(M) and so h−1
2 mh2 = m.

(iii) It is easy to see that Kerθx = CH(x). Then we can define a

map

ψ : H → Z(M)× Z(M)× . . .× Z(M) . . .

h→ [h, x1]× [h, x2]× . . .× [h, xi] . . .

where all xj ∈ N . Then the kernel of ψ is ∩CH(xj)
xj∈N

= CH(N). Then

the map from H/CH(N) to the right hand side is into and the right

hand side is abelian we have H/CH(N) is abelian.
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2.9. Let G be a finite group and Φ(G) the intersection of all max-

imal subgroups of G. Let N be an abelian minimal normal subgroup of

G. Then N has a complement in G if and only if N 5 Φ(G)

Solution Assume that N has a complement H in G. Then

G = NH and N ∩ H = 1. Since G is finite there exists a maximal

subgroup M ≥ H. Then N is not in M which implies N is not in Φ(G).

Because, if N ≤M , then G = HN ≤M which is a contradiction.

Conversely assume that N � Φ(G). Then there exists a maximal

subgroup M of G such that N � M . Then by maximality of M

we have G = NM . Since N is abelian N normalizes N ∩ M hence

G = NM ≤ NG(N ∩M) i.e. N ∩M is an abelian normal subgroup of

G. But minimality of N implies N ∩M = 1. Hence M is a complement

of N in G.

2.10. Show that F (G/φ(G)) = F (G)/φ(G).

Solution: (i) F (G)/φ(G) is nilpotent normal subgroup of G/φ(G)

so F (G)/φ(G) ≤ F (G/φ(G)).

LetK/φ(G) = F (G/φ(G)). ThenK/φ(G) is maximal normal nilpotent

subgroup of G/φ(G). In particular K E G and K/φ(G) is nilpotent.

It follows that K is nilpotent in G. This implies that K ≤ F (G).

K/φ(G) ≤ F (G)/φ(G) which implies F (G/φ(G)) = F (G)/φ(G).

2.11. If F (G) is a p-group, then F (G/F (G)) is a p′- group.

Solution: Let K/F (G) = F (G/F (G)), maximal normal nilpotent

subgroup of G/F (G). So K/F (G) = Dr Oq(K/F (G))
q∈Π(G)

= P1/F (G) ×

P2/F (G)× . . .×Pm/F (G). Since F (G) is a p-group so one of Pi/F (G)

is a p-group, say P1/F (G) is a p-group.

Now P1 is a p-group, P1/F (G)charK/F (G)charG/F (G) implies

that P1/F (G)charG/F (G) implies P1 /G. This implies P1 is a p-group

and hence nilpotent and normal implies P1 ≤ F (G). So P1/F (G) = id

i.e K/F (G) = F (G/F (G)) is a p′-group.

Observe this in the following example. S3, F (S3) = A3. F (S3/A3) =

S3/A3
∼= Z2 is a 2-group.

2.12. Let G = {(aij) ∈ GL(n, F ) | aij = 0 if i > j and aii =

a, i = 1. . . . , n} where F is a field, be the group of upper triangular
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matrices all of whose diagonal entries are equal. Prove that G ∼= D×U
where D is the group of all non-zero multiples of the identity matrix

and U is the group of upper triangular matrices with 1’s down diagonal.

Solution

d: G → F ∗

a c12 c13 c14 ... c1n

0 a c23 c24 ... c2n

.

. ... ∗
0 0 0 0 a cn−1n

0 0 0 0 0 a


→ a

It is clear that d is a homomorphism and Ker d = U . So U is

normal D∩U = 1. Since F is a field and a is a non-zero element every

element g ∈ G can be written as a product g = cu where c ∈ D and

u ∈ U . So DU = G. Moreover D is normal in G in fact D is central in

G. So G = DU ∼= D × U .

2.13. Prove that if N is a normal subgroup of the finite group G

and

(|N |, |G : N |) = 1, then N is the unique subgroup of order |N |.

Solution If M is another subgroup of G of order |N |. Then NM

is a subgroup of G as N � G. Now |NM | = |N ||M |
|N∩M | . If N 6= M , then

|NM | > |N | and if π is the set of primes dividing |N |, then N is a

maximal π-subgroup of G. But MN is also a π-group containing N

properly. Hence MN = N . i.e M ≤ N .

2.14. Let F be a field. Define a binary operation ∗ on F by a∗ b =

a+ b− ab for all a, b ∈ F .

Prove that the set of all elements of F distinct from 1 forms a group

F x = F \ {1} with respect to the operation ∗ and that F ∗ ∼= F x where

F ∗ is the multiplicative group on F \ {0} with respect to the usual

multiplication in the field.
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Solution ∗ is a binary operation on F x as a + b− ab = 1 implies

(a − 1)(1 − b) = 0 but a 6= 1 and b 6= 1 implies image of ∗ is in F x.

Indeed ∗ is a binary operation and ∗ : F x × F x → F x

(i) associativity of ∗: We need to show a ∗ (b ∗ c) = (a ∗ b) ∗ c
Indeed a ∗ (b ∗ c) = a ∗ (b+ c− bc) and (a ∗ b) ∗ c = (a+ b− ab) ∗ c
Then a∗(b∗c)= a+b+c−bc−(ab+ac−abc) = a+b−ab+c−ac−bc+abc =

(a ∗ b) ∗ c So associativity holds.

(ii) For the identity element, let a ∗ b = a for all a ∈ F implies b is

the identity element. The equality implies that a + b− ab = a. Hence

b − ab = 0 i.e b(1 − a) = 0. Since this is true for all a and a 6= 1 we

obtain b = 0 and 0 is the identity element.

(iii) a ∗ b = b ∗ a if and only if a+ b− ab = b+ a− ba if and only if

−ab = −ba since we are in a field for all a, b ∈ F we have ab = ba. So

a ∗ b = b ∗ a for all a ∈ F .

(iv) Now for all a ∈ F \{0}, there exists a′ ∈ F such that a ∗ a′ = 0

= a+ a′− aa′ implies a+ a′ = aa′. So a′ = a(1− a)−1. Hence F x is an

abelian group with respect to ∗. Let

φ : F x → F ∗

a→ 1− a

φ(a ∗ b) = φ(a+ b− ab) = 1− a− b+ ab = (1− a)(1− b) = φ(a)φ(b).

Then Kerφ = {a ∈ F x : φ(a) = 1} = {a ∈ F x : 1− a = 1} = {0}.
φ is onto as for any b ∈ F ∗ so b 6= 0, φ(x) = b implies that

1− x = b so x = 1− b and x 6= 1. Hence φ is an isomorphism.

2.15. Consider the direct square G × G of G. Let Ĝ = {(g, g) :

g ∈ G} ⊆ G×G.

(i) Show that Ĝ is a subgroup of G×G which is isomorphic to G.

Ĝ is called the diagonal subgroup of G×G.

(ii) Show also that Ĝ�G×G if and only if G is abelian.

Solution i) Ĝ is a subgroup of G. Indeed (g1, g1), (g2, g2) ∈ Ĝ.

(g1, g1)(g2, g2) = (g1g2, g1g2) ∈ Ĝ. (g−1
1 , g−1

1 ) ∈ Ĝ which implies Ĝ is a

subgroup of G×G.
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Ĝ ∼= G. Indeed define

ϕ : G −→ Ĝ

g −→ (g, g)

ϕ(gg′) = (gg′, gg′) = (g, g)(g′, g′) = ϕ(g)ϕ(g′). So ϕ is a homomor-

phism.

ϕ(g) = 1 = (g, g). This implies g = 1. So ϕ is a monomorphism.

For all (gi, gi) ∈ Ĝ there exists gi ∈ G such that ϕ(gi) = (gi, gi). So ϕ

is onto. Hence ϕ is an isomorphism.

ii) Ĝ�G×G if and only if G is abelian.

Assume Ĝ is a normal subgroup of G×G. Then for any g1, g2 ∈ G,

(g1, g2)−1(x, x)(g1, g2) = (g−1
1 xg1, g

−1
2 xg2) ∈ Ĝ. In particular g1 = 1

implies for all g2, and for all x ∈ G, g−1
2 xg2 = x. Hence G is abelian.

Conversely if G is abelian, then G×G is abelian and every subgroup

of G×G is normal in G, in particular Ĝ is normal in G.

2.16. Suppose H � G. Show that if x, y elements in G such that

xy ∈ H, then yx ∈ H.

Solution H �G, implies that every left coset is also a right coset

Hx = xH, yH = Hy, xy ∈ H so H = xyH.

xH = Hx implies xyxH = xyHx = Hx. Then yxH = x−1Hx = H.

Hence yx ∈ H.

2.17. Give an example of a group such that normality is not tran-

sitive.

Solution Let us consider A4 alternating group on four letters.

Then V = {1, (12)(34), (13)(24), (14)(23)} is a normal subgroup of A4.

Since V is abelian any subgroup of V is a normal subgroup of V . But

H = {1, (12)(34)} is not normal in A4.

Another Solution Let’s considerG = S3×S3 , A3 = {1, (123), (132)}.
A3 / S3. Let

A = { (1, 1), ((123), (123)), ((132), (132)) } ≤ G, A is diagonal

subgroup of A3×A3 and A ∼= A3. A/A3×A3 /G. But A is not normal

in G as ((12), 1)−1((123), (123))((12), 1) = ((132), (123)) /∈ A.
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2.18. If α ∈ AutG and x ∈ G, then |xα| = |x|.

Solution First observe that (xα)n = (xn)α. If xα has finite order

say n, then (xα)n = 1 = (xn)α = 1α. Hence xn = 1 as α is an automor-

phism. Hence x has finite order dividing n. If order of x is less than

or equal to n, say m. Then we obtain xm = 1. Then (xm)α = 1α = 1.

Hence (xα)m = 1. It follows that n = m, i.e. |xα| = |x| when the

order is finite. But the above proof shows that if order of xα is infinite

then order of x must be infinite. In particular conjugate elements of

a group have the same order. We can consider the semidirect product

of G with the Aut(G). Then in the semidirect product the elements x

and xα becomes conjugate elements.

2.19. Let H and K be subgroups of G and x, y ∈ G with Hx = Ky.

Then show that H = K.

Solution Hx = Ky implies Hxy−1 = K. As H is a subgroup,

1 ∈ H and so xy−1 ∈ Hxy−1 = K. Then yx−1 ∈ K. It follows that

K = Kyx−1. Then K = Kxy−1 = Kyx−1 = H. Hence K = H.

2.20. Prove that if K is a normal subgroup of the group G, then

Z(K) is a normal subgroup of G. Show by an example that Z(K) need

not be contained in Z(G).

Solution: Let z ∈ Z(K), k ∈ K and g ∈ G. Then g−1zg ∈
K as K E G and (g−1zg)k(g−1z−1g)k−1 = g−1z(gkg−1)z−1gk−1 =

g−1(gkg−1)zz−1gk−1 = 1. Hence Z(K) E G.

Now as an example consider A3 in S3. Z(A3) = A3 but Z(S3) = 1.

2.21. Let x, y ∈ G and let xy = z if z ∈ Z(G), then show that x

and y commute.

Solution: xy = z ∈ Z(G) implies for all g ∈ G, (xy)g = g(xy).

This is also true for x, hence (xy)x = x(xy). Now multiply both side

by x−1, we obtain yx = xy. Then x and y are commute.

2.22. Let UT (3, F ) be the set of all matrices of the form 1 a b

0 1 c

0 0 1


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where a, b, c are arbitrary elements of a field F, moreover 0 and 1 are

the zero and the identity elements of F respectively. Prove that

(i) UT (3, F ) ≤ GL(3, F )

(ii) Z(UT (3, F )) ∼= F+ and UT (3, F )/Z(UT (3, F )) ∼= F+ × F+

(iii) If |F | = pm, then UT (3, pm) ∈ Sylp(GL(3, pm))

Solution: (i) Let

A =

 1 a b

0 1 c

0 0 1

 , B =

 1 x y

0 1 z

0 0 1

 , a, b, c, x, y, z ∈ F.

Then AB =

 1 x+ a y + az + b

0 1 z + c

0 0 1

 ∈ UT (3, F )

A−1 =

 1 −a −b+ ac

0 1 −c
0 0 1

 ∈ UT (3, F ).

Hence UT (3, F ) is a subgroup of GL(3, F ).

(ii) Now if

A =

 1 a b

0 1 c

0 0 1

 ∈ Z(UT (3, F )), then AB = BA for all B ∈ UT (3, F ) implies

A =

 1 0 b

0 1 0

0 0 1


and every element of this type is contained in the center so

Z(UT (3, F )) = {

 1 0 b

0 1 0

0 0 1

 | b ∈ F }

Let
ϕ : F+ −→ Z(UT (3, F ))

b −→

 1 0 b

0 1 0

0 0 1


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ϕ is an isomorphism.

Now to see that UT (3, F )/Z(UT (3, F )) ∼= F+ × F+.

Let θ : UT (3, F )/Z(UT (3, F )) −→ F+ × F+. 1 a b

0 1 c

0 0 1

Z −→ (a, c)

θ is well defined and, moreover θ is an isomorphism.

(iii) Now all we need to do is to compare the order of UT (3, pm) and

the order of the Sylow p-subgroup of GL(3, pm). It is easy to see that

|UT (3, pm)| = p3m. And |GL(3, pm)| = (p3m−1)(p3m−pm)(p3m−p2m) =

p3m((p3m − 1)(p2m − 1)(pm − 1)). Hence p part are the same and we

are done.

2.23. Let x ∈ G, D := {xg : g ∈ G} and Ui ≤ G for i= 1,2.

Suppose that 〈D〉 = G and D ⊆ U1 ∪ U2. Then show that U1 = G or

U2 = G.

Solution: Assume that U1 6= G. Then there exists g ∈ G such that

xg /∈ U1 otherwise all conjugates of x is contained in U1 and so D ⊆ U1

which implies U1 = G. Then xg /∈ U1 implies xg ∈ U2 as D ⊆ U1 ∪ U2.

Now for any u1 ∈ U1, (xg)u1 /∈ U1 otherwise xg will be in U1 which is

impossible. Then for any u1 ∈ U1 we obtain (xg)u1 ∈ U2. Now U2 is

a subgroup and xg ∈ U2 so we have (xg)u2 ∈ U2 for all u2 ∈ U2. As

〈U1 ∪ U2〉 = G we obtain (xg)t ∈ U2 for all t ∈ G, i.e, D ⊆ U2 this

implies 〈D〉 ≤ U2 but 〈D〉 = G ≤ U2 which implies U2 = G.

2.24. Let g1, g2 ∈ G. Then show that |g1g2| = |g2g1|.

Solution: We will show that if |g1g2| = k <∞, then |g2g1| = k.

Let |g1g2| = k. (g1g2)(g1g2)....(g1g2)︸ ︷︷ ︸
k−times

= 1. Then multiplying from left

by g−1
1 and from right by g−1

2 we have (g2g1)(g2g1) . . . (g2g1)︸ ︷︷ ︸
(k−1)−times

= g1
−1g2

−1.

Now multiply from right first by g2 and then g1, we obtain

(g2g1)(g2g1)...(g2g1)︸ ︷︷ ︸
k−times

= ((g2g1))k = 1. It cannot be less than k since we
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may apply the above process and then reduce the order of (g1g2) less

than k.

2.25. Let H ≤ G, g1, g2 ∈ G. Then Hg1 = Hg2 if and only if

g1
−1H = g2

−1H.

Solution: (⇒) If Hg1 = Hg2, then H = Hg2g1
−1 hence g2g1

−1 ∈
H. Then H is a subgroup implies (g2g1

−1)−1 ∈ H i.e. g1g2
−1 ∈ H. It

follows that g1g2
−1H = H. Hence g2

−1H = g1
−1H.

(⇐) If g1
−1H = g2

−1H, then g1g2
−1 ∈ H by the same idea in the

first part we have (g1g2
−1)−1 ∈ H, g2g1

−1 ∈ H i.e. Hg2g1
−1 = H. This

implies Hg1 = Hg2.

2.26. Let H ≤ G, g ∈ G if |g| = n and gm ∈ H where n and m

are co-prime integers. Then show that g ∈ H.

Solution: The integers m and n are co-prime so there exists

a, b ∈ Z satisfying an + bm = 1. Then g = gan+bm = gangbm =

(gn)a(gm)b = gmb ∈ H. As H is a subgroup of G, gm ∈ H implies

gbm ∈ H and gna = 1. Hence gmb = g ∈ H.

2.27. Let g ∈ G with |g| = n1n2 where n1, n2 co-prime positive

integers. Then there are elements g1, g2 ∈ G such that g = g1g2 = g2g1

and |g1| = n1, |g2| = n2.

Solution: As n1 and n2 are relatively prime integers, there exist

a and b in Z such that an1 + bn2 = 1. Observe that a and b are

also relatively prime in Z. Then g = g1 = gan1+bn2 = gan1gbn2 . Let

g1 = gbn2 and g2 = gan1 . Then gn1
1 = (gbn2)n1 = 1, gn2

2 = (gan1)n2 = 1

g = g1g2 = gan1+bn2 = gbn2+an1 = g2g1. Indeed |g1| = n1. If gm1 = 1,

then m|n1 and gm1 = gbn2m = 1. It follows that n1n2|bn2m. Then n1|bm
but by above observation n1 and b are relatively prime as an1+bn2 = 1,

so n1|m. It follows that n1 = m. Similarly |g2| = n2.

2.28. Let g1, g2 ∈ G with |g1| = n1 <∞, |g2| = n2 <∞, if n1 and

n2 are co-prime and g1 and g2 commute, then |g1g2| = n1n2.

Solution: The elements g1 and g2 commute. Therefore

(g1g2)n1n2 = gn1n2
1 gn1n2

2 = (gn1
1 )n2(gn2

2 )n1 = 1. Assume |g1g2| = m. Then

(g1g2)m = gm1 g
m
2 = 1. Then m|n1n2 and gm1 = g−m2 .

(gm1 )n1 = (g−m2 )n1 = 1. Then n2|mn1 but gcd(n1, n2) = 1. We obtain
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n2|m. Similarly n1|m but gcd(n1, n2) = 1 implies n1n2|m. Hence

m = n1n2.

2.29. If H ≤ K ≤ G and N �G, show that the equations HN =

KN and H ∩N = K ∩N imply that H = K.

Solution: HN ∩ K = KN ∩ K = K. On the other hand by

Dedekind law HN ∩ K = H(N ∩ K) = H(N ∩ H) = H. Hence

H = K.

2.30. Given that Hλ �Kλ ≤ G for all λ ∈ Λ, show that
⋂
λ

Hλ �⋂
λ

Kλ.

Solution: Let x ∈
⋂
λ

Hλ and g ∈
⋂
λ

Kλ. Then consider g−1xg.

Since, for any λ ∈ Λ, g ∈ Kλ and x ∈ Hλ and Hλ � Kλ, we have

g−1xg ∈ Hλ for all λ ∈ Λ. i.e g−1xg ∈
⋂
λ∈∧

Hλ.

2.31. If a finite group G contains exactly one maximal subgroup,

then G is cyclic.

Solution: Let M be the unique maximal subgroup of G. Then

every proper subgroup of G is contained in M . Since M is maximal

there exists a ∈ G \M . Then 〈a〉 = G

2.32. Let H be a subgroup of order 2 in G. Show that NG(H) =

CG(H). Deduce that if NG(H) = G, then H ≤ Z(G).

Solution: Let H = {1, h} be a subgroup of order 2. Clearly

CG(H) ≤ NG(H). We need to show that if |H| = 2, then NG(H) ≤
CG(H). Let g ∈ NG(H). Then g−1hg is either 1 or h. If g−1hg = 1,

then h = 1 which is a contradiction. So g−1hg = h i.e g ∈ CG(H). So

CG(H) = NG(H). Moreover if NG(H) = G then CG(H) = NG(H) =

G. This implies H ≤ Z(G).

2.33. Let α ∈ AutG. Suppose that x−1xα ∈ Z(G) for all x ∈ G.

Then xα = x for all x ∈ G′.

Solution: Observe that x−1xα ∈ Z(G) implies that xαx−1 ∈ Z(G)

as Z(G) is a subgroup and x is an arbitrary element in G. Take an

arbitrary generator a−1b−1ab ∈ G′ where a, b ∈ G. Then
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(a−1b−1ab)α = (a−1)α(b−1)α(a)α(b)α

= (a−1)α(b−1)α(a)αa−1a(b)α as aαa−1 ∈ Z(G)

= (a−1)α(a)αa−1(b−1)αa(b)α

= a−1(b−1)αa(b)α

= a−1b−1 b(b−1)α︸ ︷︷ ︸ a(b)α

= a−1b−1a b(b−1)α︸ ︷︷ ︸(b)α
= a−1b−1ab

For any generator x ∈ G′ we have xα = x. Hence for any g ∈ G′ we

have gα = g

2.34. Let G = AAg for some g ∈ G. Then G = A.

Solution: It is enough to show that the specific element g ∈ G

is contained in A. For every element x ∈ G, there exist ax, bx in A

such that x = axb
g
x. In particular g = agb

g
g = agg

−1bgg. It follows that

agg
−1bg = 1 and g−1 = a−1

g b−1
g , then g = bgag ∈ A as ag and bg in A.

2.35. Let G be a finite group and A ≤ G and B ≤ A. If

x1, x2 . . . xn is a transversal of A in G and y1, y2 . . . ym is a transver-

sal of B in A, then {yjxi} , i = 1, 2, . . . , n and j = 1, 2, . . . ,m is a transver-

sal of B in G.

Solution: Let G =
⋃n
i=1 Axi and Axi ∩ Axj = ∅ for all i 6= j and

A =
⋃m
i=1Byi and Byi ∩Byj = ∅ for all i 6= j. Then we have,

G =
⋃n
i=1Axi =

⋃n
i=1

(⋃m
j=1Byi

)
xi =

⋃n
i=1

⋃m
j=1 Byjxi

If Byjxi ∩Byrxm 6= 0, then Axi ∩Axm 6= 0 implying that xi = xm.

Then Byjxi ∩Byrxi 6= 0 . Hence yr = yj

2.36. Suppose that G 6= 1 and |G : M | is a prime number for

every maximal subgroup M of G. Then show that G contains a normal

maximal subgroup. (Maximal subgroups with the above properties exist

by assumption).

Solution: Let Σ be the set of all primes pi such that |G : Mi| = pi
where pi is a prime.
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So Σ = {pi : |G : Mi| = pi,Mi is a maximal subgroup of G}. Let p

be the smallest prime in Σ. Let M be a maximal subgroup of G such

that |G : M | = p. Then G acts on the right to the set of right cosets

of M in G. Let Ω = {Mx : x ∈ G}. Then |Ω| = p and there exists a

homomorphism

φ : G→ Sym(Ω)

such that Ker φ = ∩x∈GMx ≤ M . Then G/Ker φ is isomorphic to

a subgroup of Sym(Ω) and |Sym(Ω)| = p!. Then G/Ker(φ) is a finite

group and there exists a maximal subgroup of G containing Ker(φ) and

index of subgroup divides p!. But p was the smallest prime |G : M | = p

so this implies that M = Ker (φ) is a normal subgroup of G.

2.37. If G acts transitively on Ω, then NG(Gα) acts transitively

on CΩ(Gα), α ∈ Ω.

Solution Gα = {g ∈ G| α.g = α } and

CΩ(Gα) = {β ∈ Ω | β.g = β for all g ∈ Gα }. Clearly α ∈ CΩ(Gα).

We will show that the orbit of NG(Gα) containing α is CΩ(Gα).

Observe first that if β ∈ CΩ(Gα) and x ∈ NG(Gα), then βx ∈
CΩ(Gα). Indeed for any gα ∈ Gα, βx.gα = βxgαx

−1x = βyx for some

y ∈ Gα. Hence βxgα = βx. i.e. βx ∈ CΩ(Gα). Let β ∈ CΩ(Gα). Since

G is transitive on Ω, there exists g ∈ G such that α.g = β. Then for

any t ∈ Gα, α.gt = αg. i.e gtg−1 ∈ Gα for all t ∈ Gα. i.e. g ∈ NG(Gα).

Therefore the orbit of NG(Gα) containing α contains the set CΩ(Gα).

2.38. Let G be a finite group.

(a) Suppose that A 6= 1 and A ∩ Ag = 1 for all g ∈ G \ A.
Then |

⋃
g∈GA

g| ≥ |G|
2

+ 1

(b) If A 6= G, then G 6=
⋃
g∈GA

g

Solution: (a) If A = G, then the statement is already true.

So assume that A is a proper subgroup of G. The number of distinct

conjugates of A in G is the index |G : NG(A)| = k.

Observe first that asNG(A) ≥ A and A ∩ Ag = 1 for all g ∈ G \ A
we have NG(A) = A. Then Agi ∩Agj = 1 for all i 6= j as Agi ∩Agj 6= 1

implies A ∩ Agig
−1
j 6= 1. It follows that A = Agig

−1
j . This implies

Agi = Agj and we obtain i = j.

|G : NG(A)| = |G|
|NG(A)| = |G|

|A| = k. Then |G| = k|A|.
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Now

|
⋃
g∈G

Ag| = |
k⋃
i=1

Agi |

= k(|A| − 1) + 1

= k|A| − k + 1

= |G| − k + 1

≥ |G| − |G|
2

+ 1 as k ≤ |G|
2

=
|G|
2

+ 1

(b) By above if A 6= G, then |
⋃
g∈GA

g| = |G| − k + 1. Then

|G| = k − 1 + |
⋃
g∈GA

g| as k ≥ 2 we obtain G 6=
⋃
g∈GA

g.

2.39. If H ≤ G, then G \H is finite if and only if G is finite or

H = G.

Solution: Assume that H ≤ G and G \H is finite. If G \H = φ

then, G = H. So assume that G \H 6= φ. If x ∈ G \H, then the left

coset xH has the same cardinality as H and xH ∩ H = φ, it follows

that xH ⊆ G \H. Hence H is finite. Similarly
⋃
ti 6=1

tiH ⊆ G \H finite

where ti belongs to the left transversal of H in G. But G =
⋃
ti 6=1

tiH∪H.

Union of two finite set is finite. Hence G is a finite group.

Converse is trivial.

2.40. Let d(G) be the smallest number of elements necessary to

generate a finite group G. Prove that |G| ≥ 2d(G)

(Note: by convention d(G) = 0 if |G| = 1).

Solution: By induction on d(G). If d(G) = 0, then |G| = 1. The

result is also true if d(G) = 1. Since the non-identity element has order

at least 2. Hence |G| ≥ 2. Let d(G) = n. Assume that if a group H is

generated by n− 1 elements, then |H| ≥ 2n−1.

Let the generators of G be {x1, x2, · · · , xn}. Then the subgroup

T =< x1, x2, · · · , xn−1 > is a proper subgroup of G and by assumption
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|T | ≥ 2n−1. Since xn 6∈ T we obtain xnT is a left coset of T in G and

xnT ∩ T = φ. Moreover xnT ∪ T ⊆ G. Hence |G| ≥ |xnT ∪ T | =

|xnT |+ |T | = 2|T | ≥ 2 2n−1 = 2n.

2.41. A group has exactly three subgroups if and only if it is cyclic

of order p2 for some prime p.

Solution: Let G be a cyclic group of order p2. Every finite cyclic

group has a unique subgroup for any divisor of the order of G. Hence

G has a unique subgroup H of order p. Hence H is the only nontrivial

subgroup of G. Then the subgroups are {1}, H and G.

Conversely let G be a group which has exactly three subgroups.

Since every group has {1} and itself as trivial subgroups, G must have

only one non-trivial subgroup, say H. So H has no nontrivial sub-

groups. This implies H is a cyclic group of order p for some prime p.

Let x ∈ G. Then x−1Hx is again a subgroup of order p but G has only

one subgroup of order p implies that x−1Hx = H for all x ∈ G i.e. H

is a normal subgroup of G. So we have the quotient group G/H. Since

there is a 1−1 correspondence between the subgroups of G/H and the

subgroups of G containing H we obtain G/H has no nontrivial sub-

group i.e. G/H is a group of order q for some prime q. Then |G| = pq

so G has a proper subgroup of order p and of order q. This implies

p = q and |G| = p2.

Every group of order p2 is abelian. Then either G is cyclic of order

p2 or G ∼= Zp × Zp. But if G is isomorphic to Zp × Zp then G has

5 subgroups but this is impossible as we have only three subgroups.

Hence G is a cyclic group of order p2.

Another Solution: Let G be a group with exactly 3 subgroups.

Since {1} and {G} are subgroups of G we have only one nontrivial

proper subgroup H of G. Since H has no nontrivial subgroup. It is a

group of order p for some prime p, say H = 〈x〉, since G 6= H there

exists y ∈ G\H. Then 〈y〉 is a subgroup of G different from H. Hence

〈y〉 = G. So G is a cyclic group, and has a subgroup H of order p. This

implies G is a finite cyclic group. Since for any divisor of the order of

a cyclic group, there exists a subgroup, the only prime divisor of |G|
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must be p. And |G| must be p2 otherwise G has a subgroup for the

other divisors.

2.42. Let H and K be subgroups of a finite group G.

(a) Show that the number of right cosets of H in HdK equals |K :

Hd ∩K|
(b) Prove that∑

d

1

|Hd ∩K|
=

|G|
|H| |K|

=
∑
d

1

|H ∩Kd|

where d runs over a set of (H,K)-double coset representatives.

Solution: (a) The function α : HdK → HdKd−1

hdk → hdkd−1

is a bijective function. Hence |HdK| = |HdKd−1| = |H ·Kd|. Similarly

β : HdK → d−1HdK is bijective. Hence

|HdK| = |HKd| = |d−1HdK| = |HdK|

Since H and Kd are subgroups of G we have |HdK| = |HKd|.

|HdK| = |HKd| = |H| |K
d|

|H ∩Kd|
=
|H| |K|
|H ∩Kd|

|HdK|
|H|

=
|HdK|
|H|

=
|Hd| |K|
|H| |Hd ∩K|

=
|K|

|Hd ∩K|

= |K : K ∩Hd|

(b)

|G|
|H| |K|

=
∑
d

|HdK|
|H| |K|

=
∑
d

|K|
|Hd ∩K| |K|

=
∑
d

1

|Hd ∩K|

similarly

|G|
|H| |K|

=
∑
d

|HdK|
|H| |K|

=
∑
d

|H| |Kd|
|H ∩Kd| · |H| |K|

=
∑
d

1

|H ∩Kd|

2.43. Find some non-isomorphic groups that are direct limits of

cyclic groups of order p, p2, p3, · · · .
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Solution: Let the finite cyclic group Gi of order pi be generated

by xi. Recall that a cyclic group has a unique subgroup for any divisor

of the order of the group.

αi+1
i :

Gi ↪→ Gi+1

xi ↪→ xpi+1

The homomorphisms αi+1
i is a monomorphism. So direct limit is

the locally cyclic (quasi-cyclic or Pru̇fer) group denoted by Cp∞ .

(b) αi+1
i :

Gi ↪→ Gi+1

xi ↪→ 1
. Then D = lim

n→∞
Gn = {1}.

2.44. If H ≤ G, prove that HG = 〈Hg| g ∈ G〉 and HG =
⋂
g∈GH

g.

Solution: Recall that HG is the intersection of all normal sub-

groups containing H. Let M = 〈Hg| g ∈ G〉 we need to show that

M = HG. Every element x ∈ M is of the form x = hg11 h
g2
2 · · ·h

gk
k .

Then for any element

g ∈ G, xg = (hg11 · · ·h
gk
k )g = hg1g1 hg2g2 · · ·h

gkg
k ∈M.

Hence M is a normal subgroup of G. If we choose g = 1 in hg we obtain

H ≤ M . Hence M is a normal subgroup containing H i.e. M ⊇ HG.

On the other hand HG is a normal subgroup of G containing H. Hence

HG contains all elements of the form hg, g ∈ G. In particular HG ⊇M .

Hence M = HG.

HG is the join of normal subgroups of G contained in H. Recall

that HG is the largest normal subgroup, contained in H.

For the second part, let, T =
⋂
g∈GH

g.

If we choose g = 1 we obtain Hg = H. Hence T ⊆ H. Intersection

of subgroups is a subgroup, hence T is a subgroup of G.

Let x ∈ T . Then x ∈ Hy for all y ∈ G. It follows that xg ∈ Hyg

for all y ∈ G. But
⋂
y∈G

Hy =
⋂
y∈G

Hyg since the function αg :
G→ G

y → yg

is 1− 1 and onto. Hence T is a normal subgroup of G contained in H.

It follows that T ⊆ HG.

On the other hand HG is a normal subgroup of G contained in H.

Then Hg
G ≤ Hg for all g ∈ G. But Hg

G = HG implies HG ≤
⋂
g∈G

Hg = T .

Hence T = HG.
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2.45. If H is abelian, then the set of homomorphisms Hom (G,H)

from G into H is an abelian group, if the group operation is defined by

gα+β = gαgβ.

Solution: Let α, β, γ ∈ Hom (G,H). Then for any g ∈ G

gα+(β+γ) = gα gβ+γ = gα(gβgγ).

= (gαgβ)gγ

= gα+β · gγ = g(α+β)+γ

By associativity in H.

Hence α + (β + γ) = (α + β) + γ

The zero homomorphism, namely the map which takes every ele-

ment g in G to the identity element in H.

For any α ∈ Hom (G,H)

g−α = (g−1)α

gα−α = g◦ = 1

Hence −α is the inverse of α.

gα+β = gαgβ = gβgα since H is abelian

= gβ+α. Hence α + β = β + α

for all α, β ∈ Hom (G,H) gα+β = gαgβ , then α+β is a homomorphism.

(gh)α+β = (gh)α(gh)β = gαhα gβhβ

= gαgβ · hαhβ since H is abelian.

= gα+βhα+β

Observe that commutativity of H is used in order to have α+β ∈ Hom

(G,H).

2.46. If G is n-generator and H is finite, prove that

|Hom(G,H)| ≤ |H|n.

Solution: Let G be generated by g1, g2, · · · , gn and α be a homo-

morphism. α is uniquely determined by the n tuple gα1 , g
α
2 , · · · , gαn . For

this if β is another homomorphism from G into H, such that gαi = gβi .

Then for any element g ∈ G

g = gni1i1
gni2i2
· · · gnikik
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where gij ∈ {g1, · · · , gn} for all ij ∈ {1, 2, · · · , n} and nij ∈ Z. Since α

and β are homomorphisms from G into H.

gα =
(
g
ni1
i1

)α (
g
ni2
i2

)α
· · ·
(
gnikik

)α
gβ =

(
g
ni1
i1

)β (
g
ni2
i2

)β
· · ·
(
g
nik
ik

)β
It follows that for any g ∈ G, gα = gβ. Hence α = β. H is finite and

there are at most |H|n, n-tuple. Hence the number of homomorphisms

from G into H is less than or equal to |H|n.

2.47. Show that the group T = {m
2n
|m,n ∈ Z} is a direct limit of

infinite cyclic groups.

Solution Let Gi be an infinite cyclic group generated by xi. Define

a homomorphism αi+1
i :

Gi ↪→ Gi+1

xi ↪→ x2
i+1

αji = αi+1
i αi+2

i+1 · · ·α
j
j−1

and

αji :
Gi → Gj

xi → x2j−i
j

Then the set
∑

=

{
(Gi, α

j
i ) : i ≤ j

}
is a direct system.

Let D be the direct limit of the above direct system. Then

G1 = {[xj1] | j ∈ Z} ≤ D

G2 = {[xj2] | j ∈ Z} ≤ D

G1 ≤ G2. Because

[xj1] = [(x1)jα2
1] = [x2j

2 ] ∈ G2

Let D =
∞⋃
i=1

Gi. Then D is an abelian group. Indeed assume

that i ≤ j . [xni ][xmj ] = [xni (αji )x
m
j ] = [xn2j−i

j · xmj ] = [xmj · xn2j−i
j ] =

[xmj ][xn2j−i
j ] = [xmj ][xni ].

Claim: D ∼= T = { n
2i
| n, i ∈ Z} ≤ (Q,+)

ϕ : D → T

[xki ]→
k

2i
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Let [xni ] and [xmj ] be elements of D. Assume that i ≤ j. Then

[xni ][xmj ] = [xn2j−i+m
j ]

[xni ]
ϕ→ n

2i

[xmj ]
ϕ→ m

2j

[xni ][xmj ] = [xn2j−i+m
j ]

ϕ→ n2j−i +m

2j

Now

n

2i
+
m

2j
=
n · 2j−i

2j
+
m

2j
=
n2j−i +m

2j
.

So ϕ is a homomorphism from D into T . Clearly ϕ is onto.

Ker ϕ = { [xmi ] | ϕ[xmi ] =
m

2i
= 0} = {[x◦i ]} = {[1]} ∈ D

so ϕ is an isomorphism.

2.48. Show that Q is a direct limit of infinite cyclic groups.

Solution: Recall that for any two infinite cyclic groups generated

by x and y the map

〈x〉 > → 〈y〉
x→ ym

for any m defines a homomorphism. Moreover this map is a monomor-

phism. Observe that the set of natural numbers N is a directed set

with respect to natural ordering. Let Gi be an infinite cyclic group

generated by xi, i = 1, 2, 3, · · ·

Define a homomorphism αi+1
i :

Gi ↪→ Gi+1

xi ↪→ xi+1
i+1

where αii is identity.

αi+1
i αi+2

i+1 = αi+2
i : xi → xi+1

i+1 → (xi+2)(i+2)(i+1)

αji = αi+1
i αi+2

i+1 · · ·α
j
j−1
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The set

{
(Gi, α

j
i )| i ≤ j

}
is a direct system. The equivalence class of

x1 contains the following set

[x1] = {x1, x
2
2, x

6
3, x

24
4 , x

5!
5 , · · · , xn!

n , · · · }
[x2] = {x2, x

3
3, x

12
4 , x

5·4·3
5 , · · · , xk·(k−1)···3

k , · · · }

[x3] = {x3, x
4
4, x

20
5 , x

6·5·4
6 , , x

k·(k−1)(k−2)···4
k , · · · }

...

[xn−1] = {xn−1, x
n
n, x

(n+1)n
n+1 , · · · }

[xn] = {xn, xn+1
n+1, x

n+2·n+1
n+2 , · · · , xk·(k−1)···(n+1)

k , · · · }

[x2]2 = [x2][x2] = [x1]

[x3]3 = [x3][x3][x3] = [x2]

[x4]4 = [x4][x4][x4][x4] = [x3]

...

[xn]n = [xn] · · · [xn] = [xnn] = [xn−1]

[xn]n! = [x1]

since Gi = 〈xi〉, the direct limit D = lim
n→∞

Gi = 〈[xi] |i = 1, 2, 3, · · · 〉
Define a map

ϕ :
ϕ : D → (Q,+)

[xn]→ 1
n!

if m > n

[xn][xm] = [xα
m
n
n ][xm]

= [x(n+1)(n+2)···m
m ][xm]

= [x(n+1)(n+2)···m+1
m ]

[xn][xm] = [x(n+1)(n+2)···m+1
m ]

xn → 1
n!

xm → 1
m!

x(n+1)(n+2)···m+1
m → (n+ 1)(n+ 2) · · ·m+ 1

m!
For m ≥ n.

1

n!
+

1

m!
=

(n+ 1)(n+ 2) · · ·m
m!

+
1

m!
=

(n+ 1) · · · (m) + 1

m!
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so ϕ is a homomorphism. For any
m

n
∈ Q we have ϕ([xn](n−1)!m) =

1
n!

(n−1)!m
= m

n
. Hence ϕ is onto

Ker ϕ =

{
[xi1 ]

k1 [xi2 ]
k2 · · · [xij ]kj ∈ D | ϕ([xi]

k1 · · · [xij]kj) = 1

}
Since the index set is linearly ordered this corresponds to, there

exists n ∈ N such that n = max{i1, · · · , ij}. Hence [xi1]k1 · · · [xij ]kj =

[xn]m for some m. Then ϕ[[xn]m] = m
n!

= 0. It follows that m = 0.

Then [xn]0 = [x1]0 = [x0
1] which is the identity element in D. Hence

ϕ is an isomorphism.

Remark: On the other hand observe that ϕ([xn]m) = m
n!

= 1 im-

plies m = n!. Then [xn]n! = [x1] and ϕ([x1]) =
1

1!
= 1.

2.49. If G and H are groups with coprime finite orders, then Hom

(G,H) contains only the zero homomorphism.

Solution: Let α in Hom (G,H). Then by first isomorphism the-

orem G/Kerα ∼= Im(α).

By Lagrange theorem |Ker(α)| divides the order of |G|. Hence
|G|

|Ker(α)|
is coprime with |H|. Similarly Im(α) ≤ H and |Im(α)| divides

the order of H. Hence |G|
|Ker(α)|

= |Im(α)| = 1. Hence |Ker(α)| = |G|.
This implies that α is a zero homomorphism i.e. α sends every element

g ∈ G to the identity element of H.

2.50. If an automorphism fixes more than half of the elements of

a finite group, then it is the identity automorphism.

Solution Let α be an automorphism of G which fixes more than

half of the elements of G. Consider the set H = {g ∈ G | gα = g }
We show that H is a subgroup of G. Indeed if g1, g2 ∈ H then gα1 =

g1, g
α
2 = g2. Hence (g1g2)α = gα1 g

α
2 = g1g2 i.e. g1g2 ∈ H. Moreover

(g−1
1 )α = (gα1 )−1 = g−1

1 . Hence g−1
1 ∈ H. So H is a subgroup of G

containing more than half of the elements of G. By Lagrange theorem

|H| divides |G|. It follows that H = G.

2.51. Let G be a group of order 2m where m is odd. Prove that G

contains a normal subgroup of order m.
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Solution Let ρ be a right regular permutation representation of G .

By Cauchy’s theorem there exists an element g ∈ G such that |〈g〉| = 2.

We write g as a permutation gρ = (x1, x1g
ρ)(x2, x2g

ρ) . . . (xm, xmg
ρ).

Since Gρ is a regular permutation group it does not fix any point .

It follows that any orbit of gρ containing a point x is of the form

{x, xgρ}. Hence we have m transpositions. Since m is odd gρ is an odd

permutation. Then the map

Sign : Gρ → {1,−1}

is onto. Hence Ker(Sign) � Gρ and |G/Ker(Sign)| = 2. It follows

that |Ker(Sign)| = m.

2.52. Let G be a finite group and x ∈ G. Then |CG(x)| ≥ |G/G′|
where G′ denotes the derived subgroup of G.

Solution G acts on G by conjugation. Then stabilizer of a point

is CG(x). Hence |G : CG(x)| = |{xg | g ∈ G}|= length of the orbit

containing x. It follows that |G|
|CG(x)| = |{g−1xg | g ∈ G}|. The function

φ : {g−1xg | g ∈ G} → {x−1g−1xg |g ∈ G}

is a bijective function. But G′ is generated by the elements y−1g−1yg =

[y, g] where y and g lies in G. It follows that

|{x−1g−1xg |g ∈ G} ≤ |{y−1g−1yg | y, g ∈ G}| ≤ |G′|.

Hence |G|
|CG(x)| ≤ |G

′|. Then |G/G′| ≤ |CG(x)|.

2.53. If H,K,L are normal subgroups of a group, then [HK,L] =

[H,L][K,L].

Solution The group [H,L] is generated by the commutators [h, l] =

h−1l−1hl where h ∈ H and l ∈ L. Of course every generator [h, l] of

[H,L] is contained in [HK,L]. Hence [H,L] is a subgroup of [HK,L].

Similarly [K,L] is contained in [HK,L] hence [H,L][K,L] ⊆ [HK,L].

On the other hand generators of [HK,L] are of the form [hk, l] =

[h, l]k[k, l] where h ∈ H and l ∈ L. The right hand side is an element

of [H,L][K,L] since H,K,L are normal subgroups, hence [H,L] is nor-

mal in G and so [h, l]k ∈ [H,L]. It follows that [HK,L] ≤ [H,L][K,L].

Then we have the equality [HK,L] = [H,L][K,L].
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2.54. Let α be an automorphism of a finite group G. Let

S = {g ∈ G | gα = g−1 }.

If |S| > 3
4
|G|, show that α inverts all the elements of G and so G is

abelian.

Solution Let x ∈ S. Then |S ∪ xS| = |S|+ |xS| − |S ∩ xS|. Since

S ∪xS ⊆ G, we obtain |S ∪xS| ≤ |G|. On the other hand the function

φx :
S → xS

s→ xs

is a bijective function. Hence |xS| = |S|. It follows that |G| ≥ |S ∪
xS| = |S| + |S| − |S ∩ xS|. Then |G| > 3

4
|G| + 3

4
|G| − |S ∩ xS|.

It follows that |S ∩ xS| > 3
2
|G| − |G| = 1

2
|G|. This is true for all

x ∈ S. Let xs1 and xs2 be two elements of S ∩ xS, then xsi ∈ S

implies (xsi)
α = xαsαi = (xsi)

−1 = s−1
i x−1 = xαsαi = x−1s−1

i . It follows

that x and si commute. Since there are more than 1
2
|G| elements in

|S∩xS| we obtain |CG(x)| > 1
2
|G|. But CG(x) is a subgroup. Hence by

Lagrange theorem we obtain |CG(x)| = |G| which implies G = CG(x)

i.e x ∈ Z(G). But this is true for all x ∈ S. Hence S ⊆ Z(G).

So 3
4
|G| < |S| ≤ |Z(G)| and Z(G) is a subgroup of G implies that

Z(G) = G. Hence G is abelian. Then S becomes a subgroup of G.

Hence S is a subgroup of G of order greater than 3
4
|G|. It follows by

Lagrange theorem that S = G.

2.55. Show that no group can have its automorphism group cyclic

of odd order greater than 1.

Solution Recall that if an element of order 2 in G exists, then by

Lagrange theorem 2 must divide the order of the group.

We first show that the group in the statement of the question can

not be an abelian group. If G is abelian, then the automorphism x→
x−1 is an automorphism of G of order 2 unless x = x−1 for all x ∈ G. By

assumption the automorphism group is cyclic of odd order so x = x−1

for all x ∈ G. It follows that G is an elementary abelian 2-group.

Then G can be written as a direct sum of cyclic groups of order 2.

This allows us to view G as a vector space over the field Z2. Then

Aut(G) ∼= GL(n, Z2). As |GL(2, Z2)| = (22 − 1)(22 − 2) = 3.2 = 6.
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The group Aut(G) ∼= GL(2,Z2) is cyclic of odd order. This group is

cyclic if and only if n = 1 in that case G ∼= Z2 and Aut(G) = 1 which

is impossible by the assumption. So we may assume that G is non-

abelian. Then there exists x ∈ G \ Z(G). The element x induces a

nontrivial inner automorphism of G. Moreover G/Z(G) ∼= Inn(G) ≤
Aut(G). So G/Z(G) is a cyclic group But this implies G is abelian.

This is a contradiction. Hence such an automorphism does not exist.

2.56. If N �G and G/N is free, prove that there is a subgroup H

such that G = HN and H ∩N = 1. (Use projective property).

Solution Let π be the projection from G into G/N . Then by the

projective property of the free group the diagram

G/N

G/N

β

?
-

�
�
�

�
�

�
��	

G

id

π

commutes.

Since β is a homomorphism, Im(β) is a subgroup of G. Let H =

Im(β). Let w ∈ H ∩ N . Since w ∈ N, wN = N. The map β is a

homomorphism implies (wN)β = (N)β = idG so w = id.

Let g be an arbitrary element of G. Now gN ∈ G/N and (gN)β ∈
H, since the diagram is commutative (gN)βπ = gN . By the projec-

tion π we have (gN)β = gn for some n ∈ N . Hence g = (gN)β.n−1

where (gN)β ∈ H and n−1 ∈ N i.e. G = HN .

2.57. Prove that free groups are torsion free.

Solution Let F be a free group on a set X. We may consider the

elements of F as in the normal form. i.e. every element w in F can be

written uniquely in the form w = xl11 . . . x
lk
k where xi ∈ X and li ∈ Z

for all i = 1, 2, . . . , k and xi 6= xj for i 6= j. Observe first that the

elements xi or x−1
i have infinite orders.

Let w = xl11 . . . x
lk
k be an arbitrary non-identity element of F . w2 =

xl11 . . . x
lk
k x

l1
1 . . . x

lk
k . If xl11 6= x−lkk , then for any n, wn is nonidentity and
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we are done. If xl11 = x−lkk , then in w2 these two elements cancel and

gives identity. But it may happen that xl22 = x
−lk−1

k−1 . Then the element

w is of the form xl11 x
l2
2 . . . x

−l2
2 x−l11 . Then continuing like this we reach

to an element xl11 x
l2
2 . . . x

li
i x
−li
i . . . x−l22 x−l11 . But this implies that w is

identity. So there exists i such that when we take powers of w then

the powers of xi increase. Since xi has infinite order we obtain, w has

infinite order.

2.58. Prove that a free group of rank greater than one has trivial

center.

Let w = xl11 . . . x
ln
n be an element of a center of a free group of rank

> 1. If x1 6= xn. Then xl11 . . . x
ln
n x1 6= x1x

l1
1 . . . x

ln
n . Since every element

of F can be written uniquely and any two elements are equal if the

corresponding entries are equal.

If x1 = xn, then consider wx2x1. By uniqueness of writing wx2x1 6=
x2x1w. This also shows that even if w contains only one symbol if rank

of F is greater than one, then center of F is identity.

2.59. Let F be a free group and suppose that H is a subgroup with

finite index. Prove that every nontrivial subgroup of F intersects H

nontrivially.

Solution The group H has finite index in F implies that F acts

on the right to the set Ω = {Hx1, . . . , Hxn} of the right cosets of

H in F . Then there exists a homomorphism φ : F → Sym(Ω) such

that Kerφ =
⋂n
i=1 H

xi . Hence F/Ker(φ) is a finite group. Let K

be a nontrivial subgroup of F and let 1 6= w ∈ K. Then wn! 6= 1

since every nontrivial element of F has infinite order by 2.57. But

wn! ∈ Kerφ ≤ H. Hence 1 6= wn! ∈ K ∩Ker(φ).

2.60. If M and N are nontrivial normal nilpotent subgroups of a

group. Prove from first principals that Z(MN) 6= 1. Hence give an
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alternative proof of Fittings Theorem for finite groups.

Solution Consider M ∩ N . If M ∩ N = 1, then MN = M × N
and Z(MN) = Z(M) × Z(N) 6= 1. As M and N are nilpotent. If

M ∩ N 6= 1, then [[M ∩ N,M ],M ] . . .] = 1 implies there exists a

subgroup K�(M∩N) such that 1 6= K ≤ Z(M). Since K�N we have

[[K,N ], N . . .] = 1. It follows that there exists a subgroup 1 6= L ≤ K

such that L ≤ Z(N). Hence we obtain 1 6= L ≤ Z(M) ∩ Z(N). But

1 6= L ≤ Z(M) ∩ Z(N) ≤ Z(MN).

Let Z = Z(MN)CharMN �G implies Z �G. Hence MZ/Z and

NZ/Z are normal nilpotent subgroups of G/Z. Then MN/Z has a

nontrivial center in G/Z. Continuing like this if MN is finite we ob-

tain a central series of MN . Hence MN is a nilpotent group in the

case that MN is a finite group.

2.61. Let A be a nontrivial abelian group and set D = A × A.

Define δ ∈ Aut(D) as follows: (a1, a2)δ = (a1, a1a2). Let G be the

semidirect product 〈δ〉nD.

(a) Prove that G is nilpotent of class 2 and Z(G) = G′ ∼= A

(b) Prove that G is a torsion group if and only if A has finite

exponent.

(c) Deduce that even if the center of a nilpotent group is a torsion

group, the group may contain elements of infinite order.

Solution Let A be a nontrivial abelian group. Define δ on D =

A × A such that δ(a1, a2) = (a1, a1a2). Then δ is an automorphism

of D. Indeed δ((a1, a2)(b1, b2)) = δ(a1b1, a2b2) = (a1b1, a1b1a2b2) =

(a1, a1a2)(b1, b1b2) as A is an abelian group. So δ is a homomorphism

from D into D.

Ker(δ) = {(a1, a2)| δ(a1, a2) = (a1, a1a2) = (1, 1)} = {(1, 1)}

Moreover for any (a1, a2) ∈ D, δ(a1, a
−1
1 a2) = (a1, a2). Hence δ

is an automorphism of D. Therefore we may form the group G as a

semidirect product of D and 〈δ〉 and obtain G = D o 〈δ〉

(a) Now we show that Z(G) = G′ ∼= A.
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An element of G is of the form (δi, (a1, a2)) for some i ∈ Z and

a1, a2 in A. Let (δn, (z1, z2)) be an element of the center of G. Then

(δi, (a1, a2))−1(δn, (z1, z2))(δi, (a1, a2) = (δn, (z1, z2)) for any i ∈ Z
and for any (a1, a2) ∈ A× A.

Then

(δi, (a1, a2))−1(δn+i, (z1, z2)δ
i
(a1, a2)) = (δi, (a1, a2))−1(δn+i, (z1, z

i
1z2)(a1, a2))

= (δi, (a1, a2))−1(δn+i, (z1a1, z
i
1z2a2).

Observe that (δi, (a1, a2))−1 = (δ−i, (a−1
1 , ai1a

−1
2 )),

we obtain (δ−i, (a−1
1 , ai1a

−1
2 ))(δn+i, (z1a1, z

i
1z2a2)

= (δn, (a−1
1 , ai1a

−1
2 )δ

n+i

(z1a1, z
i
1z2a2)

= (δn, (a−1
1 , a−n1 a−1

2 (z1a1, z
i
1z2a2))

= (δn, (a−1
1 , (a−1

1 )na−1
2 )(z1a1, z

i
1z2a2))

= (δn, (z1, a
−n
1 zi1z2)

= (δn, (z1, z2))

implies that a−n1 zi1 = 1. So zi1 = an1 for any i and for any a1 ∈ A. In

particular a1 = 1 implies that z1 = 1. It follows that an1 = 1 for any

a1 ∈ A. Then (a1, a2)δ
n

= (a1, a
n
1a2) = (a1, a2).

Hence δn is an identity automorphism ofD. It follows that (δn, (1, z2)) =

(id, (1, z2)).

Hence Z(G) = {(1, (1, z)) : z ∈ A } ∼= A.

The group G′ is generated by commutators. The form of a general

commutator is:

[ (δi, (a1, a2)), (δn, (z1, z2)) ] = (δi, (a1, a2))−1(δn, (z1, z2))−1(δi, (a1, a2))(δn, (z1, z2))

Since (δi, (a1, a2))−1 = (δ−i, (a−1
1 , ai1a

−1
2 )) we obtain

= (δ−i, (a−1
1 , ai1a

−1
2 ))(δ−n, (z−1

1 , zn1 z
−1
2 ))(δi+n, (a1, a2)δ

n

(z1, z2))

= (δ−i−n, (a−1
1 z−1

1 , ai+n1 a−1
2 zn1 z

−1
2 )(δi+n, (a1z1, a

n
1a2z2))

= (δ0, (a−1
1 z−1

1 a1z1, (a
−1
1 z−1

1 )i+nai+n1 a−1
2 zn1 z

−1
2 an1a2z2)
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= ((1, (1, z−i1 an1 ) ∈ Z(G). Hence G′ ≤ Z(G). In particular choosing

i = 1 and a1 = 1 we obtain every element of Z(G) is in G′. Hence

Z(G) = G′ ∼= A. It follows that G/Z(G) is abelian.

Z(G/Z(G)) = Z2(G)/Z(G) = G/Z(G) and G is clearly not abelian,

it follows that G is nilpotent of class 2.

(b) Assume that G is a torsion group. Then (δi, (a1, a2)) has finite

order for any i ∈ Z and (a1, a2) ∈ A. Then

(δi, (a1, a2))n = (1, (1, 1)). Then

(δi, (a1, a2))(δi, (a1, a2))(δi, (a1, a2)) . . . (δi, (a1, a2))

= (δ2i, (a1, a2))δ
i
, (a1, a2))(δi, (a1, a2)) . . . (δi, (a1, a2))

= (δ2i, (a1, a
i
1a2))(a1, a2))(δ2i, (a2

1, a
i
1a

2
2)) . . . (δi, (a1, a2)) implies that

δni = 1 and an1 = 1. If order of δ is m, then for any (a, b) ∈ A× A
(a, b)δ

m
= (a, b) = (a, amb) implies am = 1 for all a ∈ A. In particu-

lar A has finite exponent and this exponent is bounded by the order of δ.

Conversely if A has finite exponent say m then (a, b)δ
m

= (a, amb) =

(a, b) for any (a, b) ∈ A × A. Hence δm is the identity automorphism

of A×A. This implies G = 〈δ〉nD is a torsion group as D = A×A is

a torsion group. In particular (δi, (a, b))m is an element in A×A since

A has finite exponent we obtain ((δi, (a, b)m)n = (1, (1, 1)).

(c) Let A be the direct product of cyclic groups Zn for any n ∈ N.

Then by the above observation G = 〈δ〉 n D is a nilpotent group of

class 2 .

Since exponent of A is not finite by (b) we obtain that G is not a

torsion group. Hence G contains elements of infinite order.

3. SOLUBLE AND NILPOTENT GROUPS

3.1. Suppose that G is a finite nilpotent group. Then the following

statements are equivalent

(i) G is cyclic.

(ii) G/G′ is cyclic.

(iii) Every Sylow p-subgroup of G is cyclic.

Solution: (i) ⇒ (ii): Homomorphic image of a cyclic group is

cyclic.
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(ii) ⇒ (iii): Assume that G/G′ is cyclic. G is nilpotent so every

maximal subgroup of G is normal in G. As G is nilpotent G′ ≤ G.

For any maximal subgroup M , G/M ∼= Zp for some prime p. G′ ≤M

It follows that G′ ≤
⋂
M

Mmax in G

= Φ(G). Now G/G′ = 〈xG′〉 . Then

〈x,G′〉 = G so 〈x,Φ(G)〉 = G. Hence 〈x〉 = G as Frattini subgroup is

a non-generator group in G. This implies that G is cyclic hence every

Sylow subgroup is cyclic.

(iii) ⇒ (i) Now assume every Sylow subgroup is cyclic. G is

nilpotent hence it is a direct product of its Sylow subgroups G =

Op1(G) × Op2(G) × . . . × Opk(G). Since direct product of Cyclic p-

groups of different primes is cyclic we have G is cyclic.

3.2. Let G be a finite group. Prove that G is nilpotent if and only

if every maximal subgroup of G is normal in G.

Solution: Assume that G is nilpotent. Then every maximal sub-

group is normal in G as nilpotent satisfies normalizer condition.

Assume every maximal subgroup ofG is normal inG. LetM1,M2, . . . ,Mk

be the maximal subgroups of G. Mi /G. G/Mi
∼= Zp for some prime p.

Then G/
⋂
Mi = G/Φ(G) ↪→ G/M1 × G/M2 × ... × G/Mk is abelian.

Hence G/Φ(G) is abelian hence G/Φ(G) is nilpotent. It follows that G

is nilpotent.

3.3. Let p, q, r be primes prove that a group of order pqr is soluble.

Solution If p = q = r, then the group becomes a p-group and

hence it is nilpotent so soluble. If p = q, then the group has order p2q

these groups are soluble .

So we may assume that p, q, r are distinct primes and p > q > r.

Let |G| = pqr. Assume that G is the minimal counter example. i.e

G is the smallest insoluble group of order pqr. So G has no nontrivial

normal subgroup. Because any group of order product of two primes is

soluble and extension of a soluble group by a soluble group is soluble.

Hence we may assume that G is simple. Let P,Q,R be the Sylow

p, q, r subgroups of G respectively and np denotes the number of Sylow

p-subgroups of G. np ≡ 1 ( mod p) and np divides qr. Since G is

simple np 6= 1 so either np = q, or np = r or np = qr.
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If np = q = |G : NG(P )| we obtain |NG(P )| = pr. Then G acts

on the cosets of NG(P ) from right. Then G over kernel of the action

say Ker(φ) is isomorphic to a subgroup of Sym(q). It follows that

|G/Ker(φ)| divides q!. Since p > q we obtain 1 6= Ker(φ) � G con-

tradiction. Similarly np 6= r. Hence np = qr. So we have (p − 1)qr

nontrivial elements of order p.

Now consider Sylow q-subgroups of G. nq ≡ 1 ( mod q) and

divides pr. So nq = r is impossible because if |G : NG(Q)| = r and r is

the smallest prime in p, q, r. So kernel of the action of G on the right

cosets of NG(Q) is nontrivial and our group is simple.

Now we have (p− 1)qr = pqr − qr p-elements.

(q − 1)p = pq − p at least pq − p q-elements.

r r-elements and identity. So at least pqr−qr+pq−p+r elements.

But this number is greater than pqr. This is a contradiction. Hence G

is soluble.

3.4. A nontrivial finitely generated group cannot equal to its Frat-

tini subgroup.

Solution Let G = 〈g1, g2, . . . , gn〉. Assume if possible that

Frat G = G. We may discard any of the gi if necessary and assume

that n is the smallest integer such that G = 〈g1, g2, . . . , gn〉. Therefore

the subgroup

Ki = 〈g1, g2, . . . , gi−1, gi+1, . . . , gn〉 is a proper subgroup of G. If

Frat G = G, then every element of G is a nongenerator but 〈Ki, gi〉 =

G and 〈Ki〉 6= G which is impossible.

3.5. Prove that Frat(Sym(n)) = 1

Solution The alternating group Alt(n) is a maximal subgroup of

(Sym(n)) as the index of Alt(n) in (Sym(n)) is 2. So Frat (Sym(n))

≤ Alt(n). On the other hand (Sym(n)) acts 2-transitively on the

set Ωn = {1, 2, . . . , n} Because for any (i, j), (k, l) where i 6= j and

k 6= l the permutation (i, k)(j, l) takes (i, j) to (k, l). Every 2-transitive

group is a primitive permutation group. Hence stabilizer of a point

is a maximal subgroup. Hence for any i ∈ Ωn the stabilizer of a
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point i say (Sym(n))i is a maximal subgroup of (Sym(n)) . Hence

Frat((Sym(n))) ≤ ∩ni=1((Sym(n))i = 1. It follows that Frat(Sym(n))=

1.

3.6. Show that Frat(D∞) = 1.

Solution Let G = 〈x, y | x2 = 1, y2 = 1〉 Let a = xy. Then

G = 〈x, a〉, x−1ax = yx = a−1. The subgroup generated by an element

a is isomorphic to Z and maximal in G. Hence D∞ = 〈a, t〉 ∼= Zo 〈t〉
Moreover x ∈ Z implies xt = x−1. Then 〈a2, t〉 � D∞, Indeed

ta = a−1ta = tt−1a−1ta = ta2 ∈ 〈a2, t〉 and t−1a2t = a−2 ∈ 〈a2, t〉 ,

D∞/〈a2, t〉 is of order 2. So 〈a2, t〉 is a maximal normal subgroup of G.

Then Frat(D∞) ≤ 〈a〉 ∩ 〈a2, t〉.
Moreover 〈ap, t〉 is a maximal subgroup ofD∞ for any prime p. Since

|D∞ : 〈ap, t〉| = p for any prime p. Then Frat(D∞) ≤ 〈a〉 ∩ 〈a2, t〉 ∩p
〈ap, t〉 = 〈a〉 ∩ (∩p prime 〈ap, t〉). If u is an element in the intersection

then u = ar for some r. Since all primes divide r we obtain r = 0.

Hence Frat(D∞) = 1.

3.7. If G has order n > 1, then |Aut G| ≤
∏k

i=0(n − 2i) where

k = [log2(n− 1)].

Solution We show that, if d(G) is the smallest number of elements

to generate a finite group G, then |G| ≥ 2d(G). In particular this says

that d(G) ≤ log2|G| = log2n.

If G is elementary abelian 2-group, then G becomes a vector space

over the field Z2 hence it has a basis consisting of (0, . . . , 1, 0 . . . 0). If

basis contains k elements, then |G| = 2k. The dimension of a vector

space is the smallest number of elements that generate the vector space.

Hence |G| = 2d(G) is possible.

Now back to the solution of the problem. Let α be an element

in Aut(G). Then α sends generators of G to generators of G. Let

{x1, . . . , xk} be the smallest set of generators of G. Then by first para-

graph k ≤ log2 n We have xα1 ∈ G and order of xα1 is at least 2, because

α is 1-1 and x1 is a generator. For xα1 we have at most n− 1 possibil-

ities. For xα2 we have xα2 ∈ G \ 〈x1〉. Because if xα2 = (xα1 )j we obtain

xα2 ∈ 〈xα1 〉 but this is impossible as x2 is a generator and we choose the

smallest number of generators. Moreover xα2 = (xα1 )i case may occur as

identity but since α is an automorphism this is also impossible.
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Hence xα2 ∈ G \ 〈xα1 〉 as order of x1 is at least 2. Hence for xα2 we

have at most n− 2 possibilities. For x3 we have xα3 ∈ G \ 〈xα1 , xα2 〉, the

order of the group 〈xα1 , xα2 〉 is at least 4 hence for xα3 we have |G| \ 22

possibilities. Continuing like this on the generating set we get the

image of G. Observe that α is uniquely determined by its image on the

generating set. Hence

|Aut(G)| ≤ (n− 1)(n− 2)(n− 22) . . . (n− 2k−1) =
∏k−1

i=0 n− 2i.

3.8. Let G be a finitely generated group. Prove that G has a unique

maximal subgroup if and only if G is a nontrivial cyclic p-group for

some prime p. Also give an example of a noncyclic abelian group with

a unique maximal subgroup.

Solution Let G = 〈g1, g2, . . . gn〉. We may assume that if we dis-

card any of the gi the remaining elements generate a proper subgroup.

Then for any i let Hi = 〈g1, . . . , gi−1, gi+1, . . . , gn〉. It is clear that by

assumption gi 6∈ Hi and Hi is a proper subgroup of G. Let Σi be the

set of subgroups T of G such that T ⊇ Hi and gi 6∈ T. Then Σi is

nonempty since Hi ∈ Σi and Σi is partially ordered with respect to set

inclusion. Then one can show by Zorn’s Lemma that Σi has a maximal

element Mi. Hence Mi ⊇ Hi and gi 6∈ Mi.The group Mi is a maximal

subgroup of G. If x is any element of G \Mi then 〈Mi, x〉 > Mi hence

gi ∈ 〈Mi, x〉 it follows that 〈Mi, x〉 = G, since 〈Hi, gi〉 = G. So if G is

generated by two elements g1 and g2, then we may construct two max-

imal subgroups M1 and M2 in G such that gi 6∈ Mi. Hence it follows

that M1 6= M2.

So if G has a unique maximal subgroup, then G is a cyclic group. In

an infinite cyclic group 〈a〉 for any prime p, 〈ap〉 is a maximal subgroup

of 〈a〉. So if G has a unique maximal subgroup, then G is a finite cyclic

group. Then it can be written as a direct product of of its Sylow

subgroups. Then for each prime pi, Sylow pi subgroup Pi has a unique

maximal subgroup Mi. Hence P1× . . .×Mi×Pi+1× . . .×Pn is maximal

subgroup of G. It follows that n = 1 and hence G is a cyclic p-group

for some prime p.

Conversely every cyclic p-group has a unique maximal subgroup is

clear because every finite cyclic group G has a unique subgroup for any

divisor of the order of G.
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Cp∞ × Zp = G is a noncyclic p-group. It is not finitely generated

since Cp∞ is not finitely generated. But Cp∞ is a maximal subgroup

of G. Since Cp∞ does not have a maximal subgroup Cp∞ is the unique

maximal subgroup of G.

3.9. Suppose G is an infinite group in which every proper nontrivial

subgroup is maximal. Show that G is simple.

Solution Assume that G is not simple. Let N be a proper

normal nontrivial subgroup of G. Then by assumption N is a maximal

subgroup of G. It follows that G/N does not have any proper subgroup.

Hence it is a finite cyclic group of order p for some prime p.

Let 1 6= x ∈ G. Then 〈x〉 is a maximal subgroup of G. If x has infi-

nite order, then the group 〈x2〉 is a proper subgroup and by assumption

it is maximal. It follows that G = 〈x〉 ∼= Z. But in this group every

subgroup is not maximal. Hence G is a torsion group. Again if x has

order a composite number then for any prime p dividing order of x the

subgroup generated by xp is a maximal subgroup implies G = 〈x〉 and

so G is a finite cyclic group which is impossible as G is infinite . Hence

every element of G is of prime order p. Let 1 6= x ∈ N , then 〈x〉 is a

maximal subgroup implies N = 〈x〉 and it is of finite order p. Hence

G/N and N have finite order. This implies G is a finite group. This

contradicts to the assumption that G is an infinite group.

3.10. A free group is abelian if and only if it is infinite cyclic.

Solution It is clear that an infinite cyclic group is abelian. It

is also free because for any group G and a function γ : X → G say

(x)γ = g
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a map β, (x)σβ = g gives a homomorphism. We may consider σ as

identity map hence (x)σ = x and F = 〈x〉. So β becomes a homomor-

phism from the cyclic group F to the cyclic group 〈g〉.
Conversely, by the above problem if the rank of a free group is

greater than one, then it’s center is identity. Hence a free abelian

group must have rank one. But indeed a free group of rank one is an

infinite cyclic group as every element in the normal form is of type xi .

3.11. Let B be a variety. If G is a B-group with a normal subgroup

N such that G/N is a free B-group show that there is a subgroup H

such that G = HN and H ∩N = 1

Solution Asume that G/N is a free B-group on a set X. We

know that the map σ : X → G/N is an injection. Let T be a transver-

sal of N in G. Define a map f : X → T ⊆ G such that f(x) = gx
where gx ∈ T and σ(x) = gxN . Since G is a B-group and G/N is a

free B-group there exists a unique homomorphism γ such that f = σγ.

X G/N-
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S
S
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S
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!γf

σ

G

Since γ is a homomorphism γ(G/N) = H is a subgroup of G.

We now show that H is the required subgroup. Since γσ = f and

f(X) = T we obtain H = 〈T 〉. Now it is clear that HN = G. Now

if y ∈ H ∩ N, then y can be written as a product of transversals.

y = (yN)γ = (N)γ = 1 as γ is a homomorphism. So y = 1.
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3.12. Prove that every variety is closed with respect to forming

subgroups, images and subcartesian products.

Solution Let B be a variety and w = w(x1, . . . , xr) be a law of B.

Let G ∈ B and H ≤ G. Since for any g1, . . . gr ∈ G w(g1, . . . , gr) = 1

in particular for the elements of H we obtain W (H) = 1.

Let N be a normal subgroup of G ∈ B. Then

w(g1N, . . . , grN) = w(g1, . . . , gr)N = N . Hence G/N ∈ B
Now let G be a subcartesian product of the groups Gλ ∈ B. Let

w = w(x1, . . . , xr) and let i : G→ Crλ∈ΛGλ be an injection.

For g1, . . . , gr ∈ G we have w(g1, . . . , gr)
i = (w(gi1, . . . , g

i
r))λ∈Λ =

(1)λ∈Λ since Gλ ∈ B. Since i is an injection this implies w(g1, . . . , gr) =

1.

3.13. Prove that a subgroup which is generated by W -marginal

subgroups is itself W -marginal.

Solution Let W be a nonempty set of words. Recall that a nor-

mal subgroup N of G is called W - marginal if for any gi ∈ G, and

a ∈ N, w(g1, . . . , gia, . . . , gn) = w(g1, . . . , gn). Since the group M

generated by normal subgroups is a normal subgroup we need to show

that for any element y ∈M, w(g1, . . . , gn) = w(g1, . . . , giy, . . . , gn). Let

y = ai1ai2 . . . aik where aij ∈ Nij and Nij is a W -marginal subgroup

of G. Hence for any g1, . . . , gn ∈ G we have

w(g1, . . . gjy, . . . , gn) = w(g1, . . . , gjai1ai2 . . . aik , . . . , gn). Since Ni1 is

W -marginal we obtain w(g1, . . . , gjai2 . . . aik , . . . , gn) = w(g1, . . . , gjaik , . . . , gn) =

w(g1, . . . , gn) = w(g1, . . . , gj, . . . , gn). Hence M is W -marginal.

3.14. Prove that Q is not a subcartesian product of infinite cyclic

groups.

Solution Recall that a group G is subcartesian product of X-

groups if and only if G is a residually X-group. So in order to show

that Q is not a subcartesian product of infinite cyclic group we will

show that Q is not residually infinite cyclic group. Assume on the

contrary that Q is residually infinite cyclic. Then for any 0 6= m
n
∈ Q

there exists Nm
n

such that m
n
6∈ Nm

n
and Q/Nm

n
is infinite cyclic. So

for any k ∈ Z k.m
n
6∈ Nm

n
. Clearly Q is not cyclic so there exists

0 6= a
b
∈ Nm

n
. Hence ma = bma

b
∈ Nm

n
. It follows that Q/Nm

n
is finite

which is a contradiction. On the other hand ma = an.m
n

.
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3.15. If p and q are distinct primes, prove that a group of order

pq has a normal Sylow subgroup. If p 6≡ 1( mod q) and q 6≡ 1 ( mod

p), then the group is cyclic.

Solution Assume that the prime p < q. Let S be a Sylow q-

subgroup of G where |G| = pq. Then |G : S| = p. Number of Sylow

q-subgroups nq is congruent to 1 modulo q. Moreover nq divides |G :

S| = p. So nq = 1 + kq for some k ∈ N. But q > p implies nq = 1.

Hence Sylow q-subgroup S is unique, it follows that S is normal in G.

For the second part consider a Sylow p-subgroup P of G. Let np
be the number of Sylow p-subgroups. So np divides |G : P | = q and

np ≡ 1 ( mod p). Then np = 1 + kp and 1 + kp divides q. So np is

equal to 1 or q. But it is given that q = np 6≡ 1 ( mod p). Hence

np = 1 and P is a normal subgroup of G. |P | = p, |Q| = q and p 6= q

implies P ∩Q = 1. Then for any x ∈ P and y ∈ Q , x−1y−1xy ∈ P ∩Q.

Hence xy = yx for all x ∈ P, y ∈ Q. The group G = PQ. G is an

abelian group. Assume that P = 〈x〉 and Q = 〈y〉, xy ∈ G and

〈xy〉 = {xiyi : i ∈ N } , (xy)p = xpyp = yp 6= 1

(xy)q = xqyq = xq 6= 1 since p does not divide q.

(xy)q = xqyq = xq 6= 1 So 〈xq〉 = 〈x〉 ≤ 〈xy〉 and

(xy)p = xpyp = yp 6= 1 so 〈yp〉 = 〈y〉 ≤ 〈xy〉. Hence p divides

|〈xy〉| and q divides |〈xy〉| implies pq divides |〈xy〉|. On the other hand

〈xy〉 ≤ G and |G| = pq. Hence 〈xy〉 = G and G is cyclic.

3.16. Let G be a finite group. Prove that elements in the same

conjugacy class have conjugate centralizers. If c1, c2, . . . , cn are the or-

ders of the centralizers of elements from the distinct conjugacy classes,

prove that 1
c1

+ 1
c2

+ . . . + 1
cn

= 1. Deduce that there exist only finitely

many finite groups with given class number h. Find all finite groups

with class number 3 or less.

Solution Let x and xg be two elements in the same conjugacy

class. Then CG(x)g = CG(xg). Indeed if y ∈ CG(x)g, then yg
−1 ∈

CG(x) and xyg
−1

= yg
−1

x. Taking conjugation of both sides by g

gives xgy = yxg. i.e. y ∈ CG(xg). Hence CG(x)g ⊆ CG(xg). Similarly

CG(xg) ⊆ CG(x)g. Hence CG(xg) = CG(x)g.
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By class equation |G| = Σn
i=1|G : CG(xi)|. So |CG(xi)| = |CG(xgi )|

we have 1 = Σn
i=1

1
|CG(xi)| = Σn

i=1
1
ci

.

So 1
c1

+ 1
c2

+ . . .+ 1
cn

= 1.

The set of all groups with only 1 equivalence class satisfy 1
c1

= 1

where c1 is the order of the centralizer of identity. Hence G = {1}.

The set of all groups with two equivalence class satisfy 1
c1

+ 1
c2

= 1.

Then c1 = |CG(1)| = |G|. Hence 1
c2

= 1− 1
|G| = |G|−1

|G| and so c2 = |G|
|G|−1

(|G|, |G| − 1) = 1 implies |G| − 1 = 1. Hence |G| = 2.

The set of all groups with three equivalence class satisfy 1
c1

+ 1
c2

+ 1
c3

=

1. Since the identity is an equivalence class we have

1

c2

+
1

c3

= 1− 1

|G|
=
|G| − 1

|G|
.

Then c2+c3
c2c3

= |G|−1
|G| .

So we obtain (c2 + c3)|G| = c2c3(|G| − 1). As (|G|, |G| − 1) = 1 we

have |G| divides c2c3. And c2 divides |G|, c3 divides |G| implies that

(|G| − 1) divides c2 + c3.

First consider the case c2 = c3 . Then c2
2((|G|−1) = 2c2|G| . Hence

c2(|G| − 1) = 2|G|. Since (|G| − 1) divides 2 we obtain |G| − 1 = 2.

Hence |G| = 3 and G is a cyclic group of order 3.

Assume without loss of generality that c2 < c3. Then (c2 + c3)|G| =
c2c3(|G| − 1) implies that

2c2|G| ≤ (c2 + c3)|G| = c2c3(|G| − 1) ≤ c2
3(|G| − 1) and (c2 +

c3)|G| = c2c3(|G| − 1) < 2c3|G|. It follows that c2(|G| − 1) < 2|G|. By

dividing both sides with c2 we obtain |G| − 1 < 2
c2
|G|. Then we obtain

|G| < 2
c2
|G|+ 1.

c2 is the order of a centralizer of an element. Hence c2 ≥ 2.

If c2 > 2, then |G| < 2
c2
|G| + 1 is impossible for |G| ≥ 4. Hence

c2 = 2.

Then (2+c3)|G| = 2c3(|G|−1) implies that 2|G|+c3|G| = 2c3|G|−
2c3

Then we obtain c3|G| = 2|G|+ 2c3.
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But c3 > 2 implies that (c3 − 2)|G| = 2c3 and hence |G| = 2c3
c3−2

.

If c3 = 3, then |G| = 6 and G is isomorphic to S3.

If c3 = 4, then |G| = 4. This is impossible as G is abelian

If c3 = 6, then |G| = 3 which is impossible as G is abelian.

If c3 > 6, then |G| = 2c3
c3−2

≤ 4. Then we are done as we reach

similar groups as above.

3.17. Let G be a permutation group on a finite set X. If π ∈ G
define Fix(π) to be the set of fixed points of π that is all x ∈ X such

that xπ = x. Prove that the number of G orbits equals 1
|G|Σπ∈G|Fix(π)|

Solution Consider the following set

Ω = {(x, π)|xπ = x, x ∈ X, π ∈ G}.

We count the number of elements in Ω in two ways. First fix an element

x ∈ X. Then each x appears as many as |StabG(x)| times in Ω. Then

|Ω| = Σx∈X |StabG(x)|.
Secondly we fix an element π ∈ G. Then π appears Fix(π) times

in Ω. Hence |Ω| = Σπ∈G|Fix(π)|.Then we have Σx∈X |StabG(x)| =

Σπ∈G|Fix(π)|. But we know that |G : StabG(x)|=length of the orbit

of G containing the element x. Let us denote it by |orbit x|. Hence

|StabG(x)| = |G|
|Orbit x| . It follows that Σx∈X |StabG(x)| = Σx∈X

|G|
|orbit x| =

Σπ∈G|Fix(π)|. On the other hand Σx∈X
1

|orbit x| =number of orbits of

G on X. This is because, if x and y belong to the same orbit, then

|orbit x| = |orbit y|. We write X as a disjoint union of orbits say

O1, . . . , Ok. Then

Σx∈X
1

|orbit x| = Σk
i=1Σx∈Oi

1
|orbit x| = k Since

Σx∈Oi
1

|orbit x| = 1. Hence we have |G|k = Σπ∈G|Fix(π)|. Then the

number of orbits k = 1
|G|Σπ∈G|Fix(π)|.

3.18. Prove that a finite transitive permutation group of order

greater than 1 contains an element with no fixed point.

Solution By previous question we have the formula

1 =
1

|G|
Σπ∈G|Fix(π)|
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Then we obtain |G| = Σπ∈G|Fix(π)|. We know that the identity el-

ement of G fixes all points in X. So |G| = Σ16=π∈G|Fix(π)| + |X|.
Since G is transitive on X, for any y ∈ X, |G : StabG(y)| = |X|.
G is a permutation group implies StabG(y) 6= G. It follows that |G :

StabG(y)| = |X| > 1. Hence the formula |G| = Σ16=π∈G|Fix(π)| + |X|
and |Fix(π)| ≥ 0 implies there exists a permutation π ∈ G such that

|Fix(π)| = 0 as the sum is over all non-identity elements of G.

Otherwise StabG(y) = G for all y ∈ X Hence G acts trivially on

X. But the action is transitive implies |X| = 1 But this is impossible

as G is a permutation group of order greater than 1.

3.19. Show that the identity [um, v] = [u, v]u
m−1+um−2+...+u+1 holds

in any group where xy+z = xyxz. Deduce that if [u, v] belongs to the

center of 〈u, v〉, then [um, v] = [u, v]m = [u, vm].

Solution We show the equality by induction on m.

If m = 1, then [u1, v] = [u, v]. Assume that

[um−1, v] = [u, v]u
m−2+um−3+...+u+1.

Then

[um, v] = [uum−1, v] = [u, v]u
m−1

[um−1, v]

. By induction assumption we obtain

[um, v] = [u, v]u
m−1

[u, v]u
m−2+um−3+...+u+1

= [u, v]u
m−1+um−2+...+u+1. Now if [u, v] belongs to the center of 〈u, v〉,

then

[um, v] = [u, v]m = [u, vm] as [u, v]u = [u, v]v = [u, v]

3.20. A finite p-group G will be called generalized extra-special if

Z(G) is cyclic and G′ has order p.

Prove that G′ ≤ Z(G) and G/Z(G) is an elementary abelian p-

group of even rank.

Solution G is a finite p-group, hence nilpotent. Then γ2(G) =

[G,G] = G′ and γ3(G) = [G,G′] < G′ and G′ has order p and proper

implies [G,G′] = 1. It follows that G′ ≤ Z(G). Then G/Z(G) is an

abelian group as G′ ≤ Z(G). Moreover [xp, y] = [x, y]p since [x, y] ∈
G′ ≤ Z(G) and |G′| = p implies that [xp, y] = [x, y]p = 1. Then

xp ∈ Z(G) for any x ∈ G. This implies G/Z(G) is an elementary
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abelian p-group. So we may view G/Z(G) as a vector space over a field

Zp. Let m be the dimension of G/Z(G). Define

f : G/Z(G)×G/Z(G)→ Zp
(xZ(G), yZ(G))→ i

where [x, y] = ci and c is a generator of G′.

Firs we show that f is well defined.

Indeed if (xZ(G), yZ(G)) = (x′Z(G), y′Z(G)), then x = x′z1, y =

y′z2 where zi ∈ Z(G), i = 1, 2. Then [x, y] = [x′z1, y
′z2] = [x′, y′]. So

[x, y] = ci implies [x′, y′] = ci.

f(xZ(G), yZ(G)) = f(x′Z(G), y′Z(G)). Moreover f is a bilinear

form.

f(x1x2Z(G), yZ(G)) = [x1x2, y] = [x1, y]x2 [x2, y] = [x1, y][x2, y] as

G′ ≤ Z(G). Moreover

f(x1x2Z(G), yZ(G)) = i+j = f(x1Z(G), yZ(G))+f(x2Z(G), yZ(G).

and for the other component

f(xZ(G), y1y2Z(G)) = f(xZ(G), y1Z(G)) + f(xZ(G), y2Z(G).

Finally we show that f is alternating. Indeed if xZ(G) ∈ Rad(f),

then f(xZ(G), yZ(G)) = 0 for all yZ(G) ∈ G/Z(G) implies [x, y] = c0

for all y ∈ G i.e x ∈ Z(G). Hence xZ(G) = Z(G) so Rad(f) = 0

implies f is a non-degenerate bilinear form.

Now m is even follows from the linear algebra that if f is a non-

degenerate alternating form on a vector space, then the dimension will

be even.

3.21. Let Qp be the additive group of rational numbers of the form

mpn where m,n ∈ Z and p is a fixed prime. Describe End Qp and Aut

Qp.

Solution Let α be an endomorphism of Qp. Every element of Qp is

of the form mpn for some m,n ∈ Z. Let α(1) = kpm for some k,m ∈ Z
and α(0) = α(1− 1) = α(1) + α(−1) = 0 implies α(−1) = −kpm.

For any integer n, α(n) = nα(1) = nkpm. Now consider kpm =

α(1) = α(p
r

pr
) = prα( 1

pr
) implies that α( 1

pr
) = kpm

pr
= α(1)

pr
.

So α( i
pr

) = ikpm

pr
and we observe that the endomorphism α is deter-

mined by α(1)
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Conversely for any kpm ∈ Qp, the map

α : Qp → Qp

x → kpmx

is an endomorphism of the additive group Qp. Indeed α(x + y) =

kpm(x + y) = kpmx + kpmy. Since kpm ∈ Qp and x ∈ Qp, kp
mx ∈ Qp.

Hence α is an endomorphism. So for any element of Qp we may define

an endomorphism and for any endomorphism there exists an element

of Qp.

Every automorphism is an endomorphism. So if α ∈ Aut (G), then

α(1) = kpm for some k,m ∈ Z. Then

α( n
pr

) = nkpm

pr
. So

ker(α) = { n
pr

: α(
n

pr
) = 0 } = {0}.

For any element lpr ∈ Qp, α(xpy) = lpr implies xkpmpy = lpr. We

need to solve x and y. In particular for l = 1, xkpmpy = pr implies

that xt = pt. Then k is also a power of p and we can solve x and then

solve y accordingly and we obtain automorphisms of Qp of the form

α(1) = ps for some s ∈ Z. Moreover for any α satisfying α(1) = ps

for some s ∈ Z we have an automorphism of Qp. If α(1) = kpm and

(k, p) = 1 α(xpm) = xkpm+y = lpr where (l, p) = 1 xk = l and so

x = l
k
∈ Z for any l this has a solution if k = ±1.

3.22. Prove that a periodic locally nilpotent group is a direct prod-

uct of its maximal p-subgroups .

Solution Recall that a periodic locally nilpotent group is a locally

finite group, i.e every finitely generated subgroup of G is a finite group.

Let Σ be the set of all finite subgroups ofG. If S and R are two elements

in Σ, then 〈S,R〉 ∈ Σ. Hence G =
⋃
S∈Σ S. Since for any S in Σ the

group S is finite nilpotent implies that S is a direct product of its Sylow

p-subgroups.

For a fixed prime p Sylow p-subgroups of S is unique but Sylow

p-subgroup of Q is also unique. By Sylow’s theorem every p-subgroup

of S is contained in a Sylow p-subgroup of Q but there is only one

Sylow subgroup of Q implies Sylow p- subgroup of S is contained in a
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Sylow p-subgroup of Q. Let S ≤ Q and S,Q ∈ Σ. Let P =
⋃
S∈Σ PS

where PS is a unique Sylow p subgroup of S.

P is a subgroup of G. Because if x, y ∈ P , then there exist S1 ∈ Σ

and S2 ∈ Σ such that x ∈ PS1 and y ∈ PS2 Then 〈S1, S2〉 ∈ Σ and

P〈S1,S2〉 and P〈S1,S2〉 ⊇ PS1 and PS2 . Therefore x, y ∈ P〈S1,S2〉 and so

xy−1 ∈ P〈S1,S2〉 and P〈S1,S2〉 ⊆ P hence P is a subgroup. In fact P is a

p-subgroup of G. Indeed the above argument shows that every finitely

generated subgroup of P is contained in a subgroup PS for some S ∈ Σ.

P is a maximal subgroup. If there exists P1 > P , then let x ∈ P1\P,
the element x is a p-element, hence 〈x〉 ∈ Σ Then 〈x〉 = P〈x〉 ⊆ P

The group P is normal in G, since for any g ∈ G and x ∈ P there

exists an S ∈ Σ such that x ∈ PS and the group 〈S, g〉 ∈ Σ and

x ∈ P〈S,g〉. Since P〈S,g〉 � 〈S, g〉 we obtain g−1xg ∈ P〈S,g〉 ⊆ P . This is

true for any prime p. Hence all maximal subgroups of G are normal for

any prime p. Since every element g ∈ G is contained in a finite group

S ∈ Σ and S is a direct product of its Sylow subgroups . We obtain

G =
∏

p P .

4. SYLOW THEOREMS AND APPLICATIONS

4.1. Let S be a Sylow p-subgroup of the finite group G. Let S∩Sg =

1 for all g ∈ G \NG(S). Then |Sylp(G)| ≡ 1 ( mod |S|).

Solution: By Sylow’s theorems |Sylp(G)| = |G : NG(S)| and any

two Sylow p-subgroup of G are conjugate in G and |Sylp(G)| ≡ 1(

mod p). The group S acts by right multiplication on the set Ω =

{NG(S)x|x ∈ G} of right cosets of NG(S) in G. Now we look to the

lengths of the orbits of S on Ω. As S ≤ NG(S), NG(S)S = NG(S).

Hence the orbit of S containing NG(S) is of length 1. NG(S)xS =

NG(S)x implies NG(S)xSx−1 = NG(S) i.e, xSx−1 ≤ NG(S). But then

xSx−1 and S are both Sylow p-subgroups of NG(S), and there exists

only one Sylow p-subgroup of NG(S). This implies that xSx−1 = S,

i.e., x ∈ NG(S).

Moreover the length of the orbit of S on Ω is equal to |S : StabS(NG(S))x|.
NG(S)xs = NG(S)x implies xsx−1 ∈ NG(S). Then s ∈ NG(Sx).

But s is a p-element, 〈s〉 normalizes Sx implies 〈s〉Sx is a subgroup,



48 M. KUZUCUOĞLU

Sx is a Sylow p-groups implies 〈s〉Sx = Sx i.e. s ∈ Sx. But then

s ∈ S ∩ Sx = 1. Hence NG(S)xs 6= NG(S)x for all non-trivial cosets of

NG(S) in G. Then the length of the orbit of S on Ω is |S|.
|Ω| = 1 + k|S|, i.e, |Ω| ≡ 1( mod |S|).

4.2. Show that a group G of order 90 = 2.32.5 is not simple.

Solution Let ni denote the number of Sylow i subgroups of G.

Let Si denote a Sylow i subgroup of G. If n5 = 1, then S5 is a normal

subgroup of G and |G/S5| = 2.32. Hence it follows that G is soluble.

If n5 = 6, then consider n3. If n3 = 1, then S3 � G and |G/S3| = 2.5.

So G/S3 is soluble and S3 is soluble implies that G is soluble and we

are done. So assume if possible that n3 = 10. If the intersection of

two Sylow 3-subgroup is the identity, then we have 8.10 elements of

order 3 and 24 elements of order 5 so we obtain 105 elements which

is impossible. Hence there exists Sylow 3-subgroups P and Q such

that 1 6= P ∩ Q 6= the groups P and Q. Moreover |P ∩ Q| = 3 and

P ∩ Q � 〈P,Q〉. Then |PQ| ≥ |P ||Q|
|P∩Q| = 81

3
= 27. So |〈P,Q〉| ≥ 27. So

if |〈P,Q〉| = 45 and so G is soluble. If 〈P,Q〉 = G, then P ∩ Q � G

implies |G/(P ∩Q)| = 2.3.5 is soluble hence we obtain G is soluble.

4.3. Show that a group of order 144 is not simple.

Solution Assume that G is simple. Let S3 be a Sylow 3-subgroup

of G. The number of Sylow 3-subgroups n3 = 4 implies that |G :

NG(S3)| = 4. Then G acts on the right cosets of NG(S3). This implies

that there exists

φ : G→ Sym(4)

ThenG/Ker(φ) is isomorphic to a subgroup of Sym(4). But |Sym(4)| =
24 and |G| = 144. Then Ker(φ) 6= 1. Then G/Ker(φ) is soluble as

Sym(4) is soluble.

We may assume that n3 = 16. If any two Sylow 3-subgroup intersect

trivially, then 8.16 = 128 hence we have only one Sylow 2-subgroup.

It follows that G is soluble. So there exists Sylow 3-subgroups P and

Q such that 1 6= P ∩Q. So |P ∩Q| = 3. Then P ∩Q� 〈P,Q〉. Then

|PQ| ≥ 27 implies that |〈P,Q〉| ≥ 36. Hence |G/〈P,Q〉| = 4. Then as

in the first paragraph we obtain G/Ker(φ) is isomorphic to a subgroup
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of Sym(4) and |Ker(φ)| ≤ 36 soluble implies G is soluble. Hence we

obtain G is not simple.

4.4. Prove that

(a) every group of order 32.5.17 is abelian.

(b) Every group of order 33.5.17 is nilpotent.

Solution Let G be group of order 32.5.17 and let np denotes

the number of Sylow p subgroups of G. By Sylow’s theorem np ≡ 1 (

mod p) and np = |G : NG(P )|.
n17 ≡ 1( mod 17) and n17 divides 32.5 implies n17 = 1. This

implies that Sylow 17-subgroup of G is unique and hence normal in G.

Let Q be a Sylow 5-subgroup. Then n5 = 1 or 51 and n5 = |G :

NG(Q)| Since Sylow 17-subgroup R is normal in G we obtain RQ ≤ G.

The group Q is a Sylow 5-subgroup of RQ. Since |RQ| = 5.17 Sylow

5-subgroup is unique in RQ. That implies |RQ : NRQ(Q)| = 1. i.e.

NRQ(Q) = RQ. Then NRQ(Q) ≤ NG(Q). Therefore |NG(Q)| ≥ |RQ| =
5.17. Therefore |G : NG(Q)| ≤ 32 and n5 cannot be equal to 51. It

follows that n5 = 1. So Sylow 5-subgroup Q is normal in G. Let S be

a Sylow 3-subgroup of G. Then n3 = 1, or 85. Since RS ≤ G and S

is a Sylow 3-subgroup of RS 4, 7, 10, does not divide 17. Then Sylow

3-subgroup is unique in RS. It follows that RS = NRS(S) ≤ NG(S).

And |NG(S)| ≥ 17.32. So n3 = |G : NG(S)| ≤ 5. So Sylow 3-subgroup

of G is normal in G. Hence all Sylow subgroups of G are normal. Then

G is nilpotent. Hence G is a direct product of its Sylow subgroups.

Since any group of order p2 is abelian we obtain S is an abelian

group and Q and R are cyclic. Hence G is an abelian group.

(b) Every group of order 33.5.17 is nilpotent.

Let G = 33.5.17. Then n17 = 1 so Sylow 17-subgroup is normal in

G, say R. By the same argument above Sylow 5-subgroup is unique

and so normal in G say Q.

Let S be a Sylow 3-subgroup. It is unique in RS hence n3 = |G :

NG(S)| ≤ 5 and n3 ≡ 1 ( mod 3) and n3 does not divide 5 implies

S is unique. Hence G is nilpotent. Therefore G = S × Q × R where

|S| = 33.
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A group G is called a supersoluble group if G has a series of

normal subgroups Ni � G in which each factor Ni/Ni+1 in the series

is cyclic for all i. The group A4 is soluble but not a supersoluble group.

4.5. Prove that the product of two normal supersoluble groups need

not be supersoluble.

Hint: Let X be a subgroup of GL(2, 3) generated by

a =

(
0 −1

1 0

)
and b =

(
0 1

1 0

)
Thus X ∼= D8. Let X act in the natural way on A = Z3⊕Z3 and write

G = X n A. Show that G is not supersoluble. Let L and M be the

disjoint Klein 4-subgroups of X and consider H = LA and K = MA.

Solution Observe that |a| = 4, |b| = 2, and b−1ab = a−1. Then

|X/〈a〉| = 2, |X| = 8. Let D8 = 〈x, y〉. Then

φ : D8 → X

x→ a

y → b

By Von Dyck’s theorem φ is a homomorphism. Since φ is onto, |X| = 8,

we obtain φ is an isomorphism.(
0 −1

1 0

)(
i

j

)
=

(
−j
i

)

So G = X n A and |G| = 72. Moreover G has a series G � A � 1,

G/A ∼= D8.

If G is supersoluble, then there exists a normal subgroup of G con-

tained in A. Let J be such a normal subgroup of order 3. Arbitrary

element of J is of the form

(
a

b

)
. Then J is invariant under the action

of X. Let

J = {

(
0

0

)
,

(
a

b

)
,

(
−a
−b

)
}
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Then (
0 −1

1 0

)(
a

b

)
=

(
−b
a

)
6∈ J

Therefore G is not supersoluble.

Let

L = {

(
1 0

0 1

)
,

(
−1 0

0 −1

)
,

(
0 −1

−1 0

)
,

(
0 1

1 0

)
}

and

M = {

(
1 0

0 1

)
,

(
−1 0

0 −1

)
,

(
−1 0

0 1

)
,

(
1 0

0 −1

)
}

Then 〈L,M〉 = X = LM and H = LA,K = MA implies |LA| =

|MA| = 36. The groups H,K are normal in G hence HK = G since

HK ≥ 〈A,L,M,X〉 = G. The groups H,K are supersoluble.

J = {

(
0

0

)
,

(
a

a

)
,

(
−a
−a

)
}

J is invariant under the action of L.

H � L1 � A� J � 1 so L is supersoluble.

B = {

(
0

0

)
,

(
1

0

)
,

(
−1

0

)
}

is invariant under the action of M . B �K

K �K1 � A�B � 1. Hence K is supersoluble.

4.6. Let G = GL(2, 3) and G1 = SL(2, 3).

(a) Find |G| and |G1|. Moreover show that |G/G1| = 2 and |Z(G)| =
2 and Z(G) ≤ G1

(b) Show that G1/Z(G) ∼= Alt(4) and that G1 has a normal Sylow

2-subgroup say J .

(c) Show that J is nonabelian. Deduce that G′1 = J .

(d) Deduce that G′ = G1. Hence G1 has derived length 3 and G has

derived length 4.

Solution (a) |G| = (32−1)(32−3) = 8.6 = 48. Consider determi-

nant homomorphism det : G → Z∗3 = {1,−1}. Then Ker (det) = G1

and G/G1
∼= {1,−1}. Hence |G1| = 24 = 3.23.
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Z(G) = {

(
1 0

0 1

)
,

(
−1 0

0 −1

)
} ≤ G1

(b) Sylow 3-subgroup of G (and G1) has order 3. Then

U1 = {

(
1 x

0 1

)
, x ∈ Z3}, and U2 = {

(
1 0

y 1

)
, y ∈ Z3}

are Sylow 3-subgroups. n3 ≡ 1 ( mod 3) and n3 = |G1 : NG1(U1)|.
Since the number of Sylow 3-subgroups is greater than or equal to

2 and n3 = |G1 : NG1(U1)| we obtain n3 = 4 and |NG1(U1)| = 6.

Since Z(G) ≤ NG1(U1) we obtain NG1(U1) is a cyclic subgroup of order

6 as Sylow 2-subgroup is in the center and any group of order 6 is

either isomorphic to S3 or cyclic group of order 6. Then G1 acts by

right multiplication on the set of right cosets of NG1(U1) in G1. The

homomorphism φ : G1 → Sym(4) gives; G1/Ker φ is isomorphic to

a subgroup of Sym(4). Then Ker φ = ∩x∈G1NG1(U1)x. As Z(G) ≤
Ker φ and

NG1(U1) ∩NG2(U2) = {

(
a c

0 a

)
} ∩ {

(
x 0

z x

)
} ≤ Z(G1)

we obtain Z(G1) = Ker φ.

G1/Z(G1) is isomorphic to a subgroup of Sym(4). Since Sym(4)

has only one subgroup of order 12 we obtain G1/Z(G1) ∼= Alt(4).

The groupAlt(4) has a normal subgroup of order 4, we have J/Z(G1)�

G1/Z(G1) ∼= Alt(4) and we obtain |J/Z(G1)| = 4 and |J | = 8, Sylow

2-subgroup J of G1 is a normal 2-subgroup.

Moreover J/Z(G) char G1/Z(G)�G/Z(G) implies J/Z(G)�G/Z(G).

Hence J �G. In fact

J = {

(
1 0

0 1

)
,

(
0 −1

1 0

)(
0 1

−1 0

)
,

(
1 1

1 −1

)
,

(
−1 −1

−1 1

)
,

(
−1 1

1 1

)
,

(
1 −1

−1 −1

)
,

(
−1 0

0 −1

)
}

(c) Observe that
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(
0 1

−1 0

)(
1 1

1 −1

)
6=

(
1 1

1 −1

)(
0 1

−1 0

)
So J is non-abelian.

For G′1 = J ; as J�G1 and G1/J ∼= Z3 we obtain G′1 ≤ J and J ′ 6= 1

as J is non-abelian. Then J/Z(G1) ≤ G1/Z(G1) ∼= Alt(4). Then J is

non-abelian of order 8, implies that J ′′ = 1 and J ′ ≤ Z(G1). Recall

that(1 � V � Alt(4), Alt(4)′′ = 1).

The order |G′1Z(G1)/Z(G1)| = 4 implies G′1 6= 1 and G′′1 ≤ Z(G1).

So G
(3)
1 = 1. If G′1 = J we are done. Now |G′1| = 2 or |G′1| = 4.

|G′1| = 2 implies G1 is nilpotent hence Sylow 3-subgroup is unique

which is impossible as we already found two distinct Sylow 3-subgroup.

If |G′1| = 4, then Sylow 2-subgroup is a quaternion group of order 8

implies that G′1 is cyclic. Hence |Aut(G′1)| = 2. Therefore G1/CG1(G
′
1)

is isomorphic to a subgroup of Aut(G′1). Since NG1(G
′
1) = G1 and 3

divides |CG(G′1)| we obtain Sylow 3-subgroup is unique in CG1(G
′
1)�G1.

Then Sylow 3-subgroup is unique in G1 This is a contradiction. Hence

G′1 = J .

As [1 + xe12, ye11 − ye22] = 1 − 2xe12 and [1 + xe21, ye11 − ye22] =

1 + 2xe21 we obtain U1 and U2 are contained in G′. And hence the

subgroup 〈U1, U2〉 ≤ G′. Then the elements of the form(
1 x

0 1

)(
1 0

y 1

)
=

(
1 + xy x

y 1

)
∈ G′

In particular for x = y = 1 the elements

a =

(
−1 1

1 1

)
∈ G′

|a| = 4 and for x = y = −1

b =

(
−1 −1

−1 1

)
∈ G′

is an element of order 4. Moreover a and b are contained in J . Since

these elements generate J we obtain J ≤ G′. Hence 3 divides |G′| and

8 divides |G′| and G′ ≤ G1 implies that |G′| = 24 and G′ = G1.
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4.7. Let G be a finite group with trivial center. If G has a non-

normal abelian maximal subgroup A, then show that G = AN and

A∩N = 1 for some elementary abelian p-subgroup N which is minimal

normal in G. Also A must be cyclic of order prime to p.

Solution Let A be an abelian maximal subgroup of G such that A

is not normal in G. Then for any x ∈ G\A. So we obtain 〈A, x〉 = G.

Therefore for any x ∈ G\A, we have Ax 6= A otherwise A would be

normal in G. But then consider A ∩ Ax. Since Ax 6= A and A is

maximal, 〈A,Ax〉 = G. If w ∈ A ∩ Ax, then CG(w) ≥ 〈A,Ax〉 = G.

Since A is abelian and Ax is isomorphic to A so that Ax is also maximal

and abelian in G. But CG(w) = G implies w ∈ Z(G) = 1. Hence

A ∩ Ax = 1. This shows that A is Frobenius complement in G. Hence

there exists a Frobenius kernel N such that G = AN and A ∩N = 1.

By Frobenius Theorem, Frobenius kernel is a normal subgroup of G.

So G = AN implies G/N = AN/N = A/A ∩N , hence G is soluble. It

follows from the fact that minimal normal subgroup of a soluble group

is elementary abelian p-group for some prime p, N is an elementary

abelian p-group.

If there exists a normal subgroup M in G such that G = AM and

M ≤ N . Then A ∩M ≤ A ∩N = 1. Moreover |G| = |A||M |
|A∩M | = |A||N |

|A∩N | =

|A||M | = |A||N |. Hence |M | = |N |, this implies M = N . Hence N is

minimal normal subgroup of G.

Since N is elementary ableian p-group if A contains an element g

of order power of p, then the group H = N〈g〉 is a p-group. Hence

Z(H) 6= 1. Let x ∈ Z(H). If x ∈ A, then CG(x) ≥ 〈A,N〉 = G. This

implies that x ∈ Z(G) = 1 which is impossible. So x ∈ G\A. Then

〈g〉 ∩ 〈g〉x ≤ A ∩ Ax = 1. But 〈g〉 ∩ 〈g〉x = 〈g〉. Hence (|A|, p) = 1. i.e.

p - |A|.
Claim: A is cyclic: By Frobenius Theorem, Sylow q-subgroups of

Frobenius complement A are cyclic if q > 2 and cyclic or generalized

quaternion if p = 2 (Burnside Theorem, Fixed point free Automor-

phism in [1]). Since A is abelian Sylow subgroup can not be general-

ized quaternion group. Hence all Sylow subgroups of A are cyclic. This

implies that A is cyclic.

4.8. Let G be a finite group. If G has an abelian maximal subgroup,

then show that G is soluble with derived length at most 3.
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Solution Let A be an abelian maximal subgroup of G. If A is

normal in G, then for any x ∈ G\A, we have A〈x〉 = G. Hence G/A ∼=
A〈x〉/A ∼= x〉/〈x〉 ∩ A. Then G/A is cyclic and A is abelian implies

G′′ = 1 and hence G is soluble. Now consider Z(G). If Z(G) is not a

subgroup of A, then AZ(G) = G. This implies that G is abelian. Hence

we may assume that Z(G) is a subgroup of A. Then A ∩ Ax ≥ Z(G),

on the other hand if w ∈ A ∩ Ax, then CG(w) ≥ 〈A,Ax〉 = G. Hence

w ∈ Z(G). It follows that A ∩ Ax = Z(G).

Now, consider the group Ḡ = G/Z(G). Then Ḡ has an abelian

maximal subgroup Ā. Then for any x̄ ∈ Ḡ\Ā. We obtain Ā ∩ Āx =

1̄. Hence Ḡ is a Frobenius group with Frobenius complement Ā and

Frobenius kernel N̄ . Then Ḡ = G/Z(G) = (A/Z(G))(N/Z(G)). The

group Ḡ is soluble hence G is soluble. As in [1] Lemma 2.2.8 N̄ is an

elementary abelian p-group and N̄ is a minimal normal subgroup of Ḡ.

Since Ḡ = ĀN̄ and A is abelian, we obtain Ḡ′ ≤ N̄ and Ḡ′′ ≤ Z(Ḡ)

as N̄ is abelian. Hence (G/Z(G))′ ≤ N/Z(G) and G′′Z(G)/Z(G) ≤
Z(G)/Z(G). i.e G′′ ≤ Z(G). Hence G(3) = 1.

4.9. Let α be a fixed point free automorphism of a finite group G.

If α has order a power of a prime p, then p does not divide |G|. If

p = 2, infer via the Feit-Thompson Theorem that G is soluble.

Solution: Recall that a fixed point free automorphism α stabilizes

a Sylow p-subgroup of G. The point is Pα
0 = P g

0 for some g ∈ G where

P0 is a Sylow p-subgroup of G. Since the map

G→ G

x→ x−1xα

is a bijective map we may write every element g = h−1hα for some

h ∈ G. Let P = P h−1

0 . Then

Pα = ((P h−1

0 )α = (Pα
0 )(h−1)α = (P g

0 )(h−1)α = (P h−1hα

0 )(h−1)α = P hα(h−1)α = P

So α becomes an automorphism of P . Then let H = P o 〈α〉. If 〈α〉
is a p-group, then H is a p-group. So Z(H) 6= 1. This implies that if

1 6= Z(H), then zα = z which is impossible by fixed point free action.

Hence α can not be a power of a prime dividing |G|. i.e. (|α|, |G|) = 1.

So if a group G has a fixed point free automorphism of order 2n

for some n, then (2, |G|) = 1. Hence by Feit-Thompson theorem |G|
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is odd and G is soluble. It follows that a group has a fixed point free

automorphism α of order power of a prime 2 is soluble.

4.10. If X is a nontrivial fixed point free group of automorphisms

of a finite group G, then X nG is a Frobenius group.

Solution: We need to show that for any

α ∈ (X nG) \X, X ∩Xα = 1.

Let α = xg where g 6= 1 and assume that w ∈ X ∩ Xα = X ∩
Xxg = X ∩ Xg. Then w = x = yg for some x, y ∈ X. The element

yy−1g−1yg = x = w ∈ X implies that y−1g−1yg = y−1x ∈ X as

x, y ∈ X. Moreover y(g−1)yg = x ∈ GX. Then (g−1)yg ∈ X ∩ G = 1.

Hence (g−1)yg = 1 which implies (g−1)y = g−1. But y is a fixed point

free automorphism, this implies that g = 1 which is a contradiction.

Hence X ∩Xα = 1 for all α ∈ (XnG)\X. It follows that XnG is

a Frobenius group with Frobenius Kernel G and Frobenius complement

X.

4.11. A soluble p-group is locally nilpotent.

Solution: A group G is called a p-group if every element of G has

order a power of a fixed prime p. A periodic soluble group is a locally

finite group. One can see this by induction on the derived length n of

G. For n = 1, then G is a periodic abelian group which is clearly locally

nilpotent. Assume n > 1 and let S be a finitely generated subgroup

of G. Then SG′/G′ is finite as it is abelian and finitely generated p-

group. Moreover SG′/G′ ∼= S/S ∩ G′. As S is finitely generated and

S/(S ∩G′) is finite we have S ∩G′ is a finitely generated subgroup of

the p-group G′. By induction assumption S ∩G′ is finite and S/S ∩G′
is finite implies S is finite. It follows that G is locally finite.

A locally finite p-group is locally nilpotent because every finitely

generated subgroup is a finite p-group. Hence it is nilpotent.

4.12. A finite group has a fixed-point-free automorphism of order

2 if and only if it is abelian and has odd order.

Solution: Let G be an abelian group of odd order.

α : G→ G
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x→ x−1

α is a fixed-point-free automorphism of G. Indeed if α(x) = x implies

x = x−1. Then x2 = 1. Hence there exists a subgroup of order 2. This

implies |G| is even. Hence x = 1.

Conversely let α be a fixed point free automorphism of a finite group

G. Then the map

β : G→ G

x→ x−1α(x)

is a 1− 1 map. Indeed β(x) = β(y) implies x−1α(x) = y−1α(y). Then

yx−1 = α(y)α(x)−1 = α(yx−1). Since α is fixed-point-free we obtain

x = y. Now, for any g ∈ G, there exists x ∈ G such that g = x−1α(x).

Then α(g) = α(x−1α(x)) = α(x)−1α2(x) = α(x)−1x = g−1. Now

α(g1g2) = (g1g2)−1 = α(g1)α(g2) = g−1
1 g−1

2 = (g1g2)−1 = g−1
2 g−1

1 . It

follows that g1g2 = g2g1. Hence G is an abelian group.

Moreover if there exists an element y of order 2, then α(y) = y−1 =

y. Which is impossible as α is a fixed-point-free automorphism of order

2.

4.13. Let G be a finite Frobenius group with Frobenius kernel K.

If |G : K| is even, prove that K is abelian and has odd order.

Solution: Frobenius kernel K is a normal subgroup of G. Let X

be a Frobenius complement. Then G = KX and K ∩ X = 1. Since

order of G/K is even, we obtain |G/K| = |XK/K| = |X/X∩K| = |X|.
Then there exists an element x ∈ X of order 2. Then

αx : K → K

g → x−1gx.

is an automorphism of K. Moreover |αx| = 2 and αx is fixed-point-free.

If x−1kx = k for some k ∈ K. Then kxk−1 = x and X ∩ Xk 6= 1

where k ∈ G \X. Which is impossible. Hence αx is a fixed point free

automorphism of K of order 2. Then by question 4.12 K is abelian of

odd order.

Recall that if G is a finite group and p1, · · · , pk denote the distinct

prime divisors of |G| and Qi is a Hall p′i-subgroup of G. Then the set

{Q1, · · · , Qk} is called a Sylow system of G. By Hall’s theorem every
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soluble group has a Sylow-system. N =
k⋂
i=1

NG(Qi) is called system

normalizer of G.

4.14. Locate the system normalizers of the groups:

(a) S3 (b) A4 (c) S4 (d) SL(2, 3)

Solution:

(a) S3 is soluble and H1 = {(1), (12)}, H2 = {1, (13)}, H3 =

{1, (23)}. are Hall 2-subgroups of S3 or Hall 3′-subgroup of S3, and

A3 = {1, (123), (132)} is a Hall 2′-subgroup or Hall 3-subgroup of S3.

Then {H1, A3} is a Sylow system of G. NS3(Hi)∩NS3(A3) = Hi∩S3 =

Hi system normalizer of S3 i = 1, 2, 3.

(b) Observe that V = {1, (12)(34), (13)(24), (14)(23)} is a Hall 2-

subgroup or Hall 3′-subgroup of A4. The group V �A4, hence there is

only one Hall 2-subgroup of A4.

H1 = {(1), (123), (132)}, H2 = {(1), (124), (142)},

H3 = {(1), (134), (143)}, H4 = {1, (234), (243)}

are Hall 3-subgroups or Hall 2′-subgroups of A4.

Since A4 has no subgroup of index 2 and Hi is not normal in

A4 we obtain NA4(Hi) = Hi. {Hi, V } is Sylow System of A4 and

NA4(Hi) ∩NA4(V ) = Hi ∩ A4 = Hi, System normalizers of A4.

(c) S4 is a soluble group of derived length 3. Sylow 2-subgroup

becomes Hall 2-subgroup or equivalently Hall 3′-subgroup.

Sylow 3-subgroup of S4 becomes Hall 3-subgroup equivalently Hall

2′-subgroup of S4. Let H1 be a Sylow 2-subgroup of order 8 in S4.

Then H1 is not normal in S4. Hence NS4(H1) = H1. There are 4

Sylow 3-subgroups. Hence K1 = {1, (123), (132)} as in A4 every 3-

cycle generates a Sylow 3-subgroup of S4. But |S4 : NS4(Ki)| = 4

implies |NS4(Ki)| = 6.

Namely NS4(K1) ∼= S3. Similarly NS4(Ki) ∼= S3. For K1 we ob-

tain NS4(K1) = {1, (13), (12), (23), (123), (132)}, {K1, H1} is a Sylow

System. Since V � S4 every Sylow 2-subgroup contains V .

H1 = {1, (12), (34), (13)(24), (14)(23), (23), (1342), (1243), (14)}
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NS4(H1) ∩NS4(K1) = H1 ∩ S3 = {(1), (23)} system normalizer of S4.

(d)

|SL(2, 3)| = (32 − 1)(32 − 3)

2
=

8 · 6
2

= 24.

H1 =

{[
1 x

0 1

] ∣∣∣∣x ∈ Z3

}
is a Sylow 3-subgroup

H2 =

{[
1 0

y 1

] ∣∣∣∣y ∈ Z3

}
is a Sylow 3-subgroup

H3 =

{[
1 0

0 1

]
, y =

[
0 −1

1 −1

]
, y2 =

[
−1 1

−1 0

]}
is a Sylow 3-subgroup of SL(2, 3).

Then the number of Sylow 3-subgroups is 4.

Z(SL(2, 3)) =

{[
1 0

0 1

]
,

[
−1 0

0 −1

]}
NSL(2,3)(H1) ≥ 〈Z(SL(2, 3)), H1〉 = H1 × Z(SL(2, 3))

The index |SL(2, 3) : NSL(2,3)(H1)| = 4 implies |NSL(2,3)(H1)| = 6.

SoNSL(2,3)(H1) is a cyclic group of order 6 and generated by the element

t =

[
−1 1

0 −1

]
All Sylow 2-subgroup contains Z(SL(2, 3)). Let S be a Sylow 2-

subgroup of order 8. Then NSL(2,3)(S) = SL(2, 3) since by Question

4.6 S is normal in SL(2, 3), {S,H1} is a Sylow system.

NSL(2,3)(S) ∩NSL(2,3)(H1) = Z(SL(2, 3))×H1.

So Z(SL(2, 3))×H1 is a System normalizer of SL(2, 3).

4.15. Let G be a finite soluble group which is not nilpotent but all

of whose proper quotients are nilpotent. Denote by L the last term of

the lower central series. Prove the following statements:

(a) L is minimal normal in G.

(b) L is an elementary abelian p-group.

(c) there is a complement X 6= 1 of L which acts faithful on L

(d) the order of X is not divisible by p.
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Solution: (a) Let γ1(G) ≥ γ2(G) ≥ · · · > γk(G) = L 6= 1. Since

G is not nilpotent, there exists k such that L = γk(G) = γk+1(G) 6= 1.

The group L is a normal subgroup of G as each term in the lower cen-

tral series is a characteristic subgroup of G. If there exists a normal

subgroup N �G, and N ≤ L, then by assumption G/N is a nilpotent

group. Hence γn(G/N) = 1. Equivalently γn(G/N) ≤ N . But this

implies N/N = γn(G/N) = γn(G)N/N = L/N . This implies L = N

contradiction. Hence L is a minimal normal subgroup of G.

(b) For a finite soluble group minimal normal subgroup is an ele-

mentary abelian p-group for some prime p.

(c) Now by Gaschutz-Schenkman, Carter Theorem, if G is a finite

soluble group and L is the smallest term of the Lower central series of

G. If N is any system normalizer in G, then G = NL. If in addition

L is abelian, then also N ∩ L = 1 and N is a complement of L.

Now by the above theorem L has a complement N where N is a

system normalizer in G. For solvable groups system normalizer exists.

Hence there exists X such that G = XL. By the same theorem since

L is abelian we obtain X ∩ L = 1, so X is a complement of L in G.

Claim X acts faithfully on L.

Since L is a minimal normal subgroup of G, the group X acts on

L by conjugation. Let K be the kernel of the action of X on L. Then

K �X and K commutes with L. Hence NG(K) ≥ XL = G. It follows

that K is normal in G. Then G/K is nilpotent by assumption. Hence

L = γn(G) ≤ K ≤ X. But X ∩ L = 1. Hence K = 1 and X acts on L

faithfully.

(d) Assume that p| |X|. Let P be a Sylow p-subgroup of G contain-

ing L. Then for x ∈ P \L and x ∈ X, 〈x〉 acts an L faithfully. Consider

T = L〈x〉. Then T is a p-group Z(T ) 6= 1. Let 1 6= w ∈ Z(T ), w = `xi

for some i. Then for any g ∈ L, g`x
i

= gx
i

= g as L is abelian.

Then xi acts trivially on L implies xi = 1. This implies Z(T ) ≤ L.

X system normalizer is nilpotent, implies that G = XL.

Let X = P1 × P2 × · · · × Pn, where Pi’s are Sylow pi-subgroups of

X. Let LP1 = P Sylow p-subgroup of G.
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Since G = LX and P1 � X we obtain NG(P ) = G so P � G.

Then Z(P ) char P � G so Z(P ) � G. Then G/Z(P ) is nilpotent

hence L = γn(G) ≤ Z(P ). So [L, P1] = 1. Since X normalizes P1 and

[L, P1] = 1 we obtain P1 �G. If P1 6= 1, then G/P1 is nilpotent. Hence

L = γn(G) ≤ P1 but L ∩ P1 = 1. Hence L ≤ P1 is impossible. So

P1 = 1.

4.16. Write H asc K to mean that H is an ascendant subgroup of

a group K. Establish the following properties of ascendant subgroups.

(a) H asc K and K asc G imply that H asc G.

(b) H asc K ≤ G and L asc M ≤ G imply that H ∩L asc K ∩M
(c) If H asc K ≤ G and α is a homomorphism from G, then Hα

is asc Kα. Deduce that HN asc KN if N �G.

Solution: (a) H asc K implies, there exists a series H = H0 �

H1� · · ·�Hα = K for some ordinal α. Similarly there exists an ordinal

β such that K = K0 �K1 � · · ·�Kβ = G. Then

H = H0 �H1 · · ·�Hα = K �Kα+1 � · · ·�Kα+β = G

be an ascending series of H in G.

(b) Let L = L0 �H1 � · · ·� Lβ = M be a series of L in M . Then

L ∩H = L0 ∩H � L1 ∩H � · · ·� Lβ ∩H = M ∩H

Moreover

M ∩H �M ∩H1 � · · ·�M ∩Hα = M ∩K

Hence L ∩H asc M ∩K.

(c) If H asc K, then there exists an ordinal γ such that H =

H0 � H1 � · · · � Hγ = K. Then Hα ≤ Hα
1 ≤ · · · ≤ Hα

γ = Kα is an

ascending series of Hα in Kα.

HN = H0N � H1N � · · · � HγN = KN . Hence HN asc KN .

Observe that H �H1 and N �G implies HN �H1N

4.17. A group is called radical if it has an ascending series with lo-

cally nilpotent factors. Define the upper Hirsch Plotkin series of a group

G to be the ascending series 1 = R0 ≤ R1 ≤ . . . in which Rα+1/Rα is
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the Hirsch-Plotkin radical of G/Rα and Rλ =
⋃
α〈λ

Rα for limit ordi-

nals λ. Prove that the radical groups are precisely those groups which

coincide with a term of their upper Hirsch-Plotkin series.

Solution: It is clear by definition of a radical group that, if a

group coincides with a term of its upper Hirsch Plotkin series then it is

an ascending series with locally nilpotent factors. Hence it is a radical

group.

Conversely assume that G is a radical group with an ascending

series 1 ≤ H0 ≤ H1 ≤ · · · ≤ Hβ = G such that Hi�Hi+1 and Hi+1/Hi

is locally nilpotent.

Recall from [1, 12.14] that if G is any group the Hirsch-Plotkin

radical contains all the ascendent locally nilpotent subgroups.

Let Ri denote ith term in Hirsch-Plotkin series of G.

Claim: Hi ≤ Ri for all i. For i = 0 clear.

Assume that Hi−1 ≤ Ri−1 we know that Hi/Hi−1 is locally nilpo-

tent. Then HiRi−1/Ri−1 ≤ G/Ri−1. Moreover HiRi−1/Ri−1 is an

ascendent subgroup of G/Ri−1 and HiRi−1/Ri−1 is locally nilpotent.

Hence by [1, 12.1.4] it is contained in the Hirsch Plotkin radical of

G/Ri−1 i.e. HiRi−1 ≤ Ri. It follows that Hi ≤ Ri.

4.18. Show that a radical group with finite Hirsch-Plotkin radical

is finite and soluble.

Solution: Let H be a Hirsch-Plotkin radical of a radical group

G. By previous question CG(H) = Z(H). Now consider G/CG(H) =

G/Z(H) which is isomorphic to a subgroup of Aut H. If H is fi-

nite, then Aut H is finite. Hence G/Z(H) is a finite group. Hence

G/Z(H) is finite and H is finite implies G is a finite group. Then

1 ≤ H1 ≤ H2 ≤ · · · ≤ Hn = G implies G is soluble as γk(Hn) ≤ Hn−1.

So G(k) ≤ Hn−1 and so on.

4.19. T (2,Z) ∼= D∞×Z2 where D∞ is the infinite dihedral group.

Solution:

T (2,Z) =

{[
∓1 t

0 ∓1

] ∣∣∣∣t ∈ Z
}
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C =

{[
1 0

0 1

]
,

[
−1 0

0 −1

]}
is equal to the center of T (2,Z).

Indeed

[
a c

0 b

]
is in the Z(T (2,Z))[

a c

0 b

][
1 t

0 −1

]
=

[
1 t

0 −1

][
a c

0 b

]

⇒

[
a at− c
0 −b

]
=

[
a c+ tb

0 −b

]
, ∀t ∈ Z

at− c = c+ tb⇒ (a− b)t = 2c Since t is arbitrary

for t = 0 we have c = 0 and so a = b

Hence the center C ∼= Z2.

Now consider

H = 〈

[
1 0

0 −1

]
,

[
1 b

0 1

]
| b ∈ Z >

H is a subgroup of T (2,Z)

N =

{[
1 b

0 1

]
| b ∈ Z

}
≤ H

N ∼= Z
ϕ : N → Z[

1 b

0 1

]
→ b

ϕ

([
1 a

0 1

][
1 a

0 1

])
= ϕ

([
1 a+ b

0 1

])
= a+ b

ϕ

([
1 a

0 1

])
+ ϕ

([
1 b

0 1

])
= a+ b ⇒ ϕ is a homomorphism

N �H. Indeed[
1 0

0 −1

][
1 b

0 1

][
1 0

0 −1

]−1

=

[
1 b

0 −1

][
1 0

0 −1

]
=
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=

[
1 −b
0 1

]
=

[
1 b

0 1

]−1

∈ N[
1 0

0 −1

]
is an element of order 2.

So H = N o 〈

[
1 0

0 −1

]
〉 Let a =

[
1 0

0 −1

]
Every element of N is inverted by a and a2 = 1. The group N is a

cyclic group isomorphic to Z. So, H is isomorphic to infinite dihedral

group.

{ The dihedral group D∞ is a semidirect product of infinite cyclic

group and a group of order 2 }. H ∩ C = {1}
[H,C] = 1

H × C ≤ T (2,Z)

We take an arbitrary element from T (2,Z). If the entry a11 = −1

by multiplying[
−1 b

0 ∓1

][
−1 0

0 −1

]
=

[
1 −b
0 ∓1

]
∈ H

Therefore, every element in T (2,Z) can be written as a product of

an element from H.

4.20. Show that Q2n/Z(Q2n) is isomorphic to D2n−1 for n > 2.

Solution: Recall that

Q2n = 〈x, y | x2 = y2n−2

, y2n−1

= 1, x−1yx = y−1, n > 2〉

(y2n−2
)x = (y−1)2n−2

= (x2)x = x2y2n−2
as y2n−2

has order 2. So y2n−2

commutes with x and y hence y2n−2
is in the center of Q2n . The group

〈y〉 has index 2 in Q2n as x2 ∈ 〈y〉. Hence 〈y〉 is normal in Q2n .

Moreover x〈y〉 6= 〈y〉 and |Q2n| = 2n and every element of Q2n can be

written as xiyj where i = 0, 1 and 0 ≤ j � 2n−1.

The writing of every element is unique, as

xiyj = xmyk, 0 ≤ i,m ≤ 1, 0 ≤ k, j ≤ 2n−1

implies xm−i = yk−j. Then m− i = 0 or 1 but if m− i = 1 we obtain

x ∈ 〈y〉 which is impossible. Hence m − i = 0 and k − j = 0. This
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implies every element of Q2n can be written uniquely in the form xiyj.

Now assume that an element xiyj ∈ Z(Q2n). Then (xiyj)x =

xi(yj)x = xiy−j = xiyj. Hence y2j = 1. Since there exists a unique

subgroup of order 2 in 〈y〉 we obtain j = 2n−2. Then

(xiy2n−2
)y = (xi)yy2n−2

= y−1xiyy2n−2

= xix−iy−1xiyy2n−2
= xi(y−1)x

i
yy2n−2

= xiy2n−2
.

It follows that (y−1)x
i
y = 1 and so (y)x

i
= y. Since i = 0 or 1, in

case i = 1 we obtain y2 = 1 and Q2n = Q4 abelian case.

So the center Z(Q2n) = 〈y2n−2〉 and |Z(Q2n)| = 2. Moreover

|Q2n/Z(Q2n)| = 2n−1.

Q2n/Z(Q2n) = 〈x, y | x2 = y2n−2

, y2n−1

= 1, x−1yx = y−1 > /Z(Q2n).

Let x = x Z(Q2n and y = y Z(Q2n). Then x2 = 1 and y2n−2
= 1.

Moreover x−1yx = y−1.

The map

ϕ : Q2n/Z(Q2n) −→ D2n−1

where

D2n−1 = 〈a, b | a2 = 1 = b2n−2

, a−1ba = b−1〉.

x −→ a

y −→ b

ϕ is an epimorphism both groups have the same order hence

Q2n/Z(Q2n) ∼= D2n−1

4.21. Let G = 〈x, y | x3 = y3 = (xy)3 = 1〉. Prove that G ∼= An <

t > where t3 = 1 and A = 〈a〉 × 〈b〉 is the direct product of two infinite

cyclic groups, the action of t being at = b, bt = a−1b−1.

Hint: prove that 〈xyx, x2y〉 is a normal abelian subgroup.

Solution: Let N = 〈xyx, x2y〉. The group N is a normal subgroup

of G. Indeed, x−1(xyx)x = yx2 = yx−1.

The product of two elements of N is xyx · x2y = xy2 = xy−1 =

(yx−1)−1 = (yx2)−1 ∈ N hence yx−1 ∈ N
x(xyx)x−1 = x2y ∈ N
(x2y)x = x−1x2yx = xyx ∈ N , and x(x2y)x−1 = yx−1 ∈ N . Hence

N �G.
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By previous paragraph xyx · x2y = xy2 = xy−1 and now

x2y · xyx = x · (xy)(xy) · x = x · (xy)2 · x = x · y2x2 · x = xy2 = xy−1.

Hence x2y and xyx commute.

Observe that

xy · xy = (xy)−1 = y−1x−1 = y2x2.

Hence N is abelian normal subgroup of G. For the order of the

element xyx we have

(xyx)2 = xyx · xyx = xyx2yx = xyx−1yx

Since xy−1 ∈ N we obtain xN = yN . But x3 = 1 implies x3N = N .

It is clear that x 6∈ N ; otherwiseN = G, thenG is abelian, but xy 6= yx,

〈xN〉 has order 3; otherwise x2 ∈ N implies y ∈ N as yx2 ∈ N . So xN

has order 3 and 〈x〉 ∩N = 1

(x2y)x = x−1x2yx = xyx

Moreover

(xyx)x = yx2 = y−1(x−2x−1)y−1x−1 as y3 = 1 and x2 = x−1

= y−2x−1 = yx−1 = yx2 = (x2y)−1(xyx)−1as y−2 = y and x2 = x−1

Now let x2y = a, and xyx = b. Then

ax = (x2y)x = x−1x2yx = xyx and

bx = (xyx)b = yx2 = (x2y)−1 = y−1x−2x−1y−1x−1

= y−2x−1 = yx−1 = yx2 = a−1b−1.

Then by von Dyck’s theorem we obtain the isomorphism.

4.22. Show that S3 has the presentation

〈x, y | x2 = y3 = (xy)2 = 1〉

Solution: Let G = 〈x, y | x2 = y3 = (xy)2 = 1〉. Then (xy)2 =

xyxy = 1. This implies xyx = y−1 = x−1yx as x2 = 1. Hence the

subgroup generated by y is a normal subgroup of order 3. Let N = 〈y〉.
Since G is generated by x and y, G = 〈x,N〉, N � G implies |G| ≤ 6

on the other hand xiyj = xrys implies x−r+i = ys−j ∈ 〈x〉 ∩ 〈y〉 = 1 as

|〈x〉| = 2 and |〈y〉| = 3. This implies



GROUP THEORY EXERCISES AND SOLUTIONS 67

xi−r = 1 i.e. xi = xr and ys = yj. Hence two possibilities for i and

three possibilities for j implies we have 6 elements of the form xiyj.

Hence |G| = 6.

Recall that S3 = 〈(12), (123)〉
(12)(123)(12) = (132) = (123)−1

(12)(123)(12)(123) = (132)(123) = 1.

Now let α = (12), β = (123). Then every relation in G holds in S3.

So by Von Dycks Theorem there exists an epimorphism

ϕ S3 −→ G

x −→ α

y −→ β

Ker(ϕ) = {αiβj) | ϕ(αiβj) = xiyj = 1}
= {αiβj) | xi = y−j ∈ 〈x〉 ∩ 〈y〉 = 1}
= {1}.

Hence G ∼= S3

4.23. Let G be a finite group with trivial center. If G has a non-

normal abelian maximal subgroup A, then G = AN and A∩N = 1 for

some elementary abelian p-subgroup N which is minimal normal in G.

Also A must be cyclic of order prime to p.

Solution: Let A be an abelian maximal subgroup of G such that

A is not normal. Then for any x ∈ G\A. So we obtain 〈A, x〉 = G.

Therefore for any x ∈ G\A, we have Ax 6= A otherwise A would be

normal in G. But then consider A ∩ Ax. Since Ax 6= A and A is

maximal, 〈A,Ax〉 = G. If w ∈ A ∩ Ax, then CG(w) ≥ 〈A,Ax〉 = G.

Since A is abelian and Ax is isomorphic to A so that Ax is also maximal

and abelian in G. But CG(w) = G implies w ∈ Z(G) = 1. Hence

A ∩ Ax = 1. This shows that A is Frobenius complement in G. Hence

there exists a Frobenius kernel N such that G = AN and A ∩N = 1.

By Frobenius Theorem, Frobenius kernel is a normal subgroup of G.

So G = AN implies G/N = AN/N = A/A ∩N , hence G is soluble as

Frobenius kernel N is nilpotent. It follows from the fact that minimal

normal subgroup of a soluble group is elementary abelian p-group for

some prime p N is an elementary abelian p-group.

If there exists a normal subgroup M in G such that G = AM and

M ≤ N . Then A ∩M ≤ A ∩N = 1. Moreover |G| = |A||M |
|A∩M | = |A||N |

|A∩N | =
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|A||M | = |A||N |. Hence |M | = |N |, this implies M = N . Hence N is

minimal normal subgroup of G.

Since N is elementary abelian p-group if A contains an element g

of order power of p, then the group H = N〈g〉 is a p-group. Hence

Z(H) 6= 1. Let x ∈ Z(H). If x ∈ A, then CG(x) ≥ 〈A, x〉 = G. This

implies that x ∈ Z(G) = 1 which is impossible. So x ∈ G\A. Then

〈g〉 ∩ 〈g〉x ≤ A ∩ Ax = 1. But 〈g〉 ∩ 〈g〉x = 〈g〉. Hence (|A|, p) = 1. i.e.

p - |A|.
Now we show that A is cyclic. Indeed by Frobenius Theorem, Sylow

q-subgroups of Frobenius complement A are cyclic if q > 2 and cyclic

or generalized quaternion if p = 2 (Burnside Theorem, Fixed point

free Automorphism in [1]). Since A is abelian Sylow subgroup can not

cannot be generalized quaternion group. Hence all Sylow subgroups of

A are cyclic. This implies that A is cyclic.

4.24. Let G be a finite group. If G has an abelian maximal sub-

group, then G is soluble with derived length at most 3.

Solution: Let A be an abelian maximal subgroup of G. If A

is normal in G, then for any x ∈ G\A, we have A〈x〉 = G. Hence

G/A ∼= A〈x〉/A ∼= 〈x〉/〈x〉 ∩ A. Then G/A is cyclic and A is abelian

implies G′′ = 1.

Consider Z(G). If Z(G) is not a subgroup of A, then AZ(G) = G.

This implies that G is abelian. Hence we may assume that Z(G) is a

subgroup of A. Then A∩Ax ≥ Z(G), on the other hand if w ∈ A∩Ax,
then CG(w) ≥ 〈A,Ax〉 = G. Hence w ∈ Z(G). It follows that A∩Ax =

Z(G).

Now, consider the group Ḡ = G/Z(G). Then Ḡ has an abelian

maximal subgroup Ā. Then for any x̄ ∈ Ḡ\Ā. We obtain Ā ∩ Āx =

1̄. Hence Ḡ is a Frobenius group with Frobenius complement Ā and

Frobenius kernel N̄ . Then Ḡ = G/Z(G) = (A/Z(G))(N/Z(G)). The

group Ḡ is soluble hence G is soluble. As in [1, Lemma 2.2.8 ] N̄ is an

elementary abelian p-group and N̄ is a minimal normal subgroup of Ḡ.

Since Ḡ = ĀN̄ and A is abelian, we obtain Ḡ′ ≤ N̄ and Ḡ′′ ≤ Z(Ḡ)

as N̄ is abelian. Hence (G/Z(G))′ ≤ N/Z(G) and G′′Z(G)/Z(G) ≤
Z(G)/Z(G). i.e G′′ ≤ Z(G). Hence G′′′ = 1.
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4.25. Let M be a maximal subgroup of a locally finite group G. If

M is inert and abelian, then G is soluble.

Solution: If M is normal, then for any x ∈ G\M , we have

〈M,x〉 = G implies that G/M = 〈x〉M/M ∼= 〈x〉/〈x〉 ∩M︸ ︷︷ ︸
abelian

.

Then [G,G] ≤M . So [G,G] is abelian. Therefore, G ≥ [G,G] ≥ 1. So

that G is soluble of derived length 2.

Assume M is not normal in G. Then NG(M) = M as M maximal.

Then for any x ∈ G\M we have Mx 6= M . Hence 〈M,Mx〉 = G. By

inertness we have |M : M ∩Mx| <∞ and |Mx : M ∩Mx| <∞. Then

by [?, Belyaev’s Paper] this implies that |G : M ∩Mx| = |〈M,Mx〉 :

M∩Mx| <∞. SoM∩Mx 5 G. Indeed, NG(M∩Mx) ≥ 〈M,Mx〉 = G.

Then the group G/M ∩Mx is a finite group with abelian maximal sub-

group, then by [1, Theorem 2.2.1] G/M ∩Mx is soluble. It follows that

G is soluble as M ∩Mx is abelian.

4.26. Let G be soluble and Φ(G) = 1. If G contains exactly one

minimal normal subgroup N , then N = F (G).

Solution: Let N be a minimal normal subgroup of the soluble G.

Then N is an elementary abelian group and so it is a normal nilpotent

subgroup of G. Hence N ≤ F (G).

The group F (G) is a characteristic nilpotent subgroup of G so

F (G) = Op1(F (G))× . . .×Opk(F (G))

where each Opi(F (G)) � G and G contains only one minimal normal

subgroup implies that, there exists only one prime p.

Z(F (G))charF (G)charG implies there exists a minimal normal

subgroup in Z(F (G)). Uniqueness of N implies every element of order

p in Z(F (G)) is contained in N . So Ω1(Z(F (G))) ≤ N . Moreover

every maximal subgroup of F (G) is contained in a maximal subgroup

of G. Hence Φ(F (G)) ≤ Φ(G) = 1. Then

F (G) ∼= F (G)/Φ(F (G))→ Dr F (G)/Mi

Mi is maximal in F (G). Since each F (G)/Mi is cyclic of order p we

obtain F (G)) is an elementary abelian p group. Then Ω1(Z(F (G))) ≤
N implies F (G) ≤ N and hence we have the equality F (G) = N .
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4.27. Let G be a group of order 2n. Suppose that half of the

elements of G are of order 2 and the other half form a subgroup H of

order n. Prove that H is of odd order and H is an abelian subgroup of

G.

Solution: Since H is a subgroup of index 2 in G we have H is

a normal subgroup of G. There is only one coset of H in G other

than itself say xH is the second coset and xH 6= H. Hence by as-

sumption every element in xH has order 2. In particular G/H is of

order 2 and x is an element of G of order 2. Then for any h ∈ H we

have (xh)2 = (xh)(xh) = 1. It follows that xhx = x−1hx = h−1 as

x has order 2. Then the inner automorphism ix is of order 2 and

inverts every element h ∈ H. Then for any h1, h2 ∈ H we have

x−1(h1h2)x = (h1h2)−1 = h−1
2 h−1

1 = (x−1h1x)(x−1h2x) = h−1
1 h−1

2 .

Hence h−1
2 h−1

1 = h−1
1 h−1

2 for all h1, h2 ∈ H. By taking inverse of each

side we have h1h2 = h2h1. Hence H is abelian. If |H| is even, then by

Cauchy theorem there will be an element of order 2 in H. But then

there will be n+ 1 elements of order 2 in G which is impossible. Hence

H is a subgroup of odd order.

4.28. Show that Sym(6) has an automorphism that is not inner,

Out(Sym(6)) 6= 1

Solution: (a) We first show that there is a faithful, transitive

representation of Sym(5) of degree 6.

First we show that there exists a subgroup of Sym(5) of order 20

hence the index |Sym(5) : G| = 6. Then the action of Sym(5) on the

right cosets of G is

γ : Sym(5) ↪→ Sym(6), γ is faithful and transitive on 6 letters.

Let

G = {fa,b : GF (5)→ GF (5) | fa,b(x) = ax+ b where a, b ∈ GF (5) and a 6= 0}

Then we may consider G as a subgroup of Sym(5) as each element

being a permutation on 5 elements. Then G ≤ Sym(5) and |G| = 20 as

there are 4 choices for a and 5 choices for b. Therefore |Sym(5) : G| =
6. Then Sym(5) acts on the right cosets of G in Sym(5) by right

multiplication.
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Then we may write the element of G as permutations of 5 elements

and then G contains both even and odd permutations. For example,

f2,2 corresponds to the permutation of GF (5) as 2x + 2. Then f2,2 =

(1, 4, 0, 2) so f2,2 defines an odd permutation. On the other hand

f1,1 : (1, 2, 3, 4, 0) which is an even permutation and

f2,0 : (1, 2, 4, 3) which is an odd permutation.

If K is the kernel of the action of Sym(5) on the cosets of G

in Sym(5), then K E Sym(5). Since the kernel of the action is

∩x∈Sym(5)G
x which lies inside G and G � Sym(5) and the only nor-

mal subgroup of Sym(5) is either Alt(5) or {1} . Since |K| ≤
|G| � |Alt(5)| , we have K = {1} . Hence Sym(5) acts faithfully and

transitively on the set of cosets of G in Sym(5) where degree of the

action is 6.

(b) The groups Sym(6)1, Sym(6)2, . . . , Sym(6)6 which are mu-

tually conjugate and isomorphic to Sym(5), but these subgroups fixes

a point as a subgroup of Sym(6).

The symmetric group Sym(6) has a subgroup H ∼= Sym(5) which

is transitive on 6 elements.

Sym(5) has 6 Sylow 5-subgroups. Indeed the number of Sylow 5-

subgroups n5 ≡ 1 ( mod 5) so it can be 1, 6, 11, 16 or 21 and moreover

n5|24 = |Sym(5) : NSym(5)(C5)| implies that n5 = 6 as we have 6

Sylow subgroup and so Sylow 5-subgroup is not normal in Sym(5). So

Sym(5) acts on the set of Sylow 5-subgroups by conjugation. Hence

there exists a homomorphism

ϕ : Sym(5) ↪→ Sym(6)

representing members of Sym(5) as permutation of Sylow 5-subgroups.

Kernel of the action is either Alternating group Alt(5) or {1} . Kernel

cannot be Alt(5) since the set of the Sylow 5-subgroups of Sym(5)

are also the set of Sylow 5-subgroups of Alt(5) and Alt(5) can act

on this set transitively. Hence the kernel of the action is {1} . Hence

H = Im(ϕ) ∼= Sym(5) and Im(ϕ) ≤ Sym(6) and Im(ϕ) acts

transitively and faithfully on the set of Sylow 5-subgroups. One can

observe that the subgroup G of order 20 corresponds to NSym(5)(C5)
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and recall that NSym(5)(C5) does not lie in Alt(5) as it contains odd

and even permutations.

(c) Let

π1 : Sym(6) ↪→ Sym{Sym(6)1y1, Sym(6)1y2, ..., Sym(6)1y6}

The natural representation of Sym(6) on the cosets of Sym(6)1 gives

an isomorphism

Sym(6) ↪→ π1(Sym(6))

σ −→ π1(σ)

The representation of Sym(6) on the cosets of H = Im(ϕ) ∼= Sym(5)

is faithful since the kernel is as in first lemma, a normal subgroup of

Sym(6) smaller than Alt(6). Hence kernel is {1} . Thus one obtains

a second isomorphism

π2 : Sym(6) −→ Sym(6) = Sym(Hx1, Hx2, . . . , Hx6)

Hx′is are cosets of H in Sym(6).

The correspondence

Sym(6) −→ Sym(6)

π1(σ) −→ π2(σ)

is then an automorphism of Sym(6).

π1(σδ) = π1(σ)π1(δ) = π2(σδ) = π2(σ)π2(δ)

This automorphism associates 〈π1(σ) | σ ∈ H〉 with 〈π2(σ) | σ ∈ H〉 .

However, 〈π2(σ) | σ ∈ H〉 fixes all the elements inH while 〈π1(σ)|σ ∈ H〉
fixes no elements, indeed if (Sym(6))1τ = Sym(6)1τσ for all σ ∈ H

then τστ−1 ∈ Sym(6)1 for all σ ∈ H, it follows that, τHτ−1 = Sym(6)1

which makes Sym(6)1 and H conjugate. Both H and Sym(6)1 are iso-

morphic to Sym(5) as a subgroup of Sym(6) but they cannot be con-

jugate since Sym(6)1 is transitive on 5 elements and H on 6 elements.

This automorphism of Sym(6) is not inner.
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Observe that π1 and π2 gives two inequivalent permutation repre-

sentation of the group Sym(6) but the representations π1 and π2 are

permutational isomorphic.

5. A

Let F be any field and n any positive integer. Then the set of all

invertible n×n matrices with entries in F form a group with respect to

matrix multiplication. This is called the general linear group of de-

gree n over F and denoted by GLn(F ). Let X be a metric space with

distance function d : X ×X → R. Then a bijective map ϕ : X → X is

structure preserving if d(xϕ, yϕ) = d(x, y) for all x, y ∈ X such a map

ϕ is called isometry of X.

5.1. Assume that a set G with an operation satisfying the associa-

tive law satisfies the following two conditions (a) and (b):

(a) There exists an element e of G such that ge = g for all g ∈ G.

(b) For any element a of G, there exists an element a′ such that

aa′ = e.

Then, show that G is a group with respect to the given operation.

Solution We need to show that there exists a left identity and

each element has a left inverse. Apply (b) to the element a′. So there

exists a′′ ∈ G with a′a′′ = e. By the associative law;

ea′′ = (aa′)a′′ = a(a′a′′) = ae = a by part (a). So we have ea′′ = a

On the other hand; ea = (ea)e = (ea)(a′a′′) = e(aa′)a′′ = (ee)a′′ =

ea′′ = a by the above paragraph.

Therefore for any element a ∈ G we have ea = a = ae for all a ∈ G.

So, e is the identity element of G.

Since we have ea′′ = a and e is the identity element, we get a′′ = a. So

we have aa′ = e and a′a′′ = a′a = e = aa′. So a′ is the inverse of a.

Therefore, G is a group with the given conditions.

5.2. For a given subset X of a group G, let H be the set of sub-

groups H satisfying H ∩ X = ∅ (the empty set). The set H becomes
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a partially ordered set by defining H ≤ K if and only if H and K are

members of H and H is a subgroup of K. Show that, if H is not

empty, H is inductively ordered, so H has at least one maximal ele-

ment by Zorn’s lemma.

Pick a subgroup H0 satisfying H0∩X = ∅, and let H0 denote the subset

of H consisting of the members which contain H0. Show that H0 is

also inductively ordered, and has a maximal element.

Solution Assume H is non-empty. It is clear that H is a partially

ordered set as being a subgroup is a partially ordered set on the set of

all subgroups of G. This is the restriction of this relation to H . Since

H 6= ∅, there exists a subgroup H0 ∈H such that H0 ∩X = ∅. Let

H0 = {H ∈H | H0 ≤ H }

Let Hi, i ∈ I be a chain of subgroups in H0. Then T =
⋃
i∈I Hi is a

subgroup of G and T ∈H0 as T ∩X = ∅. Hence every ascending chain

of members in H0 has an upper bound in H0. Then by Zorn’s lemma

there exists a maximal element in H0. i.e. There exists a subgroup

M of G such that M is a maximal element in H0. Therefore every

subgroup containing M will have a non-empty intersection.

5.3.

Let G = ⊕n∈N+Z2n+1 = Z4 ⊕ Z8 ⊕ Z16 ⊕ · · ·
H = ⊕n∈N+Z2n = Z2 ⊕ Z4 ⊕ Z8 ⊕ Z16 ⊕ · · ·

Show that G is not isomorphic to H.

Solution: Observe first that H = Z2 ⊕ G. Then there exists a

projection from H to Z2.

If G ∼= H, then there exists a projection from G to Z2. Then

π : G→ Z2 such that G/ker(π) ∼= Z2. π2 = π. By the property of

the projection we have G = Z2 ⊕Ker(π).

Then there exists an epimorphism from finite group

Z4 ⊕ Z8 ⊕ . . .⊕ Z2n+1 → Z2.

Then
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Z4 ⊕ Z8 ⊕ · · · ⊕ Z2n+1
∼= Z2 ⊕Ker(π)

= Z2 ⊕ Z2 ⊕ Z4 ⊕+ · · ·+ Z2n

But this is impossible as direct sums has different maximal elemen-

tary abelian subgroups.

5.4. Let G be the group of 2×2 nonsingular matrices over R. Show

that G is a semidirect product of the group of matrices with determinant

1 and the multiplicative group R∗. Describe an action associated with

this semidirect product.

(Hint. The action is not unique. Why not?)

Solution Let G = GL(2,R) Show that G ∼= SL(2,R)oR∗

Define ϕ : R∗ → GL(2,R) by ϕ(r) =

(
r 0

0 1

)
. Say ϕ(R∗) = H.

Ker(ϕ) = 1, so ϕ is one-to-one. Then we have R∗ ∼= H ≤ GL(2,R).

We now show that SL(2,R) E GL(2,R)

Define θ : GL(2,R)→ R∗ by θ(A) = det(A).

We know that determinant is a homomorphism. Then

Ker(θ) = {A ∈ GL(2,R) | θ(A) = det(A) = 1} = SL(2,R)

Being the kernel of a homomorphism, we have SL(2,R) E GL(2,R).

Now, H ∩ SL(2,R) = {A ∈ H | det(A) = 1} = {

(
1 0

0 1

)
}

So we have G ∼= SL(2,R)oR∗.
Arbitrary element of G can be written as(
a b

c d

)
=

(
ad− bc o

0 1

)(
a

ad−bc
b

ad−bc
c d

)
where

(
ad− bc o

0 1

)

is in H and

(
a

ad−bc
b

ad−bc
c d

)
is in SL(2,R)

Remark In the above question G = GL(2,R), but the proof will

work exactly the same manner for GL(n,R) or GL(n,F).

One may take K =

(
1 0

0 ad− bc

)
. Then K ∼= R∗ then the ho-

momorphism and the action is not the same.
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5.5. Find the number of left cosets of K which are contained in

the double coset HxK, also show that G is the disjoint union of its

(H,K)-double cosets.

Solution

5.6. Let H be a proper subgroup of a finite group G. Show that

there exists an element of G which is not conjugate to any element of

H.

Solution Assume for any x ∈ G, there exists g ∈ G such that

x ∈ Hg. Then G =
⋃
Hg. Let |G| = n and |H| = k.

The number of distinct conjugates of H is [G : NG(H)].

Then we have |G| = [G : NG(H)]|NG(H)| ≥ [G : NG(H)]|H| as

NG(H) ≥ H. Let |G : NG(H)| = m. Then H has m distinct conjugates

in G. Say H = H1, Hg2 , . . . , Hgm . As each Hgi contain |H| − 1 non-

identity element we have at most |Hgi |−1 non-identity element in Hgi .

If G =
⋃m
i=1 H

gi . Then |G| =
∑m

i=1(|(Hgi − id)| ≤ (k − 1)m + 1 as

H ≤ NG(H) we have mk −m + 1 ≥ |G| = m(|NG(H)| ≥ mk. So we

have −m + 1 ≥ 0 and m ≤ 1. But m = 1 implies that H � G and

in this case Hg = H for all g ∈ G. This implies that H = G. This

contradicts to the assumption that H is a proper subgroup of G. So G

cannot be a union of conjugates of a proper subgroup H.

5.7. For any proper subgroup H of a group G, HHx 6= G for any

x ∈ G.

Solution Assume that HHx = G for some x ∈ G. Since H is a

proper subgroup, clearly x 6= 1. Then x = h1h
x
2 for some h1, h2 ∈ H.

Then x = h1x
−1h2x. It follows that 1 = h1x

−1h2 and so h−1
1 h−1

2 = x−1.

Since H is a subgroup and h1, h2 ∈ H we have h−1
1 h−1

2 ∈ H i.e. x ∈ H.

But then, G = HHx = H. This contradicts to H is a proper subgroup.

Hence HHx 6= G.
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5.8. (a) Prove that any subgroup of index 2 is normal.

(b) Let G be a finite group, and let p be the smallest prime divisor of

the order |G|. Show that any subgroup of index p is normal.

Solution (a) Let H ≤ G with [G : H] = 2.

Then H has two distinct right cosets, and also two distinct left cosets

in G. For any h ∈ H, we have hH = Hh = H and for any a ∈ G with

a /∈ H, we have aH 6= H and Ha 6= H. Since there are exactly two

cosets of H in G, we have Ha = aH = G \H for all a ∈ G.

Therefore H E G.

(b) Let H be a subgroup of G of index p. Then we need to show

that H is a normal subgroup of G. Indeed G acts from right on the

set of right cosets of H in G. Then there exists a homomorphism

from G into Sym(p). Then G/Ker(φ) is isomorphic to a subgroup of

Sym(p). Recall that Ker(φ) =
⋂
x∈GH

x. So Ker(φ) ≤ H. If H is

not normal in G, then Ker(φ) will be a proper subgroup of H and

hence 1 6= H/Ker(φ) < G/Ker(φ). i.e a prime divisor of |H/Ker(φ)|
divides |G|/|Ker(φ)| which divides p!

|Ker(φ)| . Hence it divides |G| which

is impossible as any prime dividing p! is less than p and p is the smallest

prime dividing |G|.

Definition 5.1. An endomorphism σ of a group G is said to be

normal if σ commutes with all inner automorphisms of G.

5.9. Let σ be a normal endomorphism of a group G. Set σ(G) = H

and σ(g) = z(g)−1g for any g ∈ G.

(a) Show that z is a homomorphism from G into CG(H).

(b) Show that H is a normal subgroup of G such that G = HCG(H),

and H ∩ CG(H) = Z(H) ⊂ Z(G).

(c) Show that both H and CG(H) are invariant by σ. Prove that

the restriction ρ of σ on CG(H) is a homomorphism from CG(H) into

Z(H), and that for any element x of Z(H), we have x = ζ(x)ρ(x)

where ζ is the restriction of z on H.

Solution

(a) Let σ be a normal endomorphism of a group G. Then σ is

an endomorphism of G, commuting with all the inner automorphisms
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of G. Let σ(G) = H and σ(g) = z(g)−1g. We may view this as

z(g) = gσ(g)−1.

First observe that z(g) = gσ(g)−1 ∈ CG(H). Indeed;

igσ = σig implies for any x ∈ G ((x)ig)σ = ((x)σ)ig. Then

(g−1xg)σ = g−1((x)σ)g. It follows that

((g−1)σ)((x)σ)((g)σ) = g−1((x)σ)g. Multiply from left by g and

from right by g−1 we have [g((g−1)σ)]((x)σ)(g)σ)g−1 = (x)σ for any

x ∈ G. So for any (x)σ ∈ H we have z(g) = g(g−1)σ ∈ CG(H).

Now for any g and h in G we have;

(gh)z = gh((gh)σ)−1 = gh((g)σ(h)σ)−1 = gh((h)σ)−1((g)σ)−1

By first paragraph h(h−1)σ ∈ CG(H) so h(h−1)σ commutes with

(g−1)σ and we obtain

(gh)z = g((g−1)σ)h((h−1)σ) = (g)z(h)z. Hence z is a homomor-

phism from G into CG(H).

(b) H = (G)σ. For any g ∈ G and (x)σ ∈ H
g−1(x)σg = g−1(x)σg((g)σ)−1(g)σ as g((g)σ)−1 ∈ CG(H) we have

= g−1g((g)σ)−1(x)σ(g)σ = ((g)σ)−1(x)σ(g)σ = (g−1xg)σ ∈ H.
So H is a normal subgroup of G.

Now for any g ∈ G
g = (g)σg((g)σ)−1 as g((g)σ)−1 ∈ CG(H) and (g)σ ∈ H we have

G = HCG(H) and H ∩ CG(H) = Z(H).

Indeed if x ∈ H ∩ CG(H), then for any g ∈ G
gx = (g)σg((g−1)σ)x

= (g)σxg((g−1)σ) as x ∈ H and g((g−1)σ) ∈ CG(H)

= x(g)σg((g−1)σ) as x ∈ CG(H) and (g)σ ∈ H.

= xg.

So x ∈ Z(G) and hence Z(H) = H ∩ CG(H) ≤ Z(G).

(c)(i) H is invariant as (H)σ = ((G)σ)σ ⊆ (G)σ = H

Let x ∈ CG(H). Then for any h ∈ H, xh = hx.

i.e. x(g)σ = (g)σx for any g ∈ G. Then x(g)σx−1 = (g)σ for all

g ∈ G.

Now we consider the following (x)σ(g)σ = (g)σ(x)σ?

(x)σx−1x(g)σ = (x)σx−1(g)σx

= (g)σ(x)σx−1x as (x)σx−1 = (x(x−1)σ)−1 ∈ CG(H) and (g)σ ∈ H
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= (g)σ(x)σ

Hence (x)σ ∈ CG(H).

(ii) The restriction ρ:

Let x, y ∈ CG(H). Then (x)ρ = (x)σ = ((x)z)−1x. ((x)z)−1x ∈
Z(H) as for any (g)σ ∈ H, we have ((x)z)−1x(g)σ = ((x)z)−1(g)σx

as x ∈ CG(H) and (g)σ ∈ H. Now as (x)z ∈ CG(H) we have

((x)z)−1x(g)σ = (g)σ((x)z)−1x. It follows that ((x)z)−1x ∈ Z(H)

and (x)ρ ∈ Z(H).

Moreover (xy)ρ = (xy)σ = (x)σ(y)σ = (x)ρ(y)ρ

(iii) Let x ∈ Z(H). Then x = x((x)σ)−1(x)σ.

Now x((x)σ)−1 = (x)z = (x)ζ where ζ is the restriction of z on H.

And (x)σ = (x)ρ where ρ is the restriction of σ on CG(H).

5.10. Let G be a group with Z(G)=1. Show that the centralizer in

Aut(G) of Inn(G) is {1} and in particular, Z(Aut(G))={1}.

Solution: Let φ ∈ CAut(G)(Inn(G)). Then

φ−1igφ = ig for any ig ∈ Inn(G). For any element x ∈ G, φ−1igφ(x) =

ig(x) and so φ−1ig(φ(x)) = g−1xg. It follows that φ−1(g−1φ(x)g) =

g−1xg iff φ−1(g−1)xφ−1(g) = g−1xg. Then we have

gφ−1(g−1)xφ−1(g)g−1 = x. Hence

(g−1)−1(φ−1(g))−1xφ−1(g)g−1 = x for all x ∈ G.

Hence, φ−1(g)g−1 ∈ Z(G) = {1}. It follows that φ−1(g) = g for all

g ∈ G. Then the automorphism φ−1 fixes all the elements of G. i.e.

φ−1 and hence φ is the identity automorphism of G.

As Z(Aut(G)) = CAut(G)(Aut(G)) ≤ CAut(G)(Inn(G)) = {1}, we

have Z(Aut(G)) = {1}. It follows that Z(G) = {1} implies Z(Aut(G)) =

{1}.

5.11. Let G be a nonabelian simple group. Show that any auto-

morphism of Aut(G) is inner.
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Solution: As G is nonabelian simple group, Z(G)={1}. Then by

Question 5.10, Z(Aut(G)) = {1}. Then by Question ??, any automor-

phism of A = Aut(G) is an inner automorphism.

5.12. If two subgroups H and K of a group G satisfy the conditions

H ∩K= {1} , H ≤ NG(K) and K ≤ NG(H), then every element of H

commutes with every element of K.

Solution: Consider the element h−1k−1hk. Since K ≤ NG(H),

k−1hk ∈ H. So h−1k−1hk ∈ H. Similarly, H ≤ NG(K) implies

k−1hk ∈ K. So h−1k−1hk ∈ K. Hence, h−1k−1hk ∈ H ∩ K = {1}.
It follows that h−1k−1hk = 1 and so hk = kh for any h ∈ H and k ∈ K.

5.13. Let G be a group with a composition series and let N be a

normal subgroup of G. Show that there is a composition series of G

having N as a term.

Solution: Let G be a group with a composition series G = G0 .

G1 . .. . Gn = {1}.

Take the intersection of each subgroup in the series with the normal

subgroup N . We have G0∩N = N .G1∩N .G2∩N ....Gn∩N = {1}.

Now, we need to show Gi+1∩N E Gi∩N . Indeed, let x ∈ Gi+1∩N
and g ∈ Gi∩N . Then g−1xg ∈ N as x ∈ N an N is a normal subgroup

of G. Moreover, x ∈ Gi+1 and g ∈ Gi and Gi+1 is normal in Gi implies

g−1xg ∈ Gi+1. Hence, x ∈ Gi+1 ∩N and so Gi+1 ∩N E Gi ∩N .

(Gi ∩N)/(Gi+1 ∩N) ' (Gi ∩N)Gi+1/Gi+1 E Gi/Gi+1.

But Gi/Gi+1 is a composition factor of the group G. So (Gi ∩
N)/(Gi+1 ∩N) is either equal to Gi/Gi+1 or {1}.

So it is simple or (Gi ∩N)Gi+1/Gi+1 is the trivial group.

So N has a series where each factor is either simple and the simple

factor is isomorphic to a simple factor of G or it is trivial group. By
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deleting the trivial terms from the series, we obtain a composition series

of N .

Now we may look at the series G � G1N � G2N . . .N this series

also give a series from G to N with factors are either trivial or simple

apply the same procedure above and obtain a series of G where N is a

term of this series.

5.14. Show that the following two conditions on a group G are

equivalent:

(1) There is a homomorphism ϕ from G into Sym(n) such that

ϕ(g) 6= 1 for some g ∈ G.

(2) The group G contains a proper subgroup of index at most n.

Solution (a) ⇒ (b): Assume that there is a homomorphism

ϕ : G→ Sym(n) such that ϕ(g) 6= 1 for some g ∈ G.

Let G act on the set X = {1, 2, .., n}. As

Ker(ϕ) = {g ∈ G | ϕ(g) = 1}

and ϕ(g) 6= 1 for some g ∈ G, the action of G on X is no-trivial.

Let x ∈ X such that xg 6= x > for some g ∈ G. Then Ox 6= {x}.
This implies that |Ox| > 1.

By Orbit-Stabilizer Theorem, |G : StabG(x)| = |Ox| ≤ n. This

implies that StabG(x) is a proper subgroup of G as |Ox| > 1 and the

index of StabG(x) is at most n.

(b) ⇒ (a): Assume that H is a proper subgroup of G of index at

most n, say [G : H] = k . Let Ω be the set of right cosets of H in G.

Then G act on Ω by right multiplication. Observe that |Ω| = k.

As G act on Ω, there exists a homomorphism ϕ : G → Sym(k) by

ϕ(g)Hx = Hxg .
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As Ker(ϕ) contains all elements g ∈ G such that g ∈
⋂
x∈GH

x we

have Ker(ϕ) ≤ H. Hence, for any g ∈ G \H we have ϕ(g) 6= 1.
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