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PREFACE
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I am grateful to Prof.Dr. C. Koç for a thorough critical reading of the
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to Mathematics Foundation for making this book possible . Finally I would
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Mahmut Kuzucuoğlu

July 1999, METU, ANKARA
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exercises in the previous version. Therefore I had to correct or change some

of the questions. For this new version, I would like to thank him for all his

efforts and making the course, one of the most enjoyable one.

Mahmut Kuzucuoğlu

November 2011, METU, ANKARA
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GROUPS

(1) If G is a group and f : G→ G is defined by f(x) = x−1, all x ∈ G,

show that f is a homomorphism if and only if G is abelian.

Solution: Assume that f is a homomorphism. Then

(xy)−1 = f(xy) = f(x) · f(y) = x−1y−1

Hence y−1x−1 = x−1y−1, and xy = (y−1x−1)−1 = (x−1y−1)−1 = yx

for all x, y ∈ G. This implies that G is abelian. Conversely assume

that G is abelian. Then

f(xy) = y−1x−1 = x−1y−1 = f(x)f(y).

Hence f is a homomorphism.

(2) If a group G has a unique element x of order 2, show that x ∈ Z(G).

Solution: Assume that x is the unique element of order 2 in G.

Then it is easy to see that for any g ∈ G, g−1xg is also an element

of order 2. By uniqueness, g−1xg = x. Hence, x ∈ Z(G).

(3) Suppose G is finite, K � G,H ≤ G and |K| is relatively prime to

[G : H]. Show that K ≤ H.

Solution: Since K �G,KH is a subgroup of G. [G : H] = [G :

KH][KH : H]. By assumption (|K|, [G : H]) = 1. This implies

(|K|, [G : KH]) = 1 and ([KH : H], |K|) = 1. Since G is finite,

[KH : H] = |KH|
|H| and since KH

H
∼= K

K∩H

(
|KH|
|H|

=
|K|
|K ∩H|

, |K|) = 1

This implies |K|
|K∩H| = 1. Hence K ∩ H = K, and consequently

K ≤ H.

(4) If G is not abelian show that Z(G) is properly contained in an

abelian subgroup of G.

Solution: Since G is not abelian, G 6= Z(G). So there exists

an element x ∈ G \ Z(G). Now consider the group generated by x
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and Z(G). This group is an abelian subgroup of G containing Z(G)

properly. This group is not equal to G as G is not abelian. Hence

〈Z(G), x〉 is the required subgroup of G.

(5) If G is a group and |x| = 2 for all x 6= 1 in G, show that G is

abelian. Can you say more?

Solution: For any x ∈ G, x2 = 1. Hence x = x−1. Now, let

x, y ∈ G. Then, (xy)2 = (xy) · (xy) = 1. This gives xy = (xy)−1 =

y−1x−1 = yx. Hence G is abelian. Such a group must be a 2-group

and all such groups are called elementary abelian 2-groups.

(6) Suppose G is a group, H ≤ G, and K ≤ G. Show that H ∪ K is

not a group unless H ≤ K or K ≤ H.

Solution: Assume that H 6≤ K and K 6≤ H, and H ∪ K is a

group. Let h ∈ H \K and k ∈ K \H. Then, hk ∈ H∪K. Therefore,

either hk ∈ H or hk ∈ K. If hk ∈ H, then h−1hk = k ∈ H which

is impossible. If hk ∈ K, then hkk−1 = h ∈ K which is also

impossible. This contradiction gives the result.

(7) Suppose that S and T are two subsets of a finite group G, with

|S| + |T | > |G|. If ST is defined to be {st : s ∈ S, t ∈ T}, show

that G = ST .

Solution: Let g be an arbitrary element in G. Then |gT | =

|T | = |gT−1| and |G| ≥ |S ∪ gT−1| = |S| + |gT−1| − |S ∩ gT−1| >
|G| − |S ∩ gT−1|. Hence |S ∩ gT−1| > 0, i.e S ∩ gT−1 6= ∅. Thus

there exists s ∈ S and t−1 ∈ T−1 such that s = gt−1 which implies

that g = st. This proves that g ∈ ST and G = ST .

(8) Suppose S is a subset of a finite group G, with |S| > |G|
2

. If S2 is

defined to be {xy : x, y ∈ S}, show that S2 = G.

Solution: Assume that S2 6= G. Then there exists x ∈ G \ S2.

Consider the table of G :
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? s1 s2 s3 · · · sk

s1 s2
1 s1s2 s1s3

... s1sk x

s2 s2s1 s2
2 s2s3

... s2sk

s3 s3s1 s3s2 s2
3

... s3sk
...

...
...

...
...

...
...

...
...

sk sks1 sks2 sks3 · · · s2
k

Recall that x must appear in each row and in each column

of the table only once. Hence x appears |G| times in the table.

Assume that |S| = k. Each row contains x implies that, we need k

more columns to place x’s to each row. That implies the order of

the group G is greater than or equal to 2k. But this is impossible

by the assumption that k = |S| > |G|
2

.

Remark Observe that it is possible to argue this question as in

the previous question S = T .

(9) If A,B ≤ G and both [G : A] and [G : B] are finite. Show that

[G : A ∩B] ≤ [G : A][G : B] with equality if and only if G = AB.

Solution: Let ΩA = {Ax | x ∈ G }, ΩB = {Bx | x ∈ G } and

ΩA∩B = {(A ∩ B)x| x ∈ G} be the sets of right cosets of A,B

and A ∩B in G respectively. Define a map

α : ΩA∩B → ΩA × ΩB

by α((A ∩B)y) = (Ay,By). Clearly α is well-defined.

α((A ∩B)y) = α((A ∩B)t)

implies

(Ay,By) = (At,Bt).
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Then Ay = At and By = Bt. Hence yt−1 ∈ A ∩ B. This implies

(A ∩B)y = (A ∩B)t. Hence the map α is one to one. This gives

[G : A ∩B] ≤ [G : A][G : B].

If G = AB, then [AB : A ∩B] = [AB : A][A : A ∩B]

Claim: [A : A ∩B] = [AB : B]. Let

Ω = {(A ∩B)x | x ∈ A}
Σ = {By | y ∈ AB}

Define a map β : Ω → Σ by β((A ∩ B)y) = By. For x, y ∈
A,Bx = By implies xy−1 ∈ A ∩B. So

(A ∩ B)x = (A ∩ B)y. So β is 1-1. Since G = AB = BA every

coset of B in G is of the form Ba for some a ∈ A. It is clear that β

is onto. Hence the result.

Conversely assume that

[G : A ∩B] = [G : A][G : B]

[G : A ∩B] = [G : A][A : A ∩B] = [G : A][G : B]

Since [G : A] is finite, cancelling this number from both sides we

get

[A : A ∩B] = [G : B].

But

[A : A ∩B] = [AB : B]

the number of cosets of B contained in the set AB. Hence we get

[AB : B] = [G : B] this implies AB = G.

(10) If [G : A] and [G : B] are finite and relatively prime show that

G = AB.

Solution: [G : A∩B] = [G : A][A : A∩B] = [G : B][B : A∩B].

Since [G : A] and [G : B] are relatively prime

[G : A] | [B : A ∩B] = [AB : A]
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This implies [G : A] = [AB : A] because [AB : A] ≤ [G : A] and

AB 6= A. Hence AB = G. see the previous question.

(11) Suppose G acts on S, x ∈ G, and s ∈ S. Show that StabG(x.s) =

x StabG(s)x−1.

Solution: Let g ∈ StabG(x.s). Then g.(x.s) = (gx).s = x.s.

Multiplying from left by x−1 we get (x−1gx) · s = s. Hence x−1gx ∈
StabG(s). This implies g ∈ x StabG(s)x−1. Conversely assume that

g ∈ x StabG(s)x−1. Then g = xhx−1 where h ∈ StabG(s). Now

g · (x.s) = (xhx−1) · (x.s) = (xh) · s = (x.s)

as h ∈ StabG(s). Hence g ∈ StabG(x.s).

(12) If A,B ≤ G and y ∈ G define the (A,B)-double coset

AyB = {ayb : a ∈ A, b ∈ B}.

Show that G is the disjoint union of its (A,B)-double cosets. Show

that

|AyB| = [Ay : Ay ∩B]|B|

if A and B are finite.

Solution: Let x, y ∈ G. Define x ∼ y if and only if there exists

a ∈ A and b ∈ B such that x = ayb.

“ ∼ ” is an equivalence relation:

(i) x = 1x1 and 1 ∈ A, 1 ∈ B since A and B are subgroups of G.

Hence x ∼ x.

(ii) If x ∼ y, then x = ayb for some a ∈ A and b ∈ B. This

implies y = a−1xb−1 and a−1 ∈ A, b−1 ∈ B since A and B are

subgroups of G. Hence y ∼ x.

(iii) x ∼ y and y ∼ z implies x = ayb and y = czd for some

a, c ∈ A, and b, d ∈ B. Then x = ayb = aczdb = (ac)z(db).

Since ac ∈ A, and db ∈ B we get x ∼ z.

The equivalence class containing y is [y] = {ayb|a ∈ A, b ∈ B} =

AyB.
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Since “ ∼ ” is an equivalence relation on G we get G is a disjoint

union of equivalence classes, namely AyB′s.

Define a map

α : AyB → y−1AyB

ayb → y−1ayb

It is easy to see that α is a bijective map. Hence if A and B are

finite the number of elements in AyB and y−1AyB are equal.

Since y−1Ay and B are subgroup of G we get

|AyB| = |Ay||B|
|Ay ∩B|

= [Ay : Ay ∩B]|B|

Definition Let Ω be a set and G be a group acting on Ω. We

say that G acts transitively on Ω if for any α, β ∈ Ω, there exists

g ∈ G such that g.α = β.

(13) Suppose G is a permutation group on a set S, with |S| > 1. Say

that G is doubly transitive on S if given any (a, b), (c, d) ∈ S × S
with a = b if and only if c = d, then xa = c and xb = d for some

x ∈ G.
(1) If G is transitive on S show that G is doubly transitive if

and only if H = StabG(s) is transitive on S \ {s} for each s ∈ S.
(2) If G is doubly transitive on S and |S| = n, show that n(n−

1) | |G|.
Solution: (1) Assume that G is doubly transitive on S. Let

s ∈ S and H = StabG(s). Let α, β ∈ S \ {s}. Then

(α, s), (β, s) ∈ S × S

So there exists x ∈ G such that x.α = β and x.s = s. Hence

x ∈ H and x.α = β i.e H is transitive on S − {s}.
Conversely assume that H is transitive on S \ {s} and

(a, b), (c, d) ∈ S × S. If a = b and c = d then it is clear that

there exists x ∈ G such that x.a = c and x.b = d.
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So assume that a 6= b and c 6= d. Since G is transitive on S there

exist g1, g2 ∈ G such that g1.a = s and g2.s = c. Moreover there

exists h ∈ H such that h.(g1.b) = g−1
2 .d since H is transitive on

S \{s} and g1.b, g
−1
2 d ∈ S \{s}. Thus we have h.(g1.a) = s = g−1

2 .c

or g2.[h.(g1.a)] = c and g2.[h.(g1.b)] = d. So (g2hg1).(a, b) = (c, d).

Hence G is doubly transitive on S.

(2)Let s ∈ S and H = StabG(s). Then [G : H] = n as G acts

transitively on S and |S| = n.

Let α ∈ S \ {s} and K = StabH(α). Then [H : K] = n − 1

as H acts transitively on S \ {s} and |S \ {s}| = n − 1. Hence

[G : K] = [G : H] · [H : K] = n(n− 1) and so n(n− 1)| |G|.
(14) Suppose G is finite, p is the smallest prime dividing |G|, H ≤ G

and [G : H] = p. Show that H �G.

Solution: Consider the right action of G on the set of right

cosets of H in G. Then there exists a homomorphism ϕ from G

into symmetric group on p letters. Kerϕ = ∩x∈GHx and G/Kerϕ

is isomorphic to a subgroup of Sp. Note that |Sp| = p! so [G :

Kerϕ]|p!. If Kerϕ � H, then [G : Kerϕ] is divisible by a prime

which is smaller than p. But this is impossible by assumption. So

Kerϕ = H This implies H �G.

(15) Suppose [G : H] is finite. Show that there is a normal subgroup K

of G with K ≤ H such that [G : K] is finite.

Solution: Let [G : H] = n and Ω be the set of right cosets

of H in G. Then G acts on Ω by right multiplication and there

exists a homomorphism ϕ from G into Sym(Ω). Hence G/Kerϕ

is isomorphic to a subgroup of Sym(Ω). Then K = Kerϕ satisfies

the required properties, since |Sym(Ω)| = n!

(16) Suppose G is finite, H ≤ G, and G = ∪{Hx : x ∈ G}. Show that

H = G.
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Solution: Let |H| = m. Then |Hx| = m and there are at most

m− 1 distinct elements in H and Hx. Assume that |G| = n. Then

by Lagrange Theorem m|n. Say n = km where k ≥ 2.

Let G = Hx1 ∪ Hx2 ∪ · · · ∪ Hxr where r is minimal satisfying

this condition. i.e., Hxi 6= Hxj . Then

|G| = n ≤ (m− 1)r + 1 km = n ≤ mr − r + 1 r ≥ 2.

Since Hhxi = Hxi and we assumed Hxi 6= Hxj , we get r ≤ k. Since

r = [G : NG(H)] ≤ [G : H] as H ≤ NG(H). Then, mk = n ≤
mr − r + 1,

mk−mr ≤ −r+1, m(k−r) ≤ −r+1. Since r ≥ 2 and m(k−r) ≥
0. This is impossible. This contradiction gives H = G.

(17) Let G be the group GL(2,C) of all 2×2 invertible complex matrices

and H be the subgroup of all lower triangular matrices

 a 0

b c

,

ac 6= 0. Show that G = ∪{Hx : x ∈ G}. (Compare with the

previous problem .)

Solution: Let g =

[
a11 a12

a21 a22

]
with a11a22−a12a21 6= 0 be any

2 × 2 matrix in GL(2,C). Then |xI − g| =

∣∣∣∣∣ x− a11 −a12

−a21 x− a22

∣∣∣∣∣ =

(x−a11)(x−a22)−a21a12 = x2− (a22 +a11)x+a11a22 − a21a12︸ ︷︷ ︸
6=0

This

is a polynomial of degree 2 with coefficients form C. Since we work

in C, the minimal polynomial of this matrix is a product of linear

factors. Hence this matrix is triangulable, i.e. there exists a matrix

x ∈ GL(n,C) such that gx is a triangular matrix. Hence gx ∈ H
i.e. g ∈ Hx−1

. Hence G = ∪x∈GHx.

(18) Let T be the set of n − 1 successive transpositions

(12), (23), (34), . . . , (n− 1, n) in Sn. Show that < T >= Sn.
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Solution: Recall that every permutation in Sn can be written

as a product of disjoint cycles. Hence it is enough to show that every

cycle can be written as a product of transpositions from T . Recall

also that every cycle can be written as a product of transpositions.

Hence it is enough to show that any transposition can be written

as a product of transpositions given above. Let (kl) with k < l be

a transposition is Sn. Then

(k, l) = (k, k+1)(k+1, k+2) · · · (l−2, l−1)(l−1, l)(l−1, l−2) · · · (k+1, k).

Hence we are done.

(19) Suppose H ≤ Sn but H 6≤ An. Show that [H : H ∩ An] = 2.

(Hint: Observe that HAn = Sn.)

Solution: Since H 6≤ An, H contains an odd permutation.

Therefore An � HAn as An � Sn. Moreover |HAn| | |Sn|. But
|Sn|
|An| = 2. Hence |HAn| = |Sn|. This implies HAn = Sn and

HAn/An = Sn/An. Hence [H : H ∩ An] = [HAn : An] = [Sn :

An] = 2.

(20) If S = {1, 2, 3, 4, . . .}. Let A∞ denote the (infinite) group of all

σ ∈ Perm(S) such that there is a finite subset T ⊂ S for which

σ restricts to an even permutation of T and σ(s) = s for all s ∈
S \ T. Equivalently A∞ = ∪{An : n = 1, 2, 3, · · · }. Show that A∞ is

simple.

Solution: We use the definition A∞ = ∪{An | n = 1, 2, 3, · · · }.
Therefore each An is embedded in An+1 naturally. This gives An ≤
An+1 ≤ · · · . Hence A∞ is a subgroup of Perm(S). Assume that

N 6= {1} be a normal subgroup of A∞. Then there exists an m ≥ 5

such that N ∩ Am 6= {1}. But this implies N ∩ Aj 6= {1} for all

j ≥ m. But Aj is simple. Hence N ∩ Aj = Aj i.e. Aj ≤ N for all

j ≥ 5. This implies Aj ≤ N for all j we get N = A∞.

(21) Let σ = (1, 2) and τ = (1, 2, 3, . . . , n) in Sn.

a) Determine the centralizer of σ in Sn.

b) Determine the centralizer of τ in Sn.
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Solution: (a) Let σ = (1, 2) and β be any permutation in Sn.

Then σβ = σ means that (12)β = (1β, 2β) = (1, 2). So β could be a

permutation on the set {1, 2}. So this element is either 1 or σ itself.

If necessary by multiplying β with σ−1 we get σ−1β is a permutation

on X = {3, 4, · · · , n}. But any permutation on X commutes with

σ. Hence CSn(σ) = 〈σ〉Sn−2 where Sn−2 is the permutation group

on the set X.

(b) By considering the answer in part (a), if β ∈ CSn(τ) then

(123 · · ·n)β = (1β, 2β, · · · , nβ) = (123 · · ·n). These two elements

are equal implies that, if 1β = k then 2β = k + 1, 3β = k + 2, · · · .
Hence if 1β is known then β is uniquely determined. Therefore we

can write at most n elements satisfying this. But we have already

n elements satisfying this property, namely the subgroup generated

by τ . Hence CSn(τ) =< τ > .

(22) Suppose G is a finite group, H � G, and P is a Sylow p-subgroup

of H. Set N = NG(P ). Show that G = NH.

Hint: If x ∈ G, then P x is a Sylow p-subgroup of H.

Solution: Let x ∈ G and P ∈ SylpH. Then P x ≤ Hx = H.

Hence P and P x are Sylow p-subgroups of H. By Sylow theorem

any two Sylow p-subgroups of H are conjugate in H. Hence there

exists h ∈ H such that P xh = P . That means xh ∈ N . This implies

x ∈ NH Since x is an arbitrary element of G we get G = NH.

(23) If G is a finite p-group and 1 6= H �G. Show that H ∩ Z(G) 6= 1.

Hint: H is an union of G conjugacy classes.

Solution: For a finite p-group G, we have upper central series

of G.

{1} = Z0�Z1�· · ·�Zn = G where Zi/Zi−1 = Z(G/Zi−1). Since

H 6= {1} there exists an i such that Zi∩H 6= {1} but Zi−1∩H = 1.

Since H is normal, we have [G,H] ≤ H and Zi∩H ≤ Zi implies

[Zi ∩ H,G] ≤ Zi−1 ∩ H = 1. It follows that Zi ∩ H ≤ Z(G), i.e.

Zi ∩H ∩ Z(G) = Zi ∩H 6= {1}. Hence H ∩ Z(G) 6= 1.
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Remark: The above proof can be adopted to show that

If G is a finite nilpotent group and 1 6= H � G. Show that

H ∩ Z(G) 6= 1.

(24) Suppose G is a finite p-group having a unique subgroup of index p.

Show that G is cyclic. (Use induction and look at G/Z(G))

Solution: We use induction on the order of G. If |G| = p,

then G is cyclic. Assume that if H is a p-group and |H| � |G| and

H has a unique subgroup of index p, then H is cyclic. Since G is

p-group, we know that Z(G) 6= {1}, |G/Z(G)| � |G|. Let X be the

unique subgroup of G of index p. Since NG(X) 	 X we get X �G.

XZ(G)/Z(G) ≤ G/Z(G).

Claim: XZ(G) � G.

Z(G) � G and G is a p-group. Therefore there exists an upper

central series of G containing Z(G) say {1} = Z0(G) � Z1(G) �

· · · � Zk(G) = G. Since G/Zk−1 is abelian p-group there exists a

subgroup of G/Zk−1 of index p say T/Zk−1. Then T has index p in

G. Since G has a unique subgroup of index p we get T = X, i.e.

Z(G) ≤ X and the case XZ(G) = G is impossible.

XZ(G) � G, then as X is maximal subgroup we get Z(G) ≤ X

and [G/Z(G) : X/Z(G)] = p. The group G/Z(G) has a unique

subgroup of index p, then by induction assumptionG/Z(G) is cyclic.

This implies that G is abelian p-group and has a unique subgroup

of index p. Using fundamental theorem of finite abelian groups one

can easily see that G is cyclic.

(25) Suppose that G is a finite p-group. Show that Z(G) is cyclic if and

only if G has exactly one normal subgroup of order p.

Solution: Assume that Z(G) is cyclic but G has two normal

subgroups N and M of order p. Then by question 23, N ∩ Z(G) 6=
{1} and M ∩ Z(G) 6= {1}. Since N has order p we get N ≤ Z(G),

and M ≤ Z(G). But in the cyclic group Z(G) there exists only one

subgroup of order p. This implies N = M.
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Conversely assume that G has exactly one normal subgroup of

order p but Z(G) is not cyclic. Since Z(G) is abelian it can be

written as a direct product of cyclic subgroups. It has at least two

component. As each component gives a normal subgroup of order

p. We get Z(G) must be cyclic.

(26) Show that there are no simple groups of order 104, 176, 182 or 312.

Solution:

(i) 104 = 13.23. Let n13 be the number of Sylow 13-subgroups of

G. n13 ≡ 1 (mod 13) and n13|8 implies n13 = 1. Hence Sylow

13-subgroup of G is normal in G.

(ii) 176 = 11.24. n11 ≡ 1 (mod 11) and n11|24. Therefore n11 = 1.

Hence Sylow 11-subgroup of G is normal in G.

(iii) 182 = 13.7.2 n7 ≡ 1 (mod 7) n7|13.2 so n7 = 1. Hence Sylow

7-subgroup of G is unique. This implies Sylow 7-subgroup of

G is normal in G.

(iv) 312 = 13.3.23 n13 ≡ 1 (mod 13) n13|3.23. So n13 = 1. This

implies Sylow 13-subgroup of G is normal in G.

(27) There is a simple groupG of order 168. Show thatG has 48 elements

of order 7.

Solution: Let G be a simple group of order 168 = 7.3.23. Let

np be the number of Sylow p-subgroups of G. n7 ≡ 1 (mod 7) and

n7 | 3.23 n7 = 1 or 8.

Since G is simple n7 cannot be equal to 1. It follows that n7 = 8.

That means number of Sylow 7-subgroups of G is 8. Intersection of

any two distinct Sylow 7-subgroups is identity. Hence there are 6

elements of order 7 in each Sylow 7-subgroup. Therefore all together

we have 48 elements of order 7 in G.

(28) If p and q are primes show that any group of order p2q is solvable.

Solution: i) p = q then G is a p-group hence solvable.

ii) p > q then np ≡ 1 (mod p) and np|q. But this implies np = 1

as p > q. Hence the Sylow p-subgroup P of G is normal in G. It
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follows that G/P is a q-group, hence solvable. P is a p-group so P

is solvable. Hence G is solvable. (In fact P is abelian and G/P is

cyclic.)

(iii) p < q then
np ≡ 1 (mod p) np|q
nq ≡ 1 (mod q) nq|p2.

Since q > p the

possibilities for nq are 1, q + 1, kq + 1 and divide p2. If nq = 1,

then Sylow q-subgroup Q of G is normal in G. Hence |G/Q| = p2.

Then it is abelian. Q is cyclic. Hence G is solvable. Assume that

nq = kq + 1, k ≥ 1. If np = 1, then by above part G is solvable. So

assume that np = q.

Fact 1.

If there exists a normal subgroup N of G then G/N and N are

solvable implies G is solvable.

Claim: G is not simple.

Assume if possible that G is simple. Let P1, P2 be two distinct

Sylow p-subgroups of G. If {1} 6= P1 ∩ P2, then |P1 ∩ P2| = p.

Then P1 ∩ P2 ≤ Z(〈P1, P2〉) as any group of order p2 is abelian. It

follows that T = 〈P1, P2〉 6= G. But P1 � T ≤ G and |G| = p2q,

|T | | |G| implies that P1∩P2 = {1}. Then we get q(p2−1) = p2q−q
elements of order a power of p. So there are only q elements coming

from Sylow q-subgroup. This implies Sylow q-subgroup Q is unique.

Hence G cannot be simple.

Fact 2:Any group of order pq is solvable. Now combining Fact

1 and Fact 2, one can show that G is solvable.

(29) If G is a finite p-group, show that the composition factors of G are

isomorphic to Zp.

Solution: Let G be a finite p-group. Then G has an upper

central series {1} = Z0 � Z1 � Z2 � · · ·� Zn = G where Zi/Zi−1 =

Z(G/Zi−1). Therefore Zi/Zi−1 is the center of G/Zi−1. In particular

Zi/Zi−1 is an abelian p-group. Therefore by Cauchy’s theorem it

has a subgroup of order p say Zi1/Zi−1 ≤ Zi/Zi−1. Since Zi/Zi−1 is
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abelian every subgroup is normal in particular Zi1 � Zi. If Zi1 6=
Zi−1, then consider Zi/Zi1 and find a subgroup Zi2/Zi1 ≤ Zi/Zi1 of

order p. Hence we can refine in the upper central series of G the

part Zi−1 �Zi to Zi−1 �Zi1 �Zi2 � · · ·�Zi where each factor is of

order p hence isomorphic to Zp. We can do this for each i. We get

a series of G in which each factor isomorphic to Zp.

(30) If A and B are subnormal subgroups of G show that A ∩ B is

subnormal.

Solution: A is subnormal in G implies that there exists a series

A = A0 �A1 �A2 � · · ·�An = G. The group B is subnormal in G

implies that there exists a series

B = B0 �B1 �B2 � · · ·�Bm = G.

Then take the intersection with B of the series of A we get

A ∩B = A0 ∩B � A1 ∩B � · · ·� An ∩B = G ∩B = B.

Therefore

A ∩B � A1 ∩B � · · ·� An ∩B = B �B1 �B2 � · · ·�Bn = G

is a series of A ∩B. Hence A ∩B is subnormal in G.

(31) If p is a prime, |G| = p3 and G is not abelian show that G′ = Z(G).

Solution: Recall that any finite p-group is solvable and Z(G) 6=
{1}. Therefore by assumption {1} 6= G′ � G. Since Z(G) 6= G,

G/Z(G) is a non-trivial group. If G/Z(G) is cyclic then G is abelian.

Hence |G/Z(G)| = p2. This implies that G/Z(G) is an ( elementary

) abelian group of order p2. Hence G′ ≤ Z(G). As G′ 6= {1} and

|Z(G)| = p we get G′ = Z(G).

(32) If G is a group and x ∈ G, define the inner automorphism fx by

setting fx(y) = xyx−1, all y ∈ G. Write I(G) for the set of all inner

automorphisms of G.

1) Show that I(G) ≤ Aut(G)

2) Show that I(G) ∼= G/Z(G)
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3) If I(G) is abelian show that G′ ≤ Z(G). Conclude that G is

nilpotent.

Solution: 1) fx : G → G, fx(uv) = xux−1xvx−1 = fx(u)fx(v).

Hence fx is a homomorphism.

fx(u) = fx(v) implies xux−1 = xvx−1. It follows that u = v.

For any u ∈ G, fx(x
−1ux) = xx−1uxx−1 = u. Hence fx is an

automorphism of G.

fxfy(g) = fx(ygy
−1) = xygy−1x−1 = fxy(g) for all g ∈ G. Hence

composition of two inner automorphism is an inner automorphism

fxfy = fxy and fx−1 = (fx)
−1. i.e. inverse of an inner automor-

phism is again an inner automorphism. Hence I(G) is a subgroup

of Aut(G).

2) Define a map f :
G → Aut(G)

x 7→ fx
. The map f is a homo-

morphism. For any x, y ∈ G, f(xy)(u) = fxy(u) = xyu(xy)−1 =

xyuy−1x−1 = fxfy(u) for all u ∈ G. Hence f(xy) = fxy = fxfy =

f(x)f(y).

Kerf = {x ∈ G | fx = Id} = {x ∈ G | fx(u) = u for all u ∈ G} = Z(G).

Hence by isomorphism theorem,

G/Z(G) ∼= I(G) as image of f is I(G).

3) If I(G) is abelian then by part (2) we have G/Z(G) is abelian.

This implies G′ ≤ Z(G). Then [G′, G] ≤ [Z(G), G] = 1. Hence G is

nilpotent of class at most 2.

(33) If A � G and B � G show that G/(A ∩ B) is isomorphic with a

subgroup of G/A×G/B.
Solution: A�G and B �G implies that A ∩B �G. Define a

map

ϕ :
G/A ∩B → G/A×G/B
(A ∩B)x → (Ax,Bx)
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It is easy to show that ϕ is well defined. ϕ is a homomorphism.

Kerϕ = {(A ∩ B)x | (Ax,Bx) = (A,B)} = {A ∩ B}. Hence ϕ

is a monomorphism. It follows from isomorphism theorems that

G/A ∩B is isomorphic to the image of ϕ in G/A×G/B.
(34) If G is a finite p-group that is not cyclic show that there is a ho-

momorphism from G onto Zp×Zp. (Hint: Let A and B be distinct

maximal subgroups of G and apply previous question.)

Solution: SinceG is not cyclic by question 24G has at least two

distinct maximal subgroups A and B. Since maximal subgroups of

finite p-groups have index p in G (one can observe this by looking to

the central series of G). We get G/A∩B → G/A×G/B ∼= Zp×Zp.
Since A 6= B, |G/A ∩ B‖ ≥ p2. Hence G/(A ∩ B) ∼= G/A × G/B.
Since there exists natural epimorphism from G to G/A ∩ B we get

G
π→ G/A ∩B → Zp × Zp an epimorphism.

(35) If A,B ≤ G show that [A,B] � 〈A ∪B〉.
Solution: [A,B] = 〈a−1b−1ab | a ∈ A, b ∈ B〉. It is enough to

show that [A,B] is normalized by A and B. Let a−1b−1ab be any

generator of [A,B] and α ∈ A. then

(a−1b−1ab)α = α−1a−1b−1abα

= (α−1a−1)b−1aαα−1bα

= (aα)−1b−1aαbb−1α−1bα = [aα, b][b, α]

Since a, α ∈ A, aα ∈ A hence [aα, b] ∈ [A,B] and [b, α] = [α, b]−1 ∈
[A,B]. Hence [A,B] is normalized by A. Similarly for β ∈ B and

[a, b]β = [β, a][a, bβ], [β, a] = [a, β]−1 ∈ [A,B], b, β ∈ B implies

bβ ∈ B. Hence we get [A,B] is normalized by B. In particular

[A,B] is normalized by 〈A ∪B〉. It is clear that [A,B] ≤ 〈A ∪B〉.
Hence [A,B] � 〈A ∪B〉

(36) If G is a finite group in which every maximal subgroup is normal

show that G is nilpotent. (Hint: Suppose to the contrary that P is
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a non-normal Sylow p-subgroup and choose M ≤ G maximal with

NG(P ) ≤M. If x ∈ G \M consider P x.)

Solution: Recall that G is nilpotent if and only if G is a di-

rect product of Sylow p-subgroups. We show that in the above

conditions Sylow p-subgroups are normal. Assume if possible that

P is a Sylow p-subgroup of G but P is not normal in G. Then

P ≤ NG(P ) � G. Let M be a maximal subgroup of G containing

NG(P ). Hence by assumption M is normal in G. For any x ∈ G\M,

we get P 6= P x ≤M . Hence there existsm ∈M such that P xm = P.

It follows that xm ∈ NG(P ) ≤ M . Since m ∈ M we get x ∈ M

which is a contradiction. Hence P �G and the result follows.

(37) If G = 〈a, b|a4 = b3 = 1, ab = ba3〉, show that G is cyclic of order 6.

Solution: aba = ba4 = b. Then

1 = b3 = (aba)(aba)(aba)

= aba2.ba2.ba

multiply from left and right by a−1 we get

ba2ba2b = a−2 = a2

Thus a2 = ba(aba)ab = babab = b3 = 1. This gives b3 = a2 = 1.

Hence we get a2 = 1. This gives ab = baa2 = ba. Hence G is an

abelian group. Since every element is of the form aibj we get |G| is

a divisor of 6. We may conclude that |G| = 6. i.e. G is an abelian

group of order 6. The order of ab is 6. Hence G is cyclic group of

order 6, as G = 〈 ab | (ab)6 = 1 〉.
(38) Prove that there exists no simple group of order 180 = 22.32.5

Proof: Let n2 be the number of Sylow 2-subgroups. n3 be

the number of Sylow 3-subgroups, n5 be the number of Sylow 5-

subgroups.

(1) If one of n2, n3, n5 is equal to 1, then the corresponding Sylow

subgroup is normal in G. Hence we may assume that ni > 1 for

i = 2, 3, 5. If ni ≤ 5 for some i = 2, 3, 5, then G can be embedded
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in S(ni) but |S5| = 120. Hence there must be a kernel but this

implies G is not simple. It follows that we may assume ni ≥ 6 for

all i = 2, 3, 5 and G is a simple group.

(2) if n5 = 6, then there exists a homomorphism ϕ : G → S6.

Since G is simple kerϕ = {1}. Hence G is isomorphic to a subgroup

of S6. But G′ = G as G′ � G and G is simple. Hence G = G′ ≤
S ′6 = A6. But |A6| = 360 and |G| = 180. But A6 is simple hence it

cannot have a subgroup of index 2. This implies that n5 > 6 n5|36,

n5 ≡ 1 (mod 5.) So n5 = 36. This implies that [G : NG(P5)] = 36

i.e. NG(P5) = P5 as |NG(P5)| = 5, where P5 is a Sylow 5-subgroup

of G.

(3) Let H1, H2 ∈ Syl3(G) J = 〈H1, H2〉, D = H1 ∩H2. Then we

shall see that D ≤ Z(J) and [J : H1] ≥ 4. Since |H1| = |H2| = 32,

H1 and H2 are abelian groups. Hence D ≤ Z(J). Moreover the

group J has order 	 9 as H1 6= H2. Moreover |H1 ∩ H2| ≤ 3. If

[J : H1] = 2, then H1 � J and H2 normalizes H1 i.e. H1H2 is

a subgroup of G. But |H1H2| = |H1||H2|
|H1∩H2| = 3232

3
= 33 this implies

33| |G| which is impossible. Since H1 and H2 are Sylow 3-subgroups

|J : H1| 6= 3. Hence |J : H1| ≥ 4.

(4) By (3), |J | ≥ 36. If D 6= 1, then J 6= G as G is simple and

D�J . If D 6= 1 and 5||J |, then Sylow 5-subgroup is contained in J

and D normalizes Sylow 5-subgroup contradicts NG(P5) = P5. So

[J : H1] = 4 this implies[G : J ] = 5 and G can be embedded inside

S5 but this is impossible. i.e. The intersection of any two distinct

Sylow subgroups is trivial.

(5) So D = 1. Then we count the elements : 4.36 = 144 elements

of order 5.

n3 ≡ 1, mod 3 and n3|225 and n3 	 5 implies n3 ≥ 10.

8.10 = 80 3-elements.

4 2-elements.

1 identity
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Total: 229 elements which is a contradiction.

(39) If A,B,C are subgroups of a group G,A ⊆ C and AB = BA so

AB is a group, then AB ∩ C = A(B ∩ C).

Solution: A ⊆ AB and A ⊆ C implies that A(B∩C) ⊆ AB∩C.

For the converse let x ∈ AB ∩ C since AB = BA we can write

x = ab where a ∈ A, b ∈ B. Now x ∈ C implies a−1x ∈ B ∩ C.
Hence x ∈ A(B ∩ C).

It follows that AB ∩ C ⊆ A(B ∩ C) and we get the equality.

(40) Suppose G is an infinite p-group (where p is a prime) such that

every proper non-trivial subgroup of G has order p. (such groups

are constructed by Ol’sanskii).

a) Prove that p > 2.

b) Prove that G must be simple.

Solution: Assume that p = 2. Then for any g ∈ G we get

g2 = 1. This implies that G is abelian. Let x 6= y be two elements

of G, then the subgroup generated by x and y has order 4. But this

is a contradiction. Hence p can not be equal to 2.

(b) Assume if possible that, there exists a non-trivial normal

subgroup N of G. Let x be any element of G. Then 〈x〉N is a

subgroup of G. Since |〈x〉| = p, the group 〈x〉∩N is either 1 or 〈x〉.
If it is 1, then |〈x〉N | = p2 which is impossible. Hence 〈x〉∩N = 〈x〉.
It follows that for any x ∈ G the group 〈x〉 ≤ N i.e., N = G and

this implies G is simple.

(41) Suppose G is a finite group with 7 Sylow 3-subgroups, each having

order 27. Prove that G is not simple.

Solution: Let n3 = 7 be the number of Sylow 3-subgroups

and P3 be a Sylow 3-subgroup of G. Then |G : NG(P3)| = 7. Now

consider the right action of G on the right cosets of NG(P3) in G.

It follows that there exists a homomorphism ϕ from G into S7.

Ker ϕ ≤ NG(P3) � G. Hence G/kerϕ is isomorphic to a subgroup

of S7. Since 33 6 | 7!. We get kerϕ 6= {1}. Hence G is not simple.



GRADUATE ALGEBRA, PROBLEMS WITH SOLUTIONS 21

(42) Suppose G and H are groups. Assume N � G such that N ∼= S5

and G/N ∼= S3 × Z2. Also assume that M �H with M ∼= Z2 and

H/M ∼= S6. Prove that G is not isomorphic to H.

Solution: G has a composition series

G�M1 �M2 �M3 = N �M4
∼= A5 � 1.

G/M1
∼= Z2, M1/M2

∼= A3, M2/M3
∼= Z2, M3/M4

∼= Z2.

M4
∼= A5. Hence composition factors of G are {Z2, A3,Z2,Z2, A5}

H �H1 �H2 = M � 1

H/M ∼= S6 so there exist a subgroup H1/M in H/M such that

(H/M)/(H1/M) ∼= H/H1
∼= Z2 and H1/M ∼= A6. Recall that An

is simple if n 6= 4. Hence composition factors of H are isomorphic

to { Z2, A6,Z2 }. By Jordan-Holder Theorem G and H can not be

isomorphic.
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RINGS
(43) Let R be a commutative ring and let S be a subset of R∗ that is a

multiplicative semigroup containing no zero divisors. Let X be the

Cartesian product R× S and define a relation ∼ on X by agreeing

that (a, b) ∼ (c, d) if and only if ad = bc.

(1) Show that the relation ∼ just defined is an equivalence rela-

tion on X.

(2) Denote the equivalence class of (a, b) by a
b

and the set of

all equivalence classes by RS. Show that RS is a commutative ring

with 1.

(3) If a ∈ S show that { ra
a
|r ∈ R} is a subring of RS and that

r → ra
a

is a monomorphism, so that R can be identified with a

subring of RS.

(4) Give a “universal definition” for the ring RS and show that

RS is unique up to isomorphism.

The ring RS is called the localization of R at S.

Solution:

1) (i) ∼ is reflexive: For any (a, b) ∈ R × S, ab = ba. Hence

(a, b) ∼ (a, b).

(ii) ∼ is symmetric: (a, b) ∼ (c, d) implies ad = bc = cb = da.

Hence (c, d) ∼ (a, b)

(iii) ∼ is transitive: (a, b) ∼ (c, d) and (c, d) ∼ (e, f) implies

that ad = bc and cf = de. Then adf = bcf = bde. Hence we get

(af − be)d = 0. Since d ∈ S and S does not contain zero divisor we

get af − be = 0. Hence af = be, equivalently (a, b) ∼ (e, f).

We conclude that ∼ is an equivalence relation.

(2) Let a
b

= {(c, d) | (a, b) ∼ (c, d) }. Let RS = {a
b
| a ∈ R, b ∈

S}.
Define addition and multiplication on RS by

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd
, bd ∈ S
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We first show that these definitions are well defined. If a
b

=
a′

b′
and c

d
= c′

d′
then ab′ = ba′ and cd′ = dc′. Hence a

b
+ c

d
= a′

b′
+ c′

d′
,

or equivalently

(a′d′ + b′c′)bd = a′d′bd+ b′c′bd

= ab′d′d+ b′bd′c

= (ad+ bc)b′d′

For multiplication a
c
· c
d

= ac
bd

= a′c′

b′d′
. Equivalently we need to show

acb′d′ = bda′c′ Let’s begin from the left hand side.

acb′d′ = a′bcd′ = a′bc′d

= a′c′.bd

Hence multiplication is well defined. In the above, observe that we

used S is multiplicatively closed because we need bd ∈ S.
One can see easily that with the above addition and multipli-

cation RS is a commutative ring. a
b
· b
b

= ab
bb
. But ab

bb
= a

b
because

(ab, bb) ∼ (a, b). Hence the equivalence class b
b
, b ∈ S is the identity

in RS.

(3) For a ∈ S, let T = { ra
a

: r ∈ R} and r1a
a
, r2a
a

be two elements

from T . Then

r1a

a
− r2a

a
=
r1a− r2a

a
=

(r1 − r2)a

a
∈ T

and
r1a

a
· r2a

a
=
r1r2a

2

a2
=
r1r2a

a
∈ T.

Hence T is a subring of RS.

Let i :
R → T

r → ra
a

i(r1 + r2) =
(r1 + r2)a

a
=
r1a+ r2a

a
=
r1a

a
+
r2a

a
= i(r1) + i(r2)
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i(r1r2) =
r1r2a

a
=
r1r2a

2

a2
=
r1a

a

r2a

a
= i(r1)i(r2)

i(r1) = i(r2) implies that r1a
a

= r2a
a

0 =
r1a− r2a

a
=

(r1 − r2)a

a
.

This implies that (r1 − r2)a = 0, as a ∈ S and S does not have a

zero divisor. Hence r1 − r2 = 0. i.e. r1 = r2. It follows that i is a

monomorphism of rings.

(4) Let a ∈ S. Recall that a
a

is the identity element of RS. Let

a→ a2

a
∈ RS and a

a2 ∈ RS. Then

a2

a
· a
a2

=
a3

a3
=
a

a
.

Hence a
a2 is the multiplicative inverse of a2

a
in RS.

Let S be a multiplicative semigroup of a ring R which does

not have a zero divisor. Let T be a ring and ϕ : R → T be a

ring homomorphism such that for every s ∈ S, ϕ(s) invertible in T.

Then there exists a unique ring homomorphism f from RS into T

satisfying f.i = ϕ.

iR - RS
@
@
@
@R

ϕ
�
�

�
�	

f

T

To see that RS is unique satisfying this property. Let
∑

and β

be another pair satisfying this property. Then

iR - RS
@
@
@
@R

j
�
�

�
�	

f

�
�
�
��
β

Σ
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fβ = idRS
and βf = id∑. Hence f and β are invertible ring

homomorphism i.e. isomorphisms of rings.

The ring RS is called localization of R at S.

(44) Suppose R is an integral domain and P ⊆ R a prime ideal.

(1) Show that both P and R \ P are multiplicative semigroups.

(2) If S = R \ P show that U(RS) = RS \ RSP conclude that

RSP is the unique maximal ideal in RS.

Solution: (1) It is clear that P is a multiplicative semigroup.

Let x, y ∈ R \ P. Then xy ∈ R \ P. Indeed if xy ∈ P , then either

x ∈ P or y ∈ P as P is a prime ideal. But this is impossible.

(2) By previous exercise we have localization of S = R \P. Now

we show that U(RS) = RS \ RSP . Let x ∈ U(RS). Assume if

possible that x ∈ RSP. Then x = p
s
, where p ∈ P and s ∈ S.

Then there exist a
s′
∈ RS such that a

s′
p
s

= 1. Then ap = s′s and

this implies ss′ ∈ P . Then either s ∈ P or s′ ∈ P . This is a

contradiction.

Observe that RSP is an ideal of RS. Assume that x ∈ RS \RSP .

Then x = a
s

where a 6∈ P . Then a ∈ R \ P = S. It follows that

x ∈ U(RS)

A field of fractions of an integral domain R is a localization

of R at R∗ = R \ {0}. In particular field of fractions of an integral

domain is a special case of localization. Another definition for a

field of fractions of an integral domain R:

A field of fractions for an integral domain R is a field FR with

a monomorphism φ : R → FR such that if K is any field and

θ : R→ K a monomorphism then there is a unique homomorphism

(necessarily a monomorphism) f : FR → K for which the diagram

commutes i.e. θ = fφ.
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φR - FR
@
@
@
@R

θ
�
�

�
�	

f

K
(45) Find the invertible elements U(R) in R, if R = Z4[x]. Z4 =

{0, 1, 2, 3}. 1 and 3 are invertible in Z4.

Solution: Consider the homomorphism

Z4[x]→ Z2[x]

f =
∑

aix
i → f̄ =

∑
āix

i

obtained from the homomorphism Z4 → Z2
∼= Z4/2Z4. Then fg =

1 implies that by homomorphism properties f̄ ḡ = 1. Since Z2 is a

field we get Z2[x] is an integral domain. Hence by degree properties

f̄ = ā0 = 1̄ and ḡ = b̄0 = 1̄. Thus f = a0 + 2
∑
ci≥1x

i with

a0 ∈ {−1, 1̄} and ai ∈ Z4.

Conversely for f = ±1̄ + 2̄
∑
aix

i take g = ±1̄ − 2
∑
aix

i and

get fg = gf = 1̄− (2̄
∑
aix

i)2 = 1̄. Thus f−1 = g. It follows that

U(Z4[x]) = {a0+a1x+· · ·+anxn | a0 ∈ {1, 3}, ai ∈ {0, 2}, i = 1, 2, 3, · · · , n, n ∈ Z}

(46) Suppose R is a commutative ring with 1. If I is an ideal in R[x]

and m is a nonnegative integer denote by I(m) the set of all leading

coefficients of polynomials of degree m in I, together with 0.

(1) Show that I(m) is an ideal in R

(2) Show that I(m) ⊆ I(m+ 1) for all m.

(3) If J is an ideal with I ⊆ J show that I(m) ⊆ J(m) for all

m.

Solution:

(1) I(m) = {am ∈ R | there exists a polynomial amx
m + · · · +

a0 ∈ I} ∪ {0}.
Let am, bm ∈ I(m) and r ∈ R. Then there exists polynomials

f(x) = amx
m + · · ·+ a1x+ a0 and g(x) = bmx

m + · · ·+ b1x+ b0 ∈ I.
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Since I is an ideal f(x)− g(x) ∈ I with am − bm is zero or leading

coefficient of a polynomial of degree m in I. Hence in any case

am− bm ∈ I(m). Now for any r ∈R we have rf(x) ∈ I. If ram = 0,

then 0 ∈ I(m), if ram 6= 0, then rf(x) will be a polynomial of degree

m in I. Hence ram ∈ I(m). As R is a commutative ring we get

I(m) is an ideal of R.

(2) If am ∈ I(m), then there exists a polynomial f(x) = amx
m+

· · · + a1x + a0 ∈ I. Then xf(x) ∈ I and xf(x) has degree m + 1.

Hence am ∈ I(m+ 1). This implies

I(m) ⊆ I(m+ 1).

(3) Let J be an ideal with I ⊆ J and let am ∈ I(m). Then

f(x) = amx
m + · · · + a1x + a0 ∈ I ⊂ J . Hence f(x) ∈ J and so

am ∈ J(m).

(47) If R is a commutative ring with 1 and {xa | a ∈ A} is an infinite

set of distinct commuting indeterminates show that the polynomial

ring R[{xa | a ∈ A}] is not Noetherian.

Solution: Consider the following chain of ideals. Let Ii be

the ideal generated by distinct elements xa1 , xa2 , · · · , xai
. Then we

have I1 ⊆ I2 ⊆ · · · and xai
is not an element of Ij for j < i. Hence

this chain is an infinite strictly ascending chain. It follows that

R[{xa|a ∈ A}] is not Noetherian.

(48) Let m be a square free integer. Show that Q[
√
m] = {r + s

√
m :

r, s ∈ Q}, and that Q[
√
m] is a field. It is thus its own field of

fractions, and we will write Q(
√
m) rather than Q[

√
m].

Solution: (i) Q[
√
m] = {a0 + a1

√
m+ a2(

√
m)2 + a3(

√
m)3 +

. . . + ak(
√
m)k | ai ∈ Q}. We can write every element of the form

a0+a1

√
m+a2(

√
m)2+a3(

√
m)3+. . .+ak(

√
m)k in the form b+t

√
m

for some b, t in Q. Hence Q[
√
m] ⊆ { b+ t

√
m | b, t ∈ Q}. Clearly

{ b+ t
√
m | b, t ∈ Q} ⊆ Q[

√
m]. Hence we have the equality.

Clearly Q[
√
m] ⊆ C. We show that Q[

√
m] is a subring of C.

Let w1 = r1+s1

√
m and w2 = r2+s2

√
m be two elements of Q[

√
m].
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Then w1−w2 = (r1−r2)+(s1−s2)
√
m ∈ Q[

√
m] as r1−r2 ∈ Q and

s1− s2 ∈ Q. For w1w2 = (r1r2 +ms1s2 + (r1s2 + s1r2)
√
m ∈ Q[

√
m]

as r1r2 +ms1s2 ∈ Q and r1s2 +s1r2 ∈ Q. Hence Q[
√
m] is a subring

of C. It is clear that it is an integral domain with 1.

(r1 + r2

√
m) · r1 − r2

√
m

r2
1 −mr2

2

= 1.

Sincem is square free 0 6= r2
1−mr2

2 ∈ Q.Hence r1
r21−mr22

− r2
r21−mr22

√
m ∈

Q[
√
m] is the inverse of r1 + r2

√
m in Q[

√
m]. It follows that

every nonzero element of Q[
√
m] is invertible. Hence Q[

√
m]

is a field. Therefore its field of fractions is equal to itself i.e.

Q[
√
m] = Q(

√
m).

(49) (1) If m ∈ Z show that I = mZ = {mk|k ∈ Z} is an ideal of Z.

(2) if R = M2(Z) and I = {

 a 0

c 0

 | a, c ∈ Z} show that I is

a left ideal but not a right ideal.

(3) If R is a ring with 1 and I is an ideal (left, right or two-sided)

in R such that I ∩ U(R) 6= φ show that I = R.

Solution: (1) Clearly I is non-empty. Let mk and mr be two

elements from I. Then mk − mr = m(k − r) ∈ I. For any s ∈
Z , s(mk) = m(sk) ∈ I. Since Z is commutative this implies that

I is an ideal.

(2) For any

[
x y

z t

]
∈ R,

[
x y

z t

][
a 0

c 0

]
=[

ax+ yc 0

za+ tc 0

]
∈ I, and

 a 0

c 0

−
 u 0

v 0

 =

 a− u 0

c− v 0

 ∈ I
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Hence I is a left ideal. But[
a 0

c 0

][
x y

z t

]
=

[
ax ay

cx cy

]

One can find a and y such that ay 6= 0, then I is not a right ideal.

(3) Let g ∈ I∩U(R). If I is a left ideal then there exists g−1 ∈ R,

such that g−1g = 1 ∈ I. Hence for any r ∈ R, r1 ∈ I. Similarly for

right ideal and two sided ideal I = R.

(50) Let R be a ring with 1.

(1) Show that the set of units U(R) is a group.

(2) Find U(R) when R = Z and when R = Zn.

(3) If R = M2×2(Z) show that U(R) is the group of all matrices[
a b

c d

]
with integer entries such that ad− bc = ±1.

Solution: (1) Let x and y be two elements of U(R). Then there

exists x−1 and y−1 such that xx−1 = x−1x = 1 and yy−1 = y−1y = 1.

It follows that (xy)(y−1x−1) = (y−1x−1)(xy) = 1. Hence xy ∈ U(R).

Since x is invertible implies x−1 is also invertible we get U(R) is a

group.

(2) Let n ∈ Z and n be invertible. Then by (1), 1
n
∈ U(Z). This

implies that n = ±1. It is easy to see that ±1 are invertible. Hence

U(Z) = {±1}.
Let R = Zn. Every element m ∈ R which is relatively prime to

n is invertible. Indeed if (m,n) = 1, then there exists x any y ∈ Z

such that mx+ ny = 1. Hence x is the inverse of m in R where bar

denotes the element x modulo n. x ≡ x (mod n).

Assume that (m,n) = d 6= 1 and m is invertible. Then m = dk,

and n = dl. If ms ≡ 1 (mod n) for some s ∈ Z, then dks ≡ 1

(mod n). But dl = n implies ld(ks+ l) ≡ l ≡ 0 (mod n) which is a

contradiction as l < n. Hence the only units m in Zn are those with

(m,n) = 1. |U(Zn)| = ϕ(n) where ϕ is Euler ϕ function.
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(3) Let A =

[
a b

c d

]
∈ M2×2(Z) be an invertible matrix in R.

Then AA−1 = A−1A = I It follows that (detA)(detA−1) = 1. Hence

detA is an invertible element in Z. Therefore detA =ad− bc = ±1.

Converse is clear.

(51) If R is a commutative ring and a ∈ R Show that the principal ideal

(a) has the form (a) = {ra + na : r ∈ R, n ∈ Z}. Describe the

elements of (a) explicitly if R is not necessarily commutative.

Solution: Let S = {ra + na|r ∈ R, n ∈ Z}. We first observe

that S is an ideal of R containing a. Let r1a+n1a and r2a+n2a be

two elements from the set S. Then (r1− r2)a+ (n1− n2)a ∈ S and

for any r ∈ R, r(r1a+ n1a) = rr1a+ rn1a = rr1a+ n1ra ∈ S. Since

R is commutative ring we get S is an ideal containing a. Hence

(a) ⊆ S.

Conversely for any r ∈ R, ra ∈ (a) and for any integer n, if

positive na = a+a+· · ·+a ∈ (a) if negative, na = −a−a−· · ·−a ∈
(a). Hence ra + na ∈ (a) i.e. S ⊆ (a). It follows that (a) = S. If R

is not commutative, then

(a) = {r1a+ ar2 + na+
m∑
i=1

siaui|r1, r2, si, ui ∈ R, n,m ∈ Z,m ≥ 0}

Let

A = {r1a+ ar2 + na+
m∑
i=1

siaui|r1, r2, si, ui ∈ R, n,m ∈ Z m ≥ 0}

We show that A is an ideal containing a. It is clear that a = 1a ∈ A.
Let

w1 = r1a+ ar2 + na+
m∑
i=1

siaui

w2 = r′1a+ ar′2 + n′a+
k∑
j=1

sj′au
′
j
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It is easy to see that w1 − w2 ∈ A. Now for any x ∈ R we have

xw1 = xr1a+ xar2 + xna+
m∑
i=1

xsiaui

= (xr1)a+ xar2 + nxa+
m∑
i=1

(xsi)aui ∈ A.

Similarly, w1x ∈ A.
Hence (a) ⊆ A. One can see that A ⊆ (a). Hence (a) = A.

(52) Show that there is no ring R with 1 whose additive group is isomor-

phic with Q/Z.

Solution: Assume that f : R+ → Q/Z is an isomorphism of

abelian groups. Since f is an isomorphism 0 6= f(1R) = m
n

+ Z

where m < n. Then n1R ∈ Kerf = {0}. Hence for any a ∈ R,

na = 0. Let k be an integer greater then n and 1
k

+ Z ∈ Q/Z.

Since f is onto, there exists b ∈ R such that f(b) = 1
k

+ Z. But

0 = f(n.b) = n
k

+Z 6= Z, as n < k. Hence we obtain a contradiction.

Such an isomorphism can not exist.

(53) If R is any ring denote by R1 the additive group R ⊕ Z, with mul-

tiplication defined by setting

(r, n)(s,m) = (rs+mr + ns, nm)

Show that R1 is a ring with 1. If r ∈ R is identified with (r, 0) ∈ R.
Show that R is a subring of R1. Conclude that every ring is a

subring of a ring with 1.

Solution: R1 is an abelian group with respect to addition de-

fined by

(r1, z1) + (r2, z2) = (r1 + r2, z1 + z2)

Since R and Z are abelian groups, R1 is an abelian group.

Clearly multiplication is closed, since rs + mr + ns ∈ R and

nm ∈ Z.
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(r1, n)[(r2,m)(r3, s)] = (r1, n)(r2r3 + sr2 +mr3,ms)

= (r1(r2r3 + sr2 +mr3) +msr1 + n(r2r3 + sr2 +mr3), nms)

= (r1r2r3 + sr1r2 +mr1r3 +msr1 + nr2r3 + nsr2 + nmr3, nms)

((r1n)(r2,m)](r3s)) = (r1r2 +mr1 + nr2, nm)(r3, s)

= ((r1r2 + nr2 +mr1)r3 + s(r1r2 + nr2 +mr1) + nmr3, nms)

= (r1r2r3 + nr2r3 +mr1r3 + sr1r2 + snr2 + smr1 + nmr3, nms)

So

[(r1, n)(r2,m)](r3, s) = (r1, n)[(r2,m)(r3, s)].

Since R and Z associate we get multiplication is associative in R1.

(r, n)[(r1,m) + (r2, s)] = (r, n)(r1 + r2,m+ s)

= r(r1 + r2) + (m+ s)r + n(r1 + r2), n(m+ s)

= rr1 + rr2 +mr + sr + nr1 + nr2, nm+ ns

(r, n)(r1,m) + (r, n)(r2, s) = (rr1 +mr + nr1, nm) + (rr2 + sr + nr2, ns)

= rr1 +mr + nr1 + rr2 + sr + nr2, ns+ nm

((r, s) + (r1, s1))(r2, s2) = (r + r1, s+ s1)(r2, s2)

= ((r + r1)r2 + s2(r + r1) + (s+ s1)r2, (s+ s1)s2)

= (rr2 + r1r2 + s2r + s2r1 + sr2 + s1r2, ss2 + s1s2)

(r, s)(r2, s2) + (r1, s1)(r2, s2) = (rr2 + s2r + sr2, ss2) + (r1r2 + s2r1 + s1r2, s1s2)

= (rr2 + s2r + sr2 + r1r2 + s2r1 + s1r2, ss2 + s1s2)

So R1 is a ring.

(r, s)(a, b) = (r, s)

(ra+ br + sa, sb) = (r, s)
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ra+ br + sa = r

sb = s⇒ b = 1

}
⇒ ra+ br + sa = r ⇒ ra+ sa = 0

This is true for all r ∈ R and for all s ∈ Z. For a = 0, b = 1

(r, s)(0, 1) = (0, 1)(r, s) = (r, s).

So, (0, 1) is the identity element of R1

(r, 0)− (r1, 0) = (r − r1, 0) ∈ R
(r, 0)(r1, 0) = (rr1 + 0r + 0r1, 0) = (rr1, 0) ∈ R
R is a subring of R1 and so every ring can be embeddable in a

ring with 1.

(54) (The Binomial Theorem) Suppose R is a commutative ring a, b ∈ R
and 0 < n ∈ Z. Show that

(a+ b)n =
∑
{

(
n

k

)
an−kbk, 0 ≤ k ≤ n}

where

(
n

k

)
=

n!

(n− k)!k!

Proof: Induction on n. If n = 1, then

(a+ b) =
1∑
k=o

(
1

k

)
a1−kbk =

(
1

0

)
a+

(
1

1

)
b = a+ b

Assume it is true for n. Then
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(a+ b)n+1 = (a+ b)n(a+ b) by induction assumption

=
n∑
k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

= an+1 +
n∑
k=1

(
n

k

)
an−k+1bk +

n−1∑
k=0

(
n

k

)
an−kbk+1 + bn+1

=

an+1 +
n∑
k=1

(
n

k

)
an−k+1bk +

n∑
k=1

(
n

k − 1

)
an−k+1bk + bn+1

= an+1 +
n∑
k=1

[

(
n

k

)
+

(
n

k − 1

)
]an−k+1bk + bn+1

(
n

k

)
+

(
n

k − 1

)
=

n!

(n− k)!k!
+

n!

(n− k + 1)!(k − 1)!

=
n!(n− k + 1) + n!k

(n− k + 1)!k!
=
n!(n− k + 1 + k

(n− k + 1)!k!
=

n!(n+ 1)

(n+ 1− k)!k!

=
(n+ 1)!

(n+ 1− k)!k!
=

(
n+ 1

k

)
hence

(a+ b)n+1 = an+1 +
n∑
k=1

(
n+ 1

k

)
an+1−kbk + bn+1

=
k+1∑
n=0

(
n+ 1

k

)
an+1−kbk

This completes the proof.
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(55) Show that every ideal in Zn is principal.

Solution: Let I be a non-zero ideal in Zn. There is a natural

order in the elements of Zn. Assume that k be the minimal non-

zero element in I. If m is any other element in Zn. Then write

m = ak + r where 0 ≤ r < k. Consider this in Z and write it

modulo n. This implies that r = m − ak ∈ I and r < k. Hence

r = 0. This implies I = (k).

The above proof is the modified version of the proof of statement

Z is a principal ideal domain.

(56) If F is a field show that the ring Mn(F ) of all n× n matrices over

F is a simple ring.

Proof: Let Eij be an n × n matrix such that in the (i, j) − th
entry it has 1 and zero elsewhere.

j

Eij = i


0 ...

.

0 0 ... 1 ...

 .
Observe the following properties of Eij.

EijEij = 0 if i 6= j

EijEjk = Eik

EijEkl = 0 if j 6= k.

It is clear that Mn(F ) can be generated by {Eij|i = 1, · · · , n, j =

1, · · · , n} as a vector space over F of dimension n2. We first show

that if I is a non-zero ideal in Mn(F ) and I contains one of Eij, then

I = Mn(F ). To see this, by the above observation it is enough to

show that every Elf ∈ I for all l = 1, · · · , n, f = 1, · · · , n. Since

Eij ∈ I, then EliEij = Elj ∈ I, EljEjf = Elf ∈ I. Hence I contains
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all Elf . It follows that I = Mn(F ). Hence it is enough to show that

every non-zero ideal contains one of Eij.

Let X be a non-zero element in I, such that aij, the (i, j)-th

entry is not zero. Then

EiiXEjj =


0 0 · · · 0

0 0 · · · 0

0 0 1 0

0 0



a11 a12 a1n

ai1 ai2 aij ain
an1 an2 ann




0 0 · · · 0

0 0 · · · 0

0 0 1 0

0 0 0 0


= Eij(a11E11 + a12E12 + · · ·+ annEnn)Ejj

= (ai1Ei1 + · · ·+ ainEin)Ejj

= aijEij ∈ I.

This implies Eij ∈ I. Hence Mn(F ) is a simple ring.

(57) Suppose R is a commutative ring, I1 and I2 are ideal in R,P is a

prime ideal in R, and I1 ∩ I2 ⊆ P . Show that I1 ⊆ P or I2 ⊆ P.

Solution: First observe that I1 ∩ I2 is an ideal in R. Let x and

y be two elements in I1 ∩ I2. Then x − y ∈ I1 ∩ I2 and for any

r ∈ R, rx ∈ I1 as x ∈ I1 and rx ∈ I2 as x ∈ I2, hence rx ∈ I1 ∩ I2.

Similarly by commutativity xr ∈ I1 ∩ I2. Hence I1 ∩ I2 is an ideal

of R.

Assume that I1 ∩ I2 ⊆ P and I1 6⊆ P so there exists non-zero

element a1 ∈ I1 \ P. Let a2 be an arbitrary element of I2. Then

a1a2 ∈ I1∩ I2 ⊆ P. Since P is a prime ideal either a1 ∈ P or a2 ∈ P.
But a1 /∈ P hence a2 ∈ P . But a2 is an arbitrary element of I2 and

it is in P . Hence I2 ⊆ P.

(58) For a commutative ring R with identity the following are equivalent:

a) R has a unique maximal ideal,

b) all non-units of R are contained in some ideal M 6= R,

c) the non-units of R form an ideal,

d) for all r, s ∈ R, r + s = 1R implies r or s unit.
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Such a ring R is called a local ring.

Solution: (a) ⇒ (b) Let M be the unique maximal ideal of R,

and let x be a non-unit element of R. Since x is non-unit the ideal

generated by x namely Rx is a proper ideal of R. But in R every

proper ideal is contained in a maximal ideal. Hence Rx ⊆ M. So

x ∈M .

(b) ⇒ (c) Let x and y be two non-unit elements of R. Then

by assumption x and y in M and x + y is also in M since M is

an ideal. Similarly for any r ∈ R, rx ∈ M. That means x + y and

rx are non-units because M 6= R. Hence the sum of two non-unit

elements is non-unit and multiplication by an element r ∈ R is also

non-unit. It follows that the set of non-units of R forms an ideal.

(c)⇒ (d) If both r and s are non-units, then their sum must be

non-unit by assumption. Since 1R is a unit either r or s must be a

unit.

(d) ⇒ (a) Let M1 and M2 be two different maximal ideals of

R. Then M1 + M2 = R. It follows that there exists m1 ∈ M1 and

m2 ∈M2 such that m1 +m2 = 1. Now by assumption either m1 or

m2 invertible. This implies either M1 = R or M2 = R. Hence there

exists a unique maximal ideal.

(59) Suppose R is a commutative ring with 1 and x ∈ ∩{M : M is

maximal ideal in R}. Show that 1 + x ∈ U(R).

Solution: Recall the fact that in a commutative ring with 1,

every proper ideal is contained in a maximal ideal. Assume that

1+x is not invertible. Then the ideal generated by 1+x is a proper

ideal, hence contained in a maximal ideal M . But then 1 + x ∈ M
and by assumption x ∈ M implies that 1 + x − x ∈ M. Which is

impossible as M is a maximal ideal, M 6= R.

(60) An element a of a ring R is called nilpotent if an = 0 for some

positive integer n. Show that the set of nilpotent elements in a

commutative ring R is an ideal of R.



38 M. KUZUCUOĞLU

Solution: Let a and b be nilpotent elements of R. Then there

exist m and n such that an = 0, bm = 0.

Since R is commutative, by binomial expansion we have

(a+ b)mn = anm +

(
nm

1

)
anm−1b+ · · ·

(
nm

mn− n

)
anbmn−n

+

(
nm

mn− n+ 1

)
an−1bmn−n+1 + · · ·+ bnm

mn − n + i ≥ m for i ≥ 1, hence bmn−n+1 = bmn−n+2 = · · · =

bnm = 0. But the remaining terms have powers of a greater than n.

This implies (a+ b)mn = 0 i.e. a+ b is also nilpotent. Now for any

r ∈ R, (ar)n = (ra)n = rnan = 0 as R commutative. Hence ra is

nilpotent.

Remark. Observe that n + m th power is sufficient to show

that a+ b is nilpotent.

(61) Find all nilpotent elements in Zpk , then more generally in Zn. (See

previous question).

Solution: First observe that every element of the form pt for

some t ∈ Zn is nilpotent and there are pn−1 elements of this form.

On the other hand if x is nilpotent, then there exists an m such

that xm ≡ 0 mod pk or pk|xm. Hence p|x as Zp is a PID and p

is a prime element. Hence {p, 2p, 3p, · · · , pk−1p} is the set of all

nilpotent elements in Zpk .

By Chinese remainder Theorem if n = pm1
1 · · · p

mk
k , then Zn =

Zp
m1
1 ···p

mk
k

∼= Zp
m1
1
⊕ · · · ⊕ Zp

mk
k

If x is a nilpotent element in Zn, then xt ≡ 0 (mod n) i.e.

pm1
1 · · · p

mk
k |xt. Since p1, p2, · · · , pk are prime elements each prime

should divide x. On the other hand any x which is divisible by all

pi is nilpotent.
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(62) Suppose R is a ring with 1, u ∈ U(R), a is a nilpotent element of R

and ua = au. Show that u+ a ∈ U(R). In particular 1 + a ∈ U(R)

for every nilpotent a.

Hint: Write (u+a)−1 suggestively as 1
u+a

= u−1

1+u−1a
and expand

in a power series. Then verify directly that the resulting element of

R is an inverse for u+ a.

Solution: Assume that an = 0. Then we have

(u+ a)−1 =
1

u+ a
=

1

u(1 + u−1a)
=

u−1

1 + u−1a

= u−1[1− u−1a+ (u−1a)2 + · · ·+ (−1)n−1(u−1a)n−1]

Therefore (u+a)u−1(1−u−1a+u−2a2+· · ·+(−1)n−1(u−1)n−1an−1) =

1. In particular when u = 1, then 1 + a ∈ U(R).

(63) Give an example of a ring R with prime ideal P 6= 0 that is not

maximal.

Solution: Let R = Z[x]. The ideal P (x) = {xf(x)|f(x) ∈
Z[x]} is a prime ideal. Indeed define a map

ϕ : Z[x]→ Z.

a0 + a1x+ · · ·+ anx
n → a0

ϕ is an evaluation ring epimorphism at x = 0.

Let f(x) = a0+a1x+· · ·+anxn and g(x) = b0+b1x+· · ·+bmxm.
Then ϕ(f(x) + g(x)) = a0 + b0 = ϕ(f(x)) + ϕ(g(x)) and

ϕ(f(x)g(x)) = a0b0 = ϕ(f(x))ϕ(g(x)).

It is clear that ϕ is onto. Hence Z[x]/(x) ∼= Z. Since Z is an

integral domain we get P is a prime ideal. P is not maximal because

Z[x]/P ∼= Z is not a field.

(64) Show that the ideal I = (2, x) is not principal in Z[x].

Solution: Assume if possible that I is principal and generated

by a polynomial f(x) ∈ Z[x]. Then 2 ∈ I implies, 2 = f(x)g(x),
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for some g(x) ∈ Z[x]. Since Z[x] is an integral domain we get

deg (f(x)g(x)) = deg f(x)+deg g(x) = 0. Hence f(x) is a constant.

It is clear that I is a proper ideal. If 1 ∈ I, then 1 = a2+bx for some

a, b ∈ Z[x]. Evaluating at x = 0 we obtain 2a0 = 1. So a0 = 1
2
6∈ Z.

Hence 1 /∈ I. Then the only possibilities for f(x) are ±2. But

then, x ∈ I implies x = 2g(x), for some g(x) ∈ Z[x]. But this is

impossible in Z[x]. Hence I is not a principal ideal.

(65) Suppose R and S are commutative rings with R ⊆ S and 1R = 1S
and that R is an integral domain. If a ∈ S is transcendental over

R and g(x) is nonconstant polynomial in R[x] show that g(a) is

transcendental over R.

Proof: Assume that g(a) is algebraic over R. Then there exists

a polynomial f(x) ∈ R[x] such that

f(g(a)) = 0

Consider the polynomial (f ◦ g)(x) in R[x]. Since R is an integral

domain and g(x) is not a constant polynomial (f ◦ g)(x) is not a

constant polynomial. Since 1R = 1S substitution Theorem can be

applied and so we get (f ◦ g)(a) = 0. This implies a is algebraic

over R which is a contradiction.

Hence g(a) is transcendental over R.

(66) (Lagrange Interpolation) Suppose F is a field a1, a2, · · · , an are n

distinct elements of F and b1, b2, · · · , bn are arbitrary elements of

F , set

pi(x) = Π{x− aj : j 6= i}

and set

f(x) =
n∑
i=1

bi
pi(x)

pi(ai)
, i ≤ i ≤ n

Show that f(x) is the unique polynomial of degree ≤ n− 1 over F

for which f(ai) = bi 1 ≤ i ≤ n.
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Proof: f(x) =
∑n

i=1 bi
Πi 6=j(x−aj)

Πi6=j(ai−aj)

f(ak) = bk
Π(ak − aj)
Π(ak − aj)

= bk

all the other terms are of the form

bi
Π(ak − aj)
Π(ai − aj)

= bi
(ak − a2)(ak − a3) · · · (ak − ak) . . .

(ai − a1)(ai − a2) · · · (ai − ak−1)(ai − ak+1) · · · (ai − an)
= 0

hence

f(ak) = bk.

Uniqueness:

Assume that g(x) is another polynomial such that g(ai) = bi,

for all i = 1, · · · , n and deg g(x) ≤ n − 1. Hence h(ai) = g(ai) −
f(ai) = 0 then h(ai) has ai as a root for all i = 1, · · · , n. So

deg h(ai) ≥ n as all ai’s are distinct but n ≤ d(g(xi) − f(x)) ≤
max deg{f(x), g(x)} = n− 1 so f − g = 0 hence, f = g.

(67) Find f(x) ∈ Q[x] of degree 3 or less such that f(0) = f(1) =

1, f(2) = 3 and f(3) = 4.

Solution: By Lagrange interpolation in the previous question

we get

p1(x) = (x− 1)(x− 2)(x− 3)

p2(x) = x(x− 2)(x− 3)

p3(x) = x(x− 1)(x− 3)

p4(x) = x(x− 1)(x− 2)
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f(x) =
1p1(x)

p1(0)
+

1p2(x)

p2(1)
+

3p3(x)

p3(2)
+

4p4(x)

p4(3)

=
(x− 1)(x− 2)(x− 3)

−6
+

(x)(x− 2)(x− 3)

2
+

3x(x− 1)(x− 3)

−2

+
4x(x− 1)(x− 2)

6

= −1

2
x3 +

5

2
x2 − 2x+ 1.

Another Solution:

Let f(x) = ax3 + bx2 + cx+ d

f(0) = d = 1

f(1) = a+ b+ c+ d = 1

f(2) = 8a+ 4b+ 2c+ d = 3

f(3) = 27a+ 9b+ 3c+ d = 4

so

a+ b+ c = 0

8a+ 4b+ 2c = 2

27a+ 9b+ 3c = 3

Then we solve the system

 1 1 1 0

8 4 2 2

27 9 3 3

 →
 1 1 1 0

4 2 1 1

9 3 1 1

 →
 1 1 1 0

0 −2 −3 1

0 −6 −8 1
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→

 1 1 1 0

0 −2 −3 1

0 0 1 −2

 →

 1 1 0 2

0 −2 0 −5

0 0 1 −2

 →

 1 0 0 −1
2

0 1 0 5
2

0 0 1 −2


a = −1

2
, b =

5

2
, c = −2, d = 1

f(x) = −1

2
x3 +

5

2
x2 − 2x+ 1

f(0) = 1

f(1) = −1

2
+

5

2
− 2 + 1 = 1

f(2) = (−1

2
)8 +

5

2
(4)− 2(2) + 1

= −4 + 10− 4 + 1 = 3

f(3) = −1

2
(27) +

5

2
9− 2.3 + 1

=
−27 + 45

2
− 6 + 1 = 9− 6 + 1 = 4

So we are done.

(68) R is Noetherian if and only if every ideal is finitely generated.

Proof: Assume R is Noetherian. If I is any ideal in R let ρ

be the set of all finitely generated ideals of R that are contained

in I (e.g 0 ∈ ρ). Let I0 be a maximal element of ρ say with I0

generated by r1, · · · , rk. If I0 6= I choose r ∈ I \ I0 and let J be the

ideal generated by r1, · · · , rk and r. Then J ∈ ρ but I0 ⊆ J and

I0 6= J contradicting maximality. Thus I = I0 is finitely generated.

Conversely if I0 ⊆ I1 ⊆ I2 ⊂ · · · is any ascending chain of ideals,

then I = UjIj is an ideal say I is generated by r1, · · · , rk and say

that ri ∈ Ij(i), 1 ≤ i ≤ k. Let m = max{j(1), j(2) · · · , j(k)}. Then

Im = I. Hence chain terminates at Im.
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(69) Suppose R is an Euclidean domain a, b ∈ R∗ = R \ {0}, a|b and

d(a) = d(b).

Show that a and b are associates.

Proof: Since a|b, b = ca for some c ∈ R∗. (Since b ∈ R∗, c ∈
R∗).

R is an Euclidean domain, a = qb+r where r = 0 or d(r) < d(b).

If r = 0 then b|a and we are done. If r 6= 0, then d(r) < d(b)

a = qb+ r

a = q(ca) + r

a(1− qc) = r

d(b) = d(a) ≤ d(a(1− qc)) = d(r) < d(b).

This is a contradiction. Hence r = 0 and b|a. It follows that a ∼ b.

(70) If p ∈ Z is prime and 1 < m ∈ Z show that f(x) = xm − p is

irreducible in Q[x] and conclude that p
1
m is irrational.

Proof: p is prime in Z by Eiesenstein Criterion f(x) is irre-

ducible, since p|a0, p2 6 |a0, and p 6 |am.

If p
1
m ∈ Q, then x−p 1

m ∈ Q[x]. This is a divisor of xm−p in Q[x]

for m ≥ 2, this contradicts to the irreducibility of xm − p ∈ Q[x]

2nd Method:

Now suppose that p
1
m is rational. Let a, b ∈ Z, (a, b) = 1 and

p
1
m = a

b
∈ Q. Then p = am

bm
, pbm = am since p is a prime and

divide left hand side so p|am, then p|a. Hence pm|am, pm|pbm since

m > 1, p|b. This is a contradiction since

p|a, p|b, so gcd(a, b) ≥ p.

Hence p
1
m is an irrational number.

(71) (The Euclidean Algorithm) Suppose R is a Euclidean domain a, b ∈
R and ab 6= 0 write
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a = bq1 + r1 d(r1) < d(b)

b = r1q2 + r2 d(r2) < d(r1)

r1 = r2q3 + r3 d(r3) < d(r2)

...

rk−2 = rk−1qk + rk d(rk) < d(rk−1)

rk−1 = rkqk+1

with all ri, qj ∈ R. Show that rk = (a, b) and “solve” for rk in

terms of a and b thereby expressing (a, b) in the form ua+ vb, with

u, v ∈ R.
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Proof:

a = bq1 + r1 d(r1) < d(b)

b = r1q2 + r2 d(r2) < d(r2)

r1 = r2q3 + r3 d(r3) < d(r2)

r2 = r3q4 + r4 d(r4) < d(r3)

...

rk−5 = rk−4qk−3 + rk−3 d(rk−3) < d(rk−4)

rk−4 = rk−3qk−2 + rk−2 d(rk−2) < d(rk−3)

rk−3 = rk−2qk−1 + rk−1 d(rk−1) < d(rk−2)

rk−2 = rk−1qk + rk d(rk) < d(rk−1)

rk−1 = rkqk+1

rk−2 = rk−1qk + rk = (rkqk+1)qk + rk = rk(qk+1qk + 1)

rk−3 = rk(qk+1qk + 1)qk−1 + rkqk+1 = rk(qk+1qkqk−1 + qk−1 + qk+1)

...

b = rk[qk+1qkqk−1 + qk−2 + · · ·+ · · ·+ 1]q2 + rk[· · · ]
a = rk[qk+1qkqk−1 · · ·+ 1]q1 + rk[· · · ]

hence rk|a and rk|b. If c|a and c|b then c|(a− bq1) = r1

Similarly,

c | (b− r1q2) = r2

c | (r1 − r2q3) = r3

...

c | (rk−2 − rk−1qk) = rk

so rk = (a, b). For (a, b) = ua+ vb :
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(a, b) = rk = rk−2 − rk−1qk = rk−2 − (rk−3 − rk−2qk−1)

...

= r2n+ r3m

= r2n− (r1 − r2q3)m

= r2(n+ q3m)− r1

= (b− r1q2)(n+ q3m)− r1

= b(n+ q3m)− r1(q2 + 1)

= b(n+ q3m)− (a− bq1)q2 + 1)

= b(n+ q3m)− a(q2 + 1) + bq1(q2 + 1)

= b(n+ q3m+ q1(q2 + 1)− a(q2 + 1)

Henceu = −(q2 + 1)

v = n+ q3m+ q1(q2 + 1)

(a, b) = ua+ vb

(72) Use Euclidean Algorithm to find d = (a, b) and to write d = ua+vb

in the following cases

(1) a = 29041, b = 23843, R = Z.
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Solution:

a = 29041 = (23843)1 + 5198

23843 = (5198)4 + 3051

5198 = (3051).1 + 2147

3051 = 2147.1 + 904

2147 = 904.2 + 339

904 = 339.2 + 226

339 = 226.1 + 113

226 = 113.2

Hence 113 is a greatest common divisor.

For (a, b) = ua+ vb :
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113 = 339− 226.1 = 339− (904− 339.2)

= (2147− 904.2)− (904− [(2147− 904.2).2])

= 2147− [(3051− 2147).2]− (3051− 2147− 2[2147− (3051− 2147)2]

= 2147− 2.3051 + 2.2147− (3051− 2147− 2147).2− (4.3051− 4.2147)

= 2147− 2.3051 + 2.2147− 3051 + 2147 + 2147.2− 4.3051 + 4.2147

= 10.2147− 7.3051

= 10(5198− 3051)− 7.3051

= 10.5198− 10.3051− 7.3051 = 10.5198− 7.3051

= 10.5198− 7(23843− 5198.4) = 10.5198− 7.23843 + 68.5198

= 78.5198− 7.23843

= 78(29841− 23843)− 7(23843) = 78.29041− 95.23843

113 = 78.29041− 95.23843

u = 78

v = −95

(2) a = x3−2x2−2x−3, b = x4 +3x3 +3x2 +2x, and R = Q[x]

Solution:

a = x3 − 2x2 − 2x− 3 = (x4 + 3x3 + 3x2 + 2x)0 + (x3 − 2x2 − 2x− 3)

x4 + 3x3 + 3x2 + 2x = (x3 − 2x2 − 2x− 3)(x+ 5) + (15x2 + 15x+ 15)

x3 − 2x2 − 2x− 3 = (15x2 + 15x+ 15)(
1

15
x− 3

15
)

Hence 15x2 + 15x+ 15 is a greatest common divisor

(a, b) = ua+ vb



50 M. KUZUCUOĞLU

15x2 + 15x+ 15 = (x4 − 3x3 + 3x2 + 2x)− (x3 − 2x2 − 2x− 3)(x+ 5)

u = −(x+ 5), v = 1

(3) a = 7− 3i and b = 5 + 3i, R = R−1

Solution: 7−3i
5+3i

= (7−3i)(5−3i)
34

= 26−36i
34

a = 7− 3i = (5 + 3i)(1− i) + (−1− i)
5+3i = (−1−i)(−4+i) 5+3i

−1−i = (5+3i)(−1+i)
2

= −5−3+2i
2

= −4+i

So −1− i is a greatest common divisor.

(a, b) = ua+ vb :

−1− i = 1(7− 3i)− (5 + 3i)(1− i)
u = 1 v = −(1− i)

(73) Establish the Eiesenstein Criterion for a polynomial f(x) over a

UFD. Statement of Criterion. Let f(x) ∈ R[x], be a primitive poly-

nomial where R is a UFD and let p be a prime in R such that, if

f(x) = anx
n +an−1x

n−1 + · · ·+a1x+a0 p|ai for all i < n, p 6 |an and

p2 6 |a0, then f(x) is irreducible in R[x].

Proof: Assume that f(x) = h(x)g(x) where h(x), g(x) ∈ R[x]

and deg(h(x)) ≥ 1, deg (g(x)) ≥ 1

h(x) =
s∑

v=0

cvx
v and g(x) =

r∑
v=0

bvx
v

where s+ r = n.

The coefficient of xi is

ai = bic0 + bi−1c1 + · · ·+ b0ci

the constant term is b0c0 = a0 since p|a0 and p2 6 |a0, p divides either

b0 or c0 but not both (else p2 divides a0). Assume without loss of

generality that, p|b0 i.e. b0 ≡ 0 (mod p).

Since the coefficient of xn is csbr = an and p 6 |an, there exists bi
such that p 6 |bi (else p|an).
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Let bi is the first coefficient such that p doesn’t divide. Then

ai = bic0 + bi−1c1 + · · ·+ b0ci

ai ≡ 0 ( mod p) or i = n

bi−1 ≡ 0 ( mod p)

bi−2 ≡ 0 ( mod p)

...

b0 ≡ 0 ( mod p)

but

c0 6≡ 0( mod p)

Hence bic0 ≡ 0 (mod p), p|bic0. Since p 6 |c0 we obtain p|bi.
But this is contradiction since we assume that bi is the first

coefficient of f(x) such that p doesn’t divide. So f(x) can not be

factored as a product of two polynomials of smaller degree.

(74) Solve the congruences

f(x) ≡ 1 (mod (x− 1)), f(x) ≡ x (mod (x2 + 1)),

f(x) ≡ x3 (mod (x+ 1))

simultaneously for f(x) in F [x] where F is a field in which 1+1 6= 0.

Solution: (x−1, x2 +1) = 1, (x−1, x+1) = 1, (x+1, x2 +

1) = 1

((x−1), (x2+1)(x+1)) = 1, ((x+1), (x−1)(x2+1)) = 1, (x2+1, (x−1)(x+1)) = 1

Then

1

4
(x3 + x2 + x+ 1)− 1

4
(x2 + 2x+ 3)(x− 1) = 1

where (x3 + x2 + x+ 1) = (x2 + 1)(x+ 1)
1

2
(x3 − x2 + x− 1)− 1

2
(x+ 1)(x2 − 2x+ 3) = 1.
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where x3 − x2 + x− 1 = (x2 + 1)(x− 1)

and finally

−1

2
(x2 − 1) +

1

2
(x2 + 1) = 1.

These products will work even if characteristic is 3.

s1 =
1

4
(x3 + x2 + x+ 1)

s2 = −1

2
(x2 − 1)

s3 =
1

2
(x3 − x2 + x− 1)

f(x) =
1

4
(x3 + x2 + x+ 1) +

x3

2
(x3 − x2 + x− 1)− x

2
(x2 − 1)

(75) It is well known that if R is a UFD, then any two elements has a

greatest common divisor.

Find an example of an integral domain and two elements a, b

such that a and b does not have a greatest common divisor.

Solution: Recall that R = Z[
√
−5] is not a unique factorization

domain as 9 = 3.3 = (2 +
√
−5)(2 −

√
−5). In R consider the

elements 3 and 1 + 2
√
−5. These two elements has no greatest

common divisor. If d is a greatest common divisor, then d|3 and

d|(1 + 2
√
−5). Then the norm N(d)|9 and N(d)|21 = N(1 + 2

√
−5.

Let d = m + n
√
−5 where m and n are elements of Z. Then

N(d)|3 = gcd(9, 21). But the equation 3 = m + n
√
−5 has no

solution in R. Hence these two elements has no greatest common

divisor.

2nd Method: Let R = 2Z, it is an integral domain. 2 ∈ R but

2 does not have any divisor because 1 /∈ R. Hence 2 and 4 does not

have a greatest common divisor.
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FIELDS
(76) Let A be the field of all complex numbers which are algebraic over

Q. Then show that |A : Q| is infinite.

Solution: Assume if possible that |A : Q| = n. Let p be a prime

number and p > n+ 2. Then xp − 1 = (x− 1)(xp−1 + · · ·+ x+ 1).

Then xp−1
x−1

= xp−1 + · · · + x + 1. By Eisenstein criteria this is an

irreducible polynomial because (x+1)p−1
(x+1)−1

= xp−1 + pxp−2 + · · ·+ p is

irreducible. But every primitive pth root of unity is in A. Hence

for any prime p, there exists an element ap algebraic over Q and

|Q(ap) : Q| ≥ p− 1. Hence we get

n = |A : Q| ≥ |Q(ap) : Q| ≥ p− 1 > n+ 1 contradiction.

It follows that |A : Q| is infinite.

(77) Find a splitting field K ⊆ C over Q for

f(x) ∈ Q[x] if f(x) = x3 − 1.

Solution: x3−1 = (x−1)(x2 +x+1) ∈ Q[x], g(x) = x2 +x+1

is irreducible over Q. The roots of g(x) are

−1±
√

1− 4

2
=
−1±

√
−3

2
= −1

2
±
√

3i

2

Hence Q(1
2
±
√

3i
2

) = Q(
√

3i) is the splitting field of g(x) and

|Q(
√

3i) : Q| = 2

(78) If m ∈ Z is square free and m 6= 0, 1, show that K = Q(
√
m) is

Galois over F = Q.

Solution: m 6= 0, 1 and m is square free implies that Q(
√
m) 6=

Q. Since
√
m is a root of the polynomial f(x) = x2−m ∈ Q[x] and

f(x) is irreducible we get |Q(
√
m) : Q| = 2. Moreover the map

α : Q(
√
m) → Q(

√
m)

a+ b
√
m → a− b

√
m



54 M. KUZUCUOĞLU

is a Q-automorphism of Q(
√
m)

G(Q(
√
m),Q) = {1, α} and F(G) = Q.

F({1}) = Q(
√
m), F{α} = {a+ b

√
m | a+ b

√
m = a− b

√
m } = Q

Hence G is a cyclic group of order 2. It follows that Q
√
m is a

Galois extension of Q.

(79) Describe the elements of Q( 3
√

5).

Solution: Q( 3
√

5) is an extension of the field of rational num-

bers. Q( 3
√

5) is a vector space over Q with basis 1, 3
√

5,
3
√

52. Hence

Q(
3
√

5) = {a+ b
3
√

5 + c
3
√

52 | a, b, c ∈ Q}.

(80) Find the splitting field of x4 + 1 over Q.

Solution:

x4 + 1 = 0, x4 = −1 = eπi+2nπi

4θi = πi+2πni, θ =
π + 2πn

4
. Then we have θ1 =

π

4
, θ2 =

3π

4
, θ3 =

5π

4
, θ4 =

7π

4
.

Then the roots of the polynomial x4 + 1 are

x1 = cos
π

4
+ i sin

π

4
=

√
2

2
+ i

√
2

2

x2 = cos
3π

4
+ i sin

3π

4
=
−
√

2

2
+ i

√
2

2

x3 = cos
5π

4
+ sin

5π

4
= −

√
2

2
−
√

2

2
i

x4 = cos
7π

4
+ sin

7π

4
=

√
2

2
−
√

2

2
i

Q(
√

2 +
√

2i) = Q(
√

2, i)

Indeed let K = Q(
√

2 +
√

2i). Then K ⊆ Q(
√

2, i) Since (
√

2 +√
2i)2 = 4i we get i ∈ K. Then i((

√
2 +
√

2i) = (
√

2i −
√

2) ∈ K.

Adding with (
√

2 +
√

2i) gives 2
√

2i ∈ K . Since i ∈ K we obtain√
2 ∈ K. Hence we get the other side of the inequality.
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(81) Find the splitting field of x4 +x2 + 1 = (x2 +x+ 1)(x2−x+ 1) over

Q.

Solution:

x1,2 =
−1±

√
3i

2
, x3,4 =

1±
√

3i

2

Q(
√

3i) is the splitting field of x4 + x2 + 1.

(82) Let a, b ∈ R with b 6= 0. Show that R (a+ bi) = C.

Solution: R(a+ bi) = R(bi) = R(i) = C

(83) Find a polynomial p(x) in Q[x] so that Q(
√

1 +
√

5) is isomorphic

to Q[x]/ < p(x) >

Solution: Let x =
√

1 +
√

5. Then x2 = 1 +√
5 and so x2 − 1 =

√
5. Then we obtain (x2 − 1)2 = 5. Hence

x4 − 2x2 + 1− 5 = 0, and hence x4 − 2x2 − 4 = 0,

x2
1,2 =

2±
√

4 + 16

2
=

2±
√

20

2
= 1±

√
5

p(x) = x4 − 2x2 − 4. Then

p(x) = (x2 − 1−
√

5)(x2 − 1 +
√

5)

If (x2 + ax+ b)(x2 + cx+ d) = x4 − 2x2 − 4 with a, b, c, d ∈ Q

then x4 + (c+ a)x3 + (d+ ac+ b)x2 + (ad+ bc)x+ bd.

We obtain the equations

a+ c = 0, ad+ bc = 0, bd = −4

ac+ b+ d = −2.

a = −c, implies −a2+b+d = −2, ad−ba = 0 and so a(d−b) = 0 It follows that

either a = 0 or d− b = 0.

The first case a = 0 implies c = 0, b + d = −2. Then b =

−2 − d, bd = −4, (−2 − d)d = −4, and so − d2 − 2d =
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4, d2 + 2d − 4 = 0. Solving the equation for the unknown d we

have

d12 =
−2±

√
4 + 16

2
=
−2±

√
20

2
/∈ Q.

Hence this case is impossible. Then d− b = 0 which implies d = b.

The equality bd = −4 gives b2 = −4 which is impossible. Also the

polynomial x4 − 2x2 − 4 ∈ Q[x] does not accept ±1,±2,±4 as a

root. Hence by integral root test p(x) = x4 − 2x2 − 4 is irreducible

in Q[x]. Since p(x) is irreducible the quotient Q[x]/〈p(x)〉 is a field.

Q[x]/〈p(x)〉 → Q(

√
1 +
√

5)

f(x) + 〈p(x)〉 → f(

√
1 +
√

5)

is an isomorphism of fields.

(84) Show that Q(
√

2) is not isomorphic to Q(
√

3).

Solution: Assume that α is an isomorphism from Q(
√

2) to

Q(
√

3). So α(0) = 0, α(1) = 1. Hence α(n) = n and

α = (
m

m
) = α(m)α(

1

m
) = 1⇒ α(

1

m
) =

1

m
.

Hence α is identity on Q.

Let a+ b
√

2 ∈ Q(
√

2) where a, b ∈ Q.

α(a+ b
√

2) = α(a) + α(b)α(
√

2) = a+ bα(
√

2).

Hence we need to find out α(
√

2). But

α(
√

2
√

2) = α(
√

2)α(
√

2) = 2

(α(
√

2))2 = 2

α(
√

2) = ±
√

2 /∈ Q(
√

3).
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Indeed if
√

2 = a + b
√

3 where a, b ∈ Q, then by taking the square

of both sides we get 2 = a2 + 2ab
√

3 + 3b2. But then
√

3 will be a

rational number. Hence such an isomorphism does not exist.

(85) Show Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Solution: Since
√

2 +
√

3 ∈ Q(
√

2,
√

3) we have

Q(
√

2 +
√

3) ⊆ Q(
√

2,
√

3).

Now we show the other inclusion.

(
√

2 +
√

3)2 = 2 + 3 + 2
√

2
√

3 ∈ Q(
√

2 +
√

3)

Hence 2
√

2
√

3 ∈ Q(
√

2 +
√

3). This implies that
√

2
√

3 ∈ Q(
√

2 +
√

3).

Then
√

2
√

3(
√

2 +
√

3) = 2
√

3 + 3
√

2 ∈ Q(
√

2 +
√

3).

Then 2(
√

2 +
√

3) ∈ Q(
√

2 +
√

3). This implies

3
√

2 + 2
√

3− 2
√

2− 2
√

3 =
√

2 ∈ Q(
√

2 +
√

3).

Hence
√

2 +
√

3−
√

2 =
√

3 ∈ Q(
√

2 +
√

3). So

Q(
√

2 +
√

3) ⊃ Q(
√

2,
√

3)

So we get equality Q(
√

2 +
√

3) = Q(
√

2,
√

3).

(86) Suppose K is an algebraic extension of F and R is a ring, with

F ⊆ R ⊆ K. Show that R is a field.

Solution: Clearly R is a commutative ring. It is enough to

show that every nonzero element a ∈ R has an inverse. Since K is

an algebraic extension of F we get F (a) is an algebraic extension

of F . Since

F (a) = {c0 + c1a+ · · ·+ ck−1a
k−1 | ci ∈ F} where k = |F (a) : F |

Since every element of the form c0 + c1a + · · · + ck−1a
k−1 is an

element of the ring and a−1 ∈ F (a) can be written in this form we

get a−1 ∈ R as required.
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(87) Find all solutions to x2 + 1 = 0 in the ring H of quaternions.

Solution: Recall that H = {a0 + a1i + a2j + a3k|ai ∈ R, i2 =

j2 = k2 = −1, ij = k, jk = i, kj = −i, · · · }.
(a0 + a1i+ a2j + a3k)(a0 + a1i+ a2j + a3k) = −1 implies that

a2
0 − a2

1 − a2
2 − a2

3 = −1

a0a1 + a1a0 = 2a1a0 = 0

a0a2 + a2a0 = 2a2a0 = 0

a0a3 + a3a0 = 2a3a0 = 0

a0 6= 0 implies that a1 = a2 = a3 = 0 We get no solution in this

case.

a0 = 0 implies a2
1 + a2

2 + a2
3 = 1 is the only equation. Hence we

get infinitely many solutions of the equation.

The reason why a polynomial of degree two has infinitely many

distinct roots is, H[x] is not a unique factorization domain. H

is not a unique factorization domain either. Moreover H is not

commutative.

(88) If f : C→ R is a ring homomorphism. Show that f(a) = 0 for all

a ∈ C.

Solution: Let f be a ring homomorphism. If there exists a non-

zero element a ∈ C such that f(a) = 0. Then Kerf 6= {0} and an

ideal of C. This implies Kerf = C since any non-zero ideal of field

is itself. It follows that f(c) = 0 for all c ∈ C. Now we will show that

the other case namely Kerf = {0} is impossible. f(1) = f(1)f(1),

then f(1)(f(1) − 1) = 0. Since f(1) 6= 0 we get f(1) = 1. Hence

f(i) = a ∈ R implies −1 = f(−1) = f(i2) = f(i)2 = a2. i.e., there

exists a real number whose square is -1, which is impossible. Hence

f = 0.

(89) Find a splitting field K ⊆ C for x3−2 ∈ Q[x] over Q and determine

|K : Q|.
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Solution: x3 − 2 = (x− 3
√

2)(x2 + 3
√

2x+
3
√

22) Then the roots

of g(x) = x2 + 3
√

2x+
3
√

22 are

− 3
√

2±
√

3
√

22 − 4
√

3
√

22

2
=
− 3
√

2± 3
√

2
√

3i

2
=

3
√

2(−1±
√

3i)

2

Hence the splitting field of x3 − 2 is Q( 3
√

2,
√

3i). It follows that

|Q(
3
√

2,
√

3i) : Q| = |Q(
3
√

2,
√

3i) : Q(
3
√

2)|︸ ︷︷ ︸ |Q(
3
√

2) : Q︸ ︷︷ ︸ | = 6.

2 3

(90) If K ⊆ C is a splitting field over Q for x3 − 2 find all subfields of

K.

Solution: We have already found in Question 89 that the split-

ting field of x3 − 2 is

Q( 3
√

2, w) where w is a primitive cube root of unity. (w3 =

1), w = −1+
√

3i
2

The roots of x3 − 2 are 3
√

2, w 3
√

2, w2 3
√

2. Since

|K : Q| = |Q( 3
√

2, w) : Q( 3
√

2)| |Q( 3
√

2) : Q| = 6 we get degree

of the extension is 6. Since

K = {a1 + a2
3
√

2 + a3
3
√

2
2

+ a4w + a5
3
√

2w + a6
3
√

2
2
w|ai ∈ Q},

as a vector space over Q the field K has a basis

{1, 3
√

2, 3
√

2
2
, w, w 3

√
2, w 3
√

2
2}

G(K,Q) is the group of all permutations of roots

Let φ :
3
√

2→ 3
√

2w, φ(w) = w. Then φ(
3
√

2w) =
3
√

2w2

φ(
3
√

2w2) =
3
√

2.

Hence φ is a Q-automorphism of K of order 3.

Let β : K −→ K.

w −→ w2

3
√

2 −→ 3
√

2.
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β2 = 1,

G(K,Q) = {1, φ, φ2, β, βφ, βφ2}
φβ(

3
√

2) = φ(
3
√

2) =
3
√

2w

βφ(
3
√

2) = β(
3
√

2w) =
3
√

2w2.

Hence G is a non-commutative group of order 6. It follows that

G ∼= S3 subgroups are as follows:

G1 = {1, β} G2 = {1, βφ} G3 = {1, φ, φ2} G4 = {1, βφ2}

"
"
"
"
"
"
"
"
"
"
"
"
"
""

�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

Q
Q

Q
Q
Q

Q
QQ

G ∼= S3

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

C
C
C
C
C
C
C
C
CC

�
�
�
�
�
�
�
�
�
�

"
"
"

"
"
"

"
"

"
"
"

"
"
"

"
""

{1}

2
2

3

2

3

3 2

3

FG1 = {α = a1 + a2
3
√

2 + a3
3
√

2
2

+ a4w + a5
3
√

2w + a6
3
√

2
2
w|β(α) = α}
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It follows that,

FG1 = {a1 + a2
3
√

2 + a3
3
√

2
2
|a1, a2, a3 ∈ Q} = Q(

3
√

2).

FG2 = {α|βφ(α) = α}

a1 + a2
3
√

2w + a3
3
√

2
2
w2 + a4w

2 + a5
3
√

2w + a6
3
√

2

= a1 +a2
3
√

2+a3
3
√

2
2
+a4w+a5

3
√

2w+a6
3
√

2
2
w, w2 +w+1 = 0

implies w2 = −w − 1. Then

a1 + a2
3
√

2(−w− 1) + a3
3
√

2
2
)w+ a4(−w− 1) + a5

3
√

2w+ a6
3
√

2
2

(a1 − a4) +
3
√

2(a2 + a6) +
3
√

2
2
(−a3) + w(−a4)

+
3
√

2w(−a2 + a5) +
3
√

2
2
w(−a3)

a1 − a4 = a1, −a2 + a5 = a5

−a2+ = a2, +a3 = a6

a6 = a3, a2 = 0

−a4 = a4, a3 = a6

FG2 = {a1 + a3
3
√

2
2

+ a5
3
√

2w + a3
3
√

2
2
w|a, a3, a5 ∈ Q}

For FG3 we have

FG3 = {α | φ(α) = α}

α = a1 + a2
3
√

2 + a3
3
√

2
2

+ a4w + a5
3
√

2w + a6
3
√

2
2
w, and φ(α) = α

implies

φ(α) = a1 + a2
3
√

2w + a3
3
√

2
2
w2 + a4w + a5

3
√

2w2 + a6
3
√

2
2
.

φ(α) = a1 + a2
3
√

2w+ a3
3
√

2
2
(−w− 1) + a4w+ a5

3
√

2(−w− 1) +

a6
3
√

2
2
.

It follows that
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a1 = a1.

a2 = −a5

a3 = −a3 + a6

a4 = a4

a5 = a2 − a5

a6 = −a3 Then

a5 = 0

a2 = 0

a3 = 0

a6 = 0

FG3 = {a1 + a4w | a1, a4 ∈ Q} = Q(w)

FG4 = {α | βφ2(α) = α}

βφ2(α) = β(a1 + a2
3
√

2w2 + a3
3
√

22w + a4w + a5
3
√

2 + a6
3
√

22w2)

= a1 + a2
3
√

2w + a3
3
√

22w2 + a4w
2 + a5

3
√

2 + a6
3
√

22w

= a1 + a2
3
√

2 + a3
3
√

22 + a4w + a5
3
√

2w + a6
3
√

22w = α implies

a1 = a1 − a4

a2 = a5

a3 = −a3

a4 = −a4

a5 = a2

a6 = −a3 + a6

Then a3 = 0, a4 = 0,

FG4 = {a1 + a2
3
√

2 + a2
3
√

2w + a6
3
√

22w | a1, a2, a6 ∈ Q}
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FG4 = {a1 + a2(
3
√

2 +
3
√

2w) + a6
3
√

2w | a1, a2, a6 ∈ Q}
= Q(

3
√

2 +
3
√

2w) as
3
√

22w = (
3
√

2 +
3
√

2w)2

(91) Find a splitting field K ⊆ C for x5 − 1 ∈ Q[x] and determine

|K : Q|.
Solution: x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)

Let for a prime p, g(x) = xp−1 + xp−2 + · · · + x + 1. Then
xp−1
x−1

= g(x). Now substitute, y + 1 for x we get

(y + 1)p − 1

y
= g(y + 1) =

yp + pyp−1 + · · ·+ py

y
= yp−1 + pyp−2 + · · ·+ p.

But this is an irreducible polynomial by Einsenstein’s criterion. In

particular x4 + x3 + x2 + x+ 1 is irreducible over Q.

If α is a root of x4 +x3 +x2 +x+1, then α satisfies x5−1. Then,

1, α, α2, α3α4 are distinct roots of x5− 1. Hence Q(α) is a splitting

field for x5 − 1 and |Q(α) : Q| = 4, where α = cos72 + isin72 as

α = reiθ and α5 = 1 implies e5iθ = 1 and so θ = 2π
5

= 72o

(92) If S = {√p : p ∈ Z, p prime }. Show that |Q(S) : Q| is infinite.

Solution: Let p1, p2, · · · be the positive prime numbers in their

natural order. It is clear that the polynomial x2 − p in Q[x] has
√
p as a root and by Einsenstein’s criterion it is irreducible over Q.

We will show by induction that
√
pi /∈ Q(

√
p1, · · · ,

√
pi−1). Proof

by induction on i. It is clear that
√
p1 /∈ Q. i = 2 shed a light to

the induction step, because of this we will show for i = 2 as well.

If
√
p

2
∈ Q(

√
p1), then

√
p

2
= a+ b

√
p1 where a and b are rational

numbers. Then taking the square of both sides we get

p2 = a2 + b2p1 + 2ab
√
p1.

But this implies
√
p1 ∈ Q which is impossible. Similar to this tech-

nique assume if possible that for all i < k,
√
pi /∈ Q(

√
p1, · · · ,

√
pi−1)

and
√
p
k
∈ Q(

√
p1, · · · ,

√
pk−1). This implies

√
p
k

= a + b
√
pk−1
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where a, b ∈ Q(
√
p1, · · · ,

√
pk−2). As Q(

√
p1, · · · ,

√
pk−1) =

Q(
√
p1, · · · ,

√
pk−2)(

√
pk−1)

Then taking square of both side we get pk = a2 + b2pk−1 +

2ab
√
pk−1. This implies

√
pk−1 is in Q(

√
p1, · · · ,

√
pk−2) which is im-

possible by assumption. Hence for any i,
√
pi /∈ Q(

√
p1, · · · ,

√
pi−1)

and it follows that |Q(
√
p1, · · · ,

√
pi) : Q(

√
p1, · · · ,

√
pi−1)| = 2.

Hence |Q(S) : Q| is infinite.

(93) Suppose K is an extension of F , a ∈ K is algebraic over F , and deg

ma(x) is odd. Show that F (a2) = F (a).

Solution: deg ma(x) is odd implies

|F (a) : F | = deg ma(x) = odd number. But then

|F (a) : F (a2)||F (a2) : F | = |F (a) : F |

Clearly

|F (a) : F (a2)| ≤ 2, as x2−a2 ∈ F (a2)[x] is satisfied by a. It cannot be 2 because

|F (a) : F (a2)| | |F (a) : F | which is odd.

Hence

|F (a) : F (a2)| = 1. That implies F (a) = F (a2)

(94) Show that the field A ⊆ C of algebraic numbers is algebraically

closed.

Solution: Let f(x) = a0 + a1x+ · · ·+ anx
n, be any polynomial

with ai ∈ A. Then |Q(a0, a1, · · · , an) : Q| is finite. Since C is

algebraically closed f(x) has a root α in C and |Q(a0, a1, · · · , an, α) :

Q| is finite. So |Q(α) : Q| is finite. Hence α ∈ A, as every algebraic

number Q is in A.

(95) Determine the Galois groups over Q of the following polynomials:

a) x3 − 1
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Solution: x3 − 1 = (x − 1)(x2 + x + 1). Then the roots are

−1
2
±
√

3i
2

. Splitting field of f(x) is K = Q(−1
2
±
√

3i
2

). The map

σ : K → K

a+ b
√

3i→ a− b
√

3i

where a, b ∈ Q is a Q-automorphism of K of order 2. Hence

G(K,Q) = {1, σ}.
b) f(x) = x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1).

Solution: Since xp−1 + xp−2 + · · ·+ x+ 1 is irreducible over Q

for any prime p, we get g(x) = x4 + x3 + x2 + x + 1 is irreducible

over Q. Observe that if w is a root of g(x), then it satisfies w5 = 1.

Hence w,w2, w3, w4 are distinct roots of g(x), otherwise minimal

polynomial of w will be of degree < 4, K = Q(w) is a splitting field

of g(x). The map σ

σ : K → K

w → w2

is a Q-automorphism of K of order 4. Since |G(K,Q)| = 4 we get

G = {1, σ1, σ2, σ3} is the Galois group of K over Q, which is cyclic

of order 4.

c) f(x) = x6−1 = (x3−1)(x3+1) = (x−1)(x2+x+1)(x2−x+1)

Solution: x2 + x+ 1 irreducible over Q.

x2 − x+ 1 irreducible over Q

roots of x2 + x+ 1 is w = −1+
√

3i
2

, w2 = −1−
√

3i
2

roots of x2 − x+ 1 is w1 = 1+
√

3i
2

, w2
1 = 1−

√
3i

2

K = Q(−1
2

+
√

3i
2
,−1

2
−
√

3i
2
,−1

2
−
√

3i
2
,−1

2
+
√

3i
2

) is a splitting

field for f(x).

K = Q(
√

3i
2

) since ±1
2
∈ Q.

√
3i = a, a2 = −3, a2 + 3 = 0 this

implies ma,Q(x) = x2 + 3 hence |K : Q| = 2.

Let 1 6= σ ∈ G(K/Q) such that
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{
σ(w) = w2

σ(w1) = w2
1

}
. Then

σ2(w) = w

σ2(w1) = w1

hence G(K/Q) = {1, σ}
(96) Let G = G(R : Q)

(i) If ϕ ∈ G and a ≤ b in R show that ϕ(a) ≤ ϕ(b).

(ii). Show that G = 1.

Solution: (i) If a = b, then ϕ(a) = ϕ(b). If a ≤ b, then b−a ≥ 0

so (b− a) = t2 for some t ∈ R.

ϕ(b− a) = ϕ(b)− ϕ(a) = ϕ(t2) = ϕ(t)ϕ(t) = (ϕ(t))2 ≥ 0 hence

ϕ(b)− ϕ(a) ≥ 0 it follows that ϕ(a) ≤ ϕ(b).

(ii) Assume 1 6= ϕ ∈ G and let a ∈ R such that ϕ(a) = b 6= a.

Assume without loss of generality that a < b. Then there exists

q ∈ Q such that a < q < b.

By the above observation.

ϕ(q) > ϕ(a) and ϕ(b) > ϕ(q) this implies that q > b and b > q.

This is a contradiction hence ϕ = 1.

(97) Give an example of fields F ⊆ E ⊆ K such that K is normal over

E and E is normal over F but K is not normal over F .

Solution: Q(
√

2) is a normal extension of Q.

The minimal polynomial of
√

2 over Q is x2−2 (By Einsenstein

Criterion it is irreducible). Then |Q(
√

2) : Q| = 2.

Q(
√

2) is a splitting field for x2 − 2 hence Q(
√

2) is a normal

extension of Q. In fact any extension of Q of degree 2 is a normal

extension.

Similarly Q( 4
√

2) is a normal extension of Q(
√

2) since the min-

imal polynomial of 4
√

2 over Q(
√

2) is x2 −
√

2. Q( 4
√

2) is a split-

ting field for x2 −
√

2 then again by Theorem 3.5 it is normal

(x2 −
√

2) = (x− 4
√

2)(x+ 4
√

2) ∈ Q( 4
√

2)[x].
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But Q( 4
√

2) is not a normal extension of Q since minimal polyno-

mial of 4
√

2 over Q is x4−2. By Eisenstein criterion it is irreducible

and the roots of x4 − 2 are 4
√

2, i 4
√

2, − 4
√

2, −i 4
√

2.

i 4
√

2 is a root of the irreducible polynomial (x4 − 2) but i 4
√

2 is

not an element of Q( 4
√

2) ⊆ R and i 4
√

2 ∈ C \R therefore Q( 4
√

2) is

not a normal extension of Q.

(98) A field F is called perfect if either char F = 0 or else CharF = p

and F = F p = {ap : a ∈ F}.
(i) If F is finite show that the map ϕ : a → ap is a monomor-

phism and conclude that F is perfect.

Solution:
ϕ : F → F p

a → ap

Claim: ϕ is a homomorphism ϕ(a + b) = (a + b)p = ap + bp =

ϕ(a) + ϕ(b) ϕ(ab) = apbp = ϕ(a)ϕ(b)

kerϕ = {a ∈ F : ap = 0} = {0}

ϕ is also onto since for all xp ∈ F p there exists x ∈ F such that

ϕ(x) = xp ∈ F p.

F p ⊂ F and on a finite set B a one-to-one map from B into B

is onto. This implies F = F p.

(ii) Show that the field Zp(t) of rational functions in the inde-

terminate t is not perfect.

Zp(t) = {f(t)

g(t)
| f(t) ∈ Zp[t] and 0 6= g(t) ∈ Zp(t) }

(Zp(t))
p = {f(t)p

g(t)p
| f and g ∈ Zp[t] and g(t) 6= 0 }

since Char Zp(t) = p 6= 0, so it is enough to show that Zp(t) 6=
(Zp(t))

p. Observe that t ∈ Zp(t) but t /∈ (Zp(t))
p since all polyno-

mials in (Zp(t))
p is of degree ≥ p. Therefore

(Zp(t))
p 6= Zp(t) i.e. Zp(t) is not a perfect field.
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(99) If F is a finite field of characteristic p show that every element of

F has a unique pth root.

Solution: We have shown in Question 98 that if F is a finite

field of characteristic p, the Frobenius map
σ : F → F

x → xp
is

an automorphism of the field F . Since σ is an automorphism the

inverse of σ sends xp to x, i.e. to the pth roots of xp. Therefore

every element has a unique pth root as σ−1 : F p = F → F

(100) Let F be a finite field.

(1) Show that the product of all elements in F ∗ is -1.

(2) Conclude Wilson’s Theorem: If p ∈ Z is a prime, then (p−
1)! ≡ −1 (mod p).

Solution: (1) Every finite field F is a splitting field for a polyno-

mial f(x) = xq−x for some prime power q = pn. Since F ∗ = F−{0}
and F is a splitting field for f(x), we get every element of F ∗ is a

root of xq−1 − 1. Since xq−1 − 1 splits over F and all the roots in

F ∗ are distinct, we get the product of elements of F ∗ is -1. i.e.

xq−1 − 1 = (x− a1)(x− a2) · · · (x− aq−1)

giving −1 = (−1)q−1a1 . . . aq−1. If q is odd we are done. If q is even

then char(F ) = 2 we have −1 = 1 and again the result follows.

(2) If p is a prime, then Zp is a field and

Z∗p = {1, 2, 3, · · · , p− 1}.

Hence 1.2. · · · p− 1 = (p− 1)! ≡ −1 (mod p).

(101) If F is a finite field, show that every element of F is a sum of two

squares in F .

Hint: Use, if S ⊆ G,G is a finite group and |S| > |G|
2
, then

S2 = G See Question 8.
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Solution: Let S = {a2 | a ∈ F} ⊆ F . Consider the map

ϕ : F ∗ → F ∗

x → x2 ϕ is a group homomorphism and F ∗/ kerϕ ∼=

Imϕ = (F ∗)2. kerϕ = {x ∈ F ∗ | x2 = 1}.
Since F ∗ is a cyclic group, there exists only one subgroup of any

given order dividing |F ∗|. Hence either | kerϕ| = 2 or | kerϕ| = 1.

In any case by including 0 ∈ F to (F ∗)2 we get S = {(F ∗)2} ∪ {0}.
Then |S| = |F ∗|

2
+ 1 = |F |−1

2
+ 1 = |F |

2
+ 1

2
> |F |

2
. Hence |S| > |F |

2
.

Hence we get S + S = F in the additive notation. Namely every

element in F can be written as a sum of two squares in F .

(102) If f(x) ∈ F [x] and K is a splitting field for f(x) over F , denote by

S the set of distinct roots of f(x) in K and let G = G(K : F ). If

f(x) is irreducible over F show that G is transitive on S. If f(x)

has no repeated roots and G is transitive on S show that f(x) is

irreducible over F .

Solution: Assume that f(x) is irreducible over F , and a and

b be two elements of S. Then a and b are conjugates hence there

exists an F -isomorphism

φ : F (a) → F (b)

a → b

But this isomorphism can be extended to an F -automorphism φ of

the field K. Hence φ(a) = b, and φ ∈ G(K : F ). So G is transitive

on S.

Now assume that f(x) has no repeated roots and G is transitive

on S. Assume if possible that f(x) is reducible, say f(x) = g(x)h(x)

deg g(x) ≥ 1 and deg h(x) ≥ 1. Since K is a splitting field for f(x),

let a be a root of g(x) and b be a root of h(x) in K. Then as G is

transitive there exists an automorphism φ ∈ G such that φ(a) = b.

But then ma,F (x) ∈ F [x] and b satisfies ma,F (x). Then every root

of g(x) is a root of h(x). But f(x) does not have repeated roots.

Hence we get f(x) is irreducible.
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(103) Determine the Galois group (over Q ) of the following polynomials.

(i) f(x) = x4 − 2.

(ii) f(x) = x4 − 7x2 + 10 = (x2 − 5)(x2 − 2).

(iii) f(x) = x6 − 3x3 + 2.

Solution: (i) x4− 2 is irreducible over Q and the roots of f(x)

over Q in R, are a = 4
√

2 and the others are

w4 = 1. Then w4 − 1 = (w2 − 1)(w2 + 1) and

= (w − 1)(w + 1)(w2 + 1)

So a,−a, ia,−ia are roots of f(x)

|(K : Q)| = |K : Q(a)| |Q(a) : Q| = 8.

hence |(G(K : Q))| = 8. Let τ , 1± σ ∈ G(K : Q). Then

σ(a) = ai

σ2(a) = −a
σ3(a) = −ia
σ4(a) = a

τ(ai) = −ai τ(a) = a

τ 2(ai) = ai

G = {1, σ, σ2, σ3, τ, στ, σ2τ, σ3τ}

since σ(ai) = −a, τ(ai) = −ai we have τ 6= σ.

τ−1στ(a) = τ−1σ(a) = τ−1(ai) = −ai

τ−1σ(τ(ai)) = τ−1σ(−ai) = τ−1(−ai)i = a

σ3(ai) = σ(σ(σ(ai)) = σσ(−a) = σ(−ai) = ai(−i) = a

τ−1στ = σ3.

So G(K,Q) is isomorphic to D8.
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(ii). f(x) = x4 − 7x2 + 10 = (x2 − 5)(x2 − 2). The polynomials

x2−5 and x2−2 are irreducible by Eisenstein criterion over Q hence

x2 − 5 = 0⇒ x = ±
√

5 x2 − 2 = 0⇒ x = ±
√

2

K = Q(
√

5,
√

2) is a splitting field for f(x) and it is separable hence

Galois extension and as
√

2 6∈ Q(
√

5)

|K : Q| = |K : Q(
√

5)| |Q(
√

5) : Q| = 4

the roots are
√

5,−
√

5,
√

2,−
√

2. Let σ ∈ G(K : Q) σ(
√

5) = −
√

5,

σ(
√

2) =
√

2, τ(
√

5) =
√

5, τ(
√

2) =
√

2.

στ(
√

5) = σ(
√

5) = −
√

5

τσ(
√

5) = τ(−
√

5) = −
√

5

and

τστ = (
√

5) = τσ(
√

5) = τ(−
√

5) = −
√

5

τστ(
√

2) = τσ(−
√

2) = τ(−
√

2) =
√

2

so τστ = τ. Therefore G = {1, σ, τ, στ} is a commutative noncyclic

group of order 4. Hence it is isomorphic to Klein Four group.

(iii) We have f(x) = x6 − 3x3 + 2 = (x3 − 2)(x3 − 1) = 0 =

(x3−2)(x−1)(x2 +x+1) where x3−2 and x2 +x+1 are irreducible.

The roots of x3 − 2 are 3
√

2, 3
√

2w, 3
√

2w2 where w is a primitive

3rd root of unity, and roots of x2 + x+ 1 are w,w2. K = Q( 3
√

2, w)

is splitting field for f(x)

|K : Q(
3
√

2)|︸ ︷︷ ︸ |Q(
3
√

2) : Q|︸ ︷︷ ︸ = 6

σ(
3
√

2 =
3
√

2w σ(w) = w

τ(
3
√

2 =
3
√

2 τ(w) = w2

since the roots of f(x) are 1, 3
√

2, 3
√

2w, 3
√

2w2, w, w2

{1, σ, σ2, τ, στ, σ2τ}
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τ−1στ(
3
√

2) = τ−1σ(
3
√

2) = τ−1(
3
√

2w) =
3
√

2w2

τ−1στ(w) = τ−1(σw2) = τ(w2) = w

τ−1στ = σ2

hence G is of order 6 non abelian and τστ = σ2

G =< σ, τ |τστ = σ2, σ3 = 1, τ 2 = 1 >

hence G ∼= S3.

(104) For any f(x) ∈ F [x] set f 0(x) = f(x), f (1)(x) = f ′(x) and in general

let f (n)(x) be the derivative of f (n−1)(x), 1 ≤ n ∈ Z if f(x); g(x) ∈
F [x] set h(x) = f(x)g(x) and show that

h(n)(x) =
n∑
k=0

(
n

k

)
f (n−k)(x)g(k)(x)

(This is Leibniz’s rule)

Solution. Induction on n

If n = 0, then h(x) = f(x)g(x)

If n = 1, then h′(x) = f ′(x)g(x) + f(x)g′(x)

Assume it is true for n− 1. Then

h(n−1)(x) =
n−1∑
k=0

(
n− 1

k

)
f (n−1−k)(x)g(k)(x).

d

dx
(h(n−1)(x)) =

n−1∑
k=0

(
n− 1

k

)
d

dx
f (n−1−k)(x)g(k)(x)

h(n)(x) =
n−1∑
k=0

(
n− 1

k

)
[f (n−k)(x)g(k)(x) + f (n−1−k)(x)g(k+1)(x)

=
n−1∑
k=0

(
n− 1

k

)
f (n−k)(x)g(k)(x) +

n−1∑
k=0

(
n− 1

k

)
f (n−1−k)(x)g(k+1)(x)

Let k + 1 = m for the second equation. Then
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=
n−1∑
k=0

(
n− 1

k

)
f (n−k)(x)g(k)(x) +

n∑
m=1

(
n− 1

m− 1

)
f (n−m)g(m)(x)(1)

=
n−1∑
k=0

(
n− 1

k

)
f (n−k)(x)g(k)(x) +

n∑
k=1

(
n− 1

k − 1

)
f (n−k)(x)g(k)(x)(2)

=
n−1∑
k=1

(
n− 1

k

)
f (n−k)(x)g(k)(x) +

n−1∑
k=1

(
n− 1

k − 1

)
fn−k(x)gk(x) + f (n)(x)g(x) + f(x)g(n)(x)(3)

=
n−1∑
k=1

[(
n− 1

k

)
+

(
n− 1

k − 1

)]
f (n−k)(x)g(k)(x) + f (n)(x)g(x) + f(x)g(n)(x).(4)

Now we will show that

[(
n− 1

k

)
+

(
n− 1

k − 1

)]
=

(
n

k

)
(5)

(n− 1)!

k!(n− 1− k)!
+

(n− 1)!

(k − 1)!(n− 1− k − 1)!
=

(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(n− k)!(k − 1)!
(6)

(7)

=
(n− 1)!(n− k) + (n− 1)!(k)

k!(n− k)!
=

(n− 1)!(n− k + k)

k!(n− k)!
=

(n− 1)!n

k!(n− k)!
=

n!

(n− k)!k!
.(8)

Then (9)
n−1∑
k=1

(
n

k

)
f (n−k)(x)g(k)(x) + f (n)(x)g(x) + f(x)g(n)(x)(10)

=
n∑
k=0

(
n

k

)
f (n−k)(x)g(k)(x)(11)

(105) If char (F ) = 0, and f(x) has degree n in F [x] show that f(x) =∑n
k=0

f (k)(a)
k!

(x− a)k.

Proof. Let

g(x) =
n∑
k=0

fk(a)

k!
(x−a)k = f(a)+f ′(a)(x−a)+

f ′′(a)

2!
(x−a)2+· · ·+f

n(a)

n!
(x−a)n
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Then

g(a) = f(a)

g′(a) = f ′(a)

...

g(n) = f (n)(a).

Let h(x) = f(x)− g(x). Then h(a) = g(a)− f(a) = 0 implies that

x− a|h(x).

h′(x) = f ′(x)− g′(x) h′(a) = g′(a)− f ′(a) = 0 implies (x− a)2|h(x)

h(n)(x) = f (n)−g(n)(x). Hence h(n)(a) = f (n)(a)−g(n)(a) = 0 implies (x−a)n+1|h(x).

But degree of h(x) ≤ n since deg f = deg g = n hence. h(x) = 0

this implies f(x) = g(x) i.e.

f(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k

(106) Suppose F is a field and K = F (x) the field of rational functions in

the indeterminate x over F .

If u ∈ K \ F show that u is transcendental over F .

Solution: Let K = F (x) = {f(x)
g(x)
| f(x), g(x) ∈ F [x], g(x) 6=

0}. Let u ∈ K \ F . Assume if possible that u is algebraic over F ,

so there exists a polynomial h(t) ∈ F [t] such that h(u) = 0. Since

u ∈ K \F the element u is of the form f(x)
g(x)

where g(x) 6= 0 and f(x)
g(x)

is not a constant (not in F ) (f(x), g(x)) = 1.

If h is of degree n, then consider the polynomial t(x) where

t(x) = (g(x))n. Then h(u) = 0 implies h(u) = (g(x))nh(f(x)
g(x)

) = 0

which is a polynomial in F [x]. This implies that x is algebraic over

F but x is indeterminate. This contradiction implies that, u is a

transcendental element.

(107) Show that f(x) = x5− 2x3− 8x+ 2 is not solvable by radicals over

Q.
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Solution: By Eisenstein criteria, f(x) is an irreducible polyno-

mial.

f ′(x) = 5x4 − 6x2 − 8 = (5x2 + 4)(x2 − 2).

Since 5x2 +4 is always positive, the graph of f(x) is roughly the

following

a1 −
√

2 a2
√

2 a3

Hence f(x) has 3 real roots a1, a2, a3 and two complex roots

which are conjugate of each other.

Let K ⊆ C be a splitting field for f(x) over Q and let G = G(K :

Q) be the Galois group of f(x) viewed as a subgroup of S5. Since

5||K : Q| and hence 5||G| there must be a 5-cycle in G. There

exists an automorphism which sends a4 to a5 and fix the others.

This gives a 2-cycle in G. Hence in G there exists a 5-cycle and a

2-cycle. It follows that G ∼= S5 = 〈(1, 2, 3, 4, 5), (4, 5)〉. But S5 is

not a solvable group, as A5 is a simple group of order 60. Hence

f(x) is not solvable by radicals.
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(108) Suppose Fq and Fr are finite fields, with q = pm and r = pn, p

prime. Show that Fq has a subfield (isomorphic with) Fr if and

only if n|m.

Solution. Assume that Fq has a subfield isomorphic to Fr where

r = pn. Let F = Fp prime field isomorphic to Zp. Then Fq is an

extension of the field Fr. Hence

m = |Fq : F | = |Fq : Fr| |Fr : F | = |Fq : Fr|.n

Hence n|m.

Conversely assume that n divides m. We already know that all

finite fields of characteristic p and of order pm are isomorphic and

they are splitting fields of xp
m − x. Therefore it is enough to show

that all roots of xp
n − x are roots of xp

m − x.

Let a be a root of xp
n − x. Then ap

n
= a. If kn = m we get

ap
m

= ap
nk

= (ap
n
)p

(k−1)n
= ap

(k−1)n
= · · · = ap

n
= a. Hence we are

done.

(109) List al subfields of Fq if q = 220, q = p30, p-prime.

Solution. For q = 220. By previous question Fq = F220 has

subfields of order 2n for n|20. So they are n = 1, 2, 4, 5, 10, 20.

Hence F2, F22 , F24 , F25 , F210 , F220 .

By the same reason q = p30 we have the divi-

sors of 30 as, 1,2,3,5,6,10,15,30. Hence the subfields are

Fp, Fp2 , Fp3 , Fp5 , Fp6 , Fp10 , Fp15 , Fp30 .
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MODULES

(110) If R is a ring with 1 and M is an R-module that is not unitary show

that Rm = 0 for some non-zero m ∈M.

Solution: M is not unitary implies that there exist x ∈ M

such that 1x 6= x. Let m = 1x − x 6= 0. Then for any r ∈ R, rm =

r(1x − x) = rx − rx = 0. Hence m is the required element and

Rm = 0.

(111) Give an example of an R-module M having R-isomorphic submod-

ules N1 and N2 such that M/N1 and M/N2 are not isomorphic.

Solution: Z = M is a Z-module. Let N1 = Z. Let N2 = 2Z.

Define a map

f : Z→ 2Z.

x → 2x.

f(x + y) = 2(x + y) = 2x + 2y and for any m ∈ Z, f(mx) =

2mx = m2x = mf(x). Moreover Ker (f) = {x ∈ Z | 2x = 0} = {0}
and f is onto. Hence Z ∼= 2Z as a Z-module. Hence Z ∼= 2Z. But

Z2
∼= Z/2Z has 2-elements and Z/Z ∼= {0̄} has only one element.

Hence they can not be isomorphic.

(112) Suppose V is a finite dimensional vector space over the field F ,

viewed as an F -module. Describe a composition series for V and

determine its factors.

Solution: Every vector space of dimension n over the field F is

isomorphic to F n = F ×· · ·×F (n times). Since factor modules are

also vector spaces, over the field F , in the composition series they

must have dimension 1. Hence the composition series is of length n

and each factor isomorphic to F as an F -vector space of dimension

1. If {e1, e2, . . . en} is a basis for V then {0} ⊆ {e1} ⊆ {e1, e2} ⊆ . . .

becomes a composition series of V .
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(113) A sequence K
f→ M

g→ N of R-homomorphisms of R-modules is

exact at M if Im(f) = ker g. A short exact sequence 0 → K →
M → N → 0 is exact at K,M and N.

If 0 → K
f→ M

g→ N → 0 is a short exact sequence show that

M is Noetherian if and only if K and N are both Noetherian.

Solution: Assume that M is Noetherian. Then as K is isomor-

phic to Imf which is a submodule of M by using the fact that

submodule of a Noetherian module is Noetherian we get that K

is Noetherian. Since g is onto M/ ker g ∼= N . Moreover as M

is Noetherian M/ ker g is Noetherian as homomorphic image of a

Noetherian module is again Noetherian. Hence N is Noetherian.

Conversely one can see easily from the previous paragraph and

from the assumption Imf = ker g that M/ ker g and Imf ∼= K

are Noetherian. This implies M is Noetherian as extension of a

Noetherian module by a Noetherian module is Noetherian.

(114) Suppose M1,M2 and N are submodules of an R-module M with

M1 ⊆M2. Show that there is an exact sequence.

0→ (M2 ∩N)/(M1 ∩N)
f→M2/M1

g→ (M2 +N)/(M1 +N)→ 0

Solution: M1 ⊆ M2 implies that M1 + N ⊆ M2 + N. Hence

define a map
g: M2/M1 → (M2 +N)/(M1 +N)

m+M1 → m+ (M1 +N)
It is easy to check that g is a module epimorphism.

ker g = {m+M1 | m+ (M1 +N) = (M1 +N) where m+M1 ∈M2/M1 }
= {m+M1 | m ∈M1 +N }
= {m+M1 | m ∈M2 ∩ (M1 +N) } = {m+M1 | m ∈ (M2 ∩N) +M1}
= (M2 ∩N) +M1/M1
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Hence ker g = Im(f) where f is the module homomorphism

from (M2 ∩N)/(M1 ∩N) into M2/M1 such that

f(m+ (M1 ∩N)) = m+M1 where m ∈ (M2 ∩N)

f is clearly one to one and moreover g is onto. Hence Im f = ker g

and the given sequence is exact.

(115) Let R = F [x] and F be a field. Let V be a vector space over

F , and let T : V → V be a linear transformation. If f(x) =

a0 + a1x + · · · + anx
n ∈ F [x] define f(T ) = a0I + a1T + · · · +

anT
n also a linear transformation on V . Let L(V, V ) be the set

of linear transformations on V . Then f(x) → f(T ) becomes a

homomorphisms from F [x] into L(V, V ). If we define f(x) · v =

f(T )(v), then V becomes an F [x]-module which is usually denoted

by VT .

a) If F = Q and V is the Q-space of all column vectors with 2

entries from Q, the map T : V → V is the result of the multiplica-

tion by the matrix A =

 1 1

0 1

 and f(x) = xm−x determine the

module action f(x)v on an arbitrary vector v =

[
a

b

]
in VT .

b) If u =

[
1

0

]
and v =

[
0

1

]
find order of u and v.

Solution: a) f(x) = xm − x. Then Am − A =

[
0 m− 1

0 0

]
.

Then for any v =

[
a

b

]
in VT .

f(x).v =

[
0 m− 1

0 0

][
a

b

]
=

[
(m− 1)b

0

]
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b) Let u =

[
1

0

]
. Then

A(u) = { f(x) ∈ Q[x] | f(x).u = 0 }

Let f(x) = x− 1. Then (T − I)(u) =

[
0 1

0 0

][
1

0

]
=

[
0

0

]
.

Since f is polynomial of degree 1, we get A(u) = (x− 1).

A(v) = {g(x) | g(T ).v = 0 }
(T 2 − 2T + I)v = 0. Hence g(x) = x2 − 2x + 1 ∈ A(v) and

for any divisor h(x) 6= g(x) of g(x) we get h(x).v 6= 0. Hence

A(v) = (x2 − 2x+ 1).

(116) Let F be a free abelian group ( vector space over a field K) with

countably infinite basis {a1, a2, · · · }, and let R = End(F ). Show

that R, as a free R-module, has one basis B1 = {1R}, but also

another basis B2 = {φ1, φ2} where

φ1(a2n) = an φ1(a2n−1) = 0

φ2(a2n) = 0 φ2(a2n−1) = an n = 1, 2, 3, · · ·

Remark: Recall that if R is a principal ideal domain rank of

a free module M is an invariant and rank of a submodule of a free

module M is less than or equal to rank of M .

Solution: It is clear that, 1R is linearly independent over R and

it spans R. First observe that φ1 and φ2 are R−linearly indepen-

dent. Indeed if

r1φ1 + r2φ2 = 0 r1, r2 ∈ R,

then for any n ∈ N we have,
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r1(an) = r1φ1(a2n) + r2φ2(a2n) = (r1φ1 + r2φ2)(a2n) = 0.

Since r1 is an endomorphism and sends every basis element to zero

we obtain r1 = 0. Similarly for all n ≥ 1

r2(an) = r1φ1(a2n−1) + r2φ2(a2n−1)

= (r1φ1 + r2φ2)(a2n−1) = 0

Hence by the above explanation we have r2 = 0 ∈ End(F ).

Now we show that B2 spans R as an R-module i.e., for any

f ∈ End(F ) there exists r1, r2 ∈ R such that

f = r1φ1 + r2φ2

B = {ai | i ≥ 1 } is a basis for a free abelian group F.

Therefore we may define a map on B and extend it linearly to F .

Then it becomes an element of R = End(F ).

Let r1(ai) = a2i and r2(ai) = a2i−1 for all i ≥ 1. Then r1, r2 ∈ R
and r1φ1 + r2φ2 = 1. Hence for any f ∈ R, we have f = fr1φ1 +

fr2φ2. It follows that B2 spans R.

(117) Give an example of an R-module M over a commutative ring R

where the set T (M) of torsion elements of M is not a submodule.

Solution: Consider Z6 as a Z6-module

2 is a torsion element since 2.3 = 0

3 is a torsion element since 3.2 = 0

But 2 + 3 is not a torsion element because for any 0 6= r ∈ Z6

r.5 = r(−1) 6= 0.

(118) Let R be a PID and M be an R-module. If x and y are torsion

elements with orders r and s respectively and that r and s are

relatively prime in R. Show that x+ y has order rs.

Solution: Since r and s are relatively prime there exists r′, s′ ∈
R such that rr′ + ss′ = 1 Then k = k1 = krr′ + kss′. If k
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is the order of x + y, then k(x + y) = 0. Then kx = −ky and

0 = rkx = −rky. This implies that s|rk by assumption (r, s) = 1

and hence s|k. Similarly r|k, say k = r1r = s1s, then k = (krr′ +

kss′) = s1srr
′ + r1rss

′ = (s1r
′ + r1s

′)rs. i.e. rs|k giving (k) = (rs)

i.e |x+ y| = rs.

(119) Suppose R is a commutative ring and M is an R-module. A sub-

module N is called pure if rN = rM ∩N for all r ∈ R
(i) show that any direct summand of M is pure,

(ii) if M is torsion free and N is a pure submodule, show that

M/N is torsion free,

(iii) if M/N is torsion free, show that N is pure.

Solution: (i) Let K be a direct summand of M . Then M =

K⊕L, where K and L are submodules of M . Then rM = rK⊕ rL
. For any rm ∈ rM, there exists k ∈ K and l ∈ L such that m =

k+ l. Then rm = rk+ rl ∈ rK + rL. Hence rM ⊆ rK + rL. Since

rK and rL are submodules of K and L respectively we have rM =

rK ⊕ rL. Then K ∩ rM = K ∩ (rK ⊕ rL) = rK ⊕ (rL∩K) = rK.

Clearly rK ⊆ K∩(rK+rL) on the other hand if x ∈ K∩(rK∩rL),

then x = rk1+sl1 ∈ K. Then x−rk1 ∈ K∩rL = 0. Then x = rk1.

Hence K is pure.

(ii) Assume that there exists an element x + N ∈ M/N and

0 6= r ∈ R such that r(x + N) = rx + N = N. Then rx ∈ N and

since x ∈ M, we have rx ∈ rM ∩N = rN as N is pure submodule

of M . It follows that rx = ry for some y ∈ N . Then r(x− y) = 0.

But M is torsion free and r 6= 0. This gives x − y = 0 i.e., x = y.

Hence x+N = N, x ∈ N and it follows that M/N is torsion free.

(iii) Assume that M/N is torsion free. Let r ∈ R. Then clearly

rM∩N ⊇ rN . Assume that rM∩N 6⊆ rN . Let rm ∈ (rM∩N\rN).

Consider m+N ∈M/N . Then r(m+N) = rm+N = N as rm ∈ N .

Hence m+N is a torsion element which is impossible or r = 0.
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(120) Suppose L,M and N are R-modules and f : M → N is an R-

homomorphism. Define

f ∗ : HomR(N,L)→ HomR(M,L)

via f ∗(φ) : m→ φ(f(m))

for all φ ∈ HomR(N,L),m ∈M.

(i) Show that f ∗ is a Z-homomorphism.

(ii) If R is commutative show that f ∗ is an R-homomorphism

Solution:

f ∗(φ1 + φ2)(m) = (φ1 + φ2)(f(m)) where φ1, φ2 ∈ HomR(N,L), m ∈M
= φ1(f(m)) + φ2(f(m))

= f ∗φ1(m) + f ∗(φ2)(m)

= (f ∗φ1 + f ∗φ2)(m).

and for any k ∈ Z,

f ∗(kφ1)(m) = (kφ1)(f(m)) = kφ1(f(m)) = kf ∗(φ1)(m)

Hence f ∗(kφ1) = k(f ∗φ1) for all k ∈ Z.

(ii) If R is commutative, then

f ∗(rφ1)(m) = (rφ1)(f(m)) = rφ1(f(m)) = r(f ∗φ1)(m) = (rf ∗φ1)(m)

( We need commutativity of R so that rφ1 is an R−module homo-

morphism.

Indeed (rφ1)(sx) = r(φ1(sx) = rsφ1(x)

= srφ1(x) by commutativity of R.)

Hence r φ1 is an element of HomR(N,L) )
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(121) (i) If R is an integral domain show that free R-modules are torsion

free.

(ii) If K is an integral domain with 1 that is not a field exhibit

a torsion free R-module that is not free.

Solution: (i) Let R be an integral domain and m be an element

of a free module M . Let B be a basis for M . Then there exist non-

zero r1, r2, · · · , rk ∈ R and b1, b2, · · · , bk ∈ B such that

m = r1b1 + · · ·+ rkbk

If sm = sr1b1 + · · · + srkbk = 0, then we get sri = 0, for all

i = 1, · · · , k Since bi are independent. But this implies s = 0, since

R is an integral domain.

(ii) Let Q be the set of rational numbers. Q is a torsion free

Z-module. But Q is not a free module, because Q does not have

a basis as a Z-module. If b1, b2 are two elements of Q say b1 = m1

n1

and b2 = m2

n2
. Then n1m2b1 − n2m1b2 = 0 where n1m2 6= 0 and

n2m1 6= 0. Hence any subset of Q containing two elements are Z-

dependent. Hence a linearly independent subset of Q has at most

one element. But it is clear that Q can not be generated by one

element. Hence Q is not a free Z-module.

(122) Let R be a PID show that M [s] and sM = {sx|x ∈ M} are sub-

modules of M .

Solution: M [s] = {x ∈ M |sx = 0}. Let x1, x2 ∈ M [s], then

s(x1 + x2) = sx1 + sx2 = 0 let r ∈ R and x ∈ M [s] then s(rx) =

r(sx) = 0 hence M [s] is an R-module.

Let y1, y2 ∈ sM. Then y1 = sx1 and y2 = sx2 for some x1, x2 ∈
M. Then

y1 + y2 = sx1 + sx2 = s(x1 + x2) ∈ sM.

Let y ∈ sM and r ∈ R. Then ry = rsx = s(rx) ∈M since M is an

R-module where y = sx. Hence sM is an R-module.
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(123) (i) If M is an R-module show that there is a ring homomorphism

φ : r → φr from R to End(M) with φr(x) = rx all r ∈ R and

x ∈M .

(ii) Conversely, if M is an abelian group and φ : R → End(M)

is a homomorphism show that M becomes an R-module if we define

rx = φr(x).

Solution: Let φ : R→ End(M) and r1, r2 ∈ R.

φr1+r2(x) = (r1 + r2)x = r1x+ r2x

= φr1(x) + φr2(x)

= (φr1 + φr2)(x)

φ(r1r2) = φr1r2 indeed

φr1r2(x) = r1r2(x) = r1(r2(x))

= r1(φr2(x))

= φr1(φr2(x))

Hence φr1r2 = φr1φr2

Thus φ(r1 + r2) = φ(r1) + φ(r2) and φ(r1r2) = φ(r1)φ(r2) so φ is a

ring homomorphism.

(ii) Suppose φ : R→ End(M) is a homomorphism.

M is an R-module for

(r1 + r2)x = φ(r1+r2)(x) = φr1(x) + φr2(x) = r1x+ r2x.

(r1r2)x = φr1r2(x) = (φr1φr2)(x) = r1(r2x)

r(x+ y) = φr(x+ y) = φr(x) + φr(y) = rx+ ry

So M is an R-module.

(124) Show that M = ⊕Mα an internal direct sum of submodules if and

only if each x ∈M has a unique expression of the form

x = x1 + x2 + · · ·+ xk for some k with xi ∈Mαi
.
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Solution: Since M = ⊕α∈AMα every element m ∈ M can be

written of the form m = x1 + x2 + · · · + xk xi ∈ Mαi
for some

αi ∈ A.
If

m = x1+x2+· · ·+xk = y1+y2+· · ·+yl where without loss of generality l ≥ k

then

(x1 − y1) + (x2 − y2) + · · ·+ (xk − yk)− yk+1 − · · · − yl−1 = yl

so

yl ∈ (Mα1 +Mα2 + · · ·+Mαl−1
) ∩Mαl

= 0

this implies that l = k and similarly

xi − yi ∈Mαi
∩ (Mα1 + · · ·+Mαi−1

+Mαi+1
+ · · ·+Mαk

) = 0.

xi = yi so for all i = 1, · · · , k. Hence xi = yi.

Conversely, since every element x in M can be written uniquely

of the form x = x1 + x2 + · · ·+ xk, then

M =
∑
{Mα | α ∈ A }

we need to show that sum is direct sum. For this we need to show

Mα∗ ∩
∑

α 6=α∗Mα = 0. Let

mα∗ ∈Mα∗ ∩
∑
α 6=α∗

Mα

mα∗ = −(mα1 +mα2 + · · ·+mαk
) αi 6= α∗ for all i = 1, · · · , k (αi 6= αj).

Since every element can be expressed uniquely, then

mα∗ +mα1 + · · ·+mαk
= 0

This implies that mα∗ = 0 hence

Mα∗ ∩
∑
α 6=α∗

Mα = 0

so the sum is direct sum.
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(125) Suppose R is a commutative ring and M is an R-module then the

R-module M∗ = HomR(M,R) is called the dual module of M . The

elements of M∗ are commonly called R-linear functionals on M . If

M is free of finite rank with basis {x1, x2, · · · , xn} show that M∗ is

also free with basis {f1, f2, · · · , fn} where

fi(xj) =

{
1 if i = j

0 if i 6= j

}
.

conclude that M and M∗ are R-isomorphic in that case.

Solution: f1, f2, · · · , fn generates M∗. Indeed if f ∈ R∗ and

f(xi) = ai, i = 1 · · ·n, then

a1f1 + · · ·+ anfn = f . To show this let,

ϕ = a1f1 + · · ·+ anfn − f. Then

ϕ(xi) = a1f1(xi) + · · ·+ aifi(xi) + · · ·+ anfn(xi)− f(xi)

= ai − ai = 0

So for all i = 1 · · ·n, ϕ(xi) = 0. Since x1 · · · xn is a basis for

M every element x ∈ M can be written b1x1 + b2x2 + · · · + bnxn.

So for all x ∈ M, ϕ(x) = 0 implies ϕ is the zero map. Thus

a1f1 + · · ·+ anfn = f hence f1, f2, · · · , fn generates M∗

Claim: f1, f2, · · · , fn are linearly independent assume that

b1f1 + b2f2 + · · ·+ bnfn = 0, then

(b1f1 + · · ·+ bkfk)(xi) = 0(xi) = 0

but (b1f1 + · · · + bkfk)xi = bi = 0 for i = 1, · · · , k implies that

f1, f2, · · · , fn are linearly independent. Hence {f1, f2, · · · , fn} is a

basis for M∗. Since M is free
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iB -M
@
@
@
@
@
@
@@R

ϕ

?

f

K

there exists a unique f such that the diagram is commutative.

So let K = M∗, ϕ(xi)) = fi is a map then there exists a unique

map f : M →M∗ such that fi = ϕ

Claim: f is an isomorphism.

iB -M
@
@
@
@
@
@
@@R

ϕ

?

f

M∗

f(i(xi)) = ϕ(xi)

f(xi) = ϕ(xi) = fi

ker f = {x ∈M |f(x) = 0}
= {a1x1 + a2x2 + . . .+ anxn ∈M | f(a1x1 + a2x2 + · · ·+ anxn) = 0}
= {a1x1 + a2x2 + . . .+ anxn ∈M | a1f1 + a2f2 + · · · anfn = 0}.

So ai = 0 since f1, f2, · · · , fn is a basis therefore x = 0 hence ker f =

0.
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Claim: f is onto let a1f1 + a2f2 + · · · + akfk ∈ M∗ then there

exists x ∈M such that x = a1x1 + · · ·+ akxk, then

f(x) = f(a1x1 + a2x2 + · · ·+ akxk)

= a1f(x1) + · · ·+ akf(xk)

= a1f1 + · · ·+ akfk

therefore f is an isomorphism.

Hence M∗ is isomorphic to M and M∗ is a free module with

basis {f1, f2, · · · , fn}.
(126) If R is a commutative ring with 1 and M is an R-module define a

function.

φ : M → M∗∗

x → x̂

x̂f = f(x)

for all f ∈ M∗. Show that φ is an R-homomorphism. Under what

circumstances is φ a monomorphism?

Solution: Clearly x̂ ∈M∗∗. Let x1, x2 ∈M, f ∈M∗.

φ(x1 + x2)f = ̂(x1 + x2)f = f(x1 + x2)

since f ∈M∗

f(x1 + x2) = f(x1) + f(x2) = x̂1f + x̂2f = φ(x1)f + φ(x2)f

f is arbitrary in M∗ hence

φ(x1 + x2) = φ(x1) + φ(x2)

Let r ∈ R and x ∈M and f ∈M∗. Then

φ(rx)f = (r̂x)f = f(rx) = rf(x) = rx̂f = rφ(x)f

again as above this implies

φ(rx) = rφ(x).
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kerφ = {x ∈M | φ(x) = 0}
= {x ∈M | f(x) = 0 for all f ∈M∗}
= {x ∈M | x ∈ Ker(f) for all f ∈M∗}
= ∩f∈M∗ ker f

if this is zero, then φ is 1-1.

(127) Use invariant factors to describe all abelian groups of orders 144,

168.

144 = 72.2 = 36.2.2 = 18.2.2.2

144 = 36.4 = 12.12 = 6.6.2.2 = 24.6 = 48.3 = 12.6.2

Z144, Z72⊕Z2, Z36⊕Z2⊕Z2, Z18⊕Z2⊕Z2⊕Z2

Z36 ⊕ Z4, Z12 ⊕ Z12, Z6 ⊕ Z6 ⊕ Z2 ⊕ Z2, Z24 ⊕
Z6,

Z48 ⊕ Z3, Z12 ⊕ Z6 ⊕ Z2

168 = 84.2 = 42.2.2

Z168, Z84 ⊕ Z2, Z42 ⊕ Z2 ⊕ Z2.

(128) Suppose R is a PID and M = R < a > is a cyclic R-module of

order r, 0 6= r ∈ R. Show that if N is a submodule of M, then N is

cyclic of order s for some divisor s of r. Conversely, M has a cyclic

submodule N of order s for each divisor s of r in R.

Solution: Let ϕ : R → M k → ka. As M is a unitary R-

module, it is easy to see that ϕ is an R-module epimorphism. Hence

by isomorphism theorems R/ kerϕ ∼= M . Order of a is r implies

that kerϕ = (r). Then we get R/(r) ∼= M . Since R is a commutative

ring, there is a 1−1 correspondence between submodules of M and

ideals of R/(r).

Then the inverse image of N in R/(r) is a ideal of R/(r). Since

R is a PID then the ideal corresponding to N is generated by one
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element i.e., it is cyclic R-module this implies N is cyclic R-module

of order s with s|r.
Conversely assume that s|r. Then consider the submodule N =

R < r
s
a > . The module N is a cyclic submodule of M. Exponent of

N is s. Certainly s. r
s
a = 0. Any element x satisfying x r

s
a = 0 must

be divisible by s otherwise order of a will not be r. If x r
s
a = 0, then

r|x r
s
. Since R is an integral domain xr

s
= rt. Then xr = srt and

r 6= 0, x = st. So s|x. Thus s is the order of r
s
a. Hence order of N

is s.

(129) Suppose W = R < v > is a cyclic submodule of VT , and that W

has order f(x) ∈ F [x], where deg f(x) = k > 0. Show that the set

{v, Tv, T 2v1, · · · , T k−1v} is a (vector space) basis for W . We call v

a cyclic vector for W.

Solution: Let w be a vector in W . Then there exists g(x) ∈
F [x] such that g(x).v = w since W is a cyclic submodule of VT .

W has order f(x), it follows that f(x).α = 0 for all α ∈ W.

We may assume that deg[g(x)] � deg f(x) = k. Otherwise write

g(x) = f(x)q(x) + r(x) where deg(r(x)) < deg f(x) or r(x) = 0.

Hence g(x)v = r(x)v. Therefore r(x) = a0 + a1x + · · · + ak−1x
k−1,

we get r(x).v = a0I.v + a1Tv + · · · + ak−1T
k−1v = w. Hence

{v, Tv, · · · , T k−1v} spans W . If b0+b1Tv+· · ·+bk−1T
k−1v = 0, then

(b0 +b1x+ · · ·+bk−1x
k−1).v = 0 this implies f(x)|b0 + · · ·+bk−1x

k−1

which implies b0 = b1 = · · · = bk−1 = 0 as deg(f(x)) = k.

(130) Use elementary divisors to describe all abelian groups of order 144

and 168.

Solution: a) 144 = 24.32
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Z24 ⊕ Z32 Z24 ⊕ Z3 ⊕ Z3

Z23 ⊕ Z2 ⊕ Z32 Z23 ⊕ Z2 ⊕ Z3 ⊕ Z3

Z22 ⊕ Z22 ⊕ Z32 Z22 ⊕ Z22 ⊕ Z3 ⊕ Z3

Z22 ⊕ Z2 ⊕ Z2 ⊕ Z32 Z22 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z32 Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3

b) 168 = 23.3.7.

Z23 ⊕ Z3 ⊕ Z7

Z22 ⊕ Z2 ⊕ Z3 ⊕ Z7

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z7

(131) If p and q are distinct primes use invariant factors to describe all

abelian groups of order

(i) p2q2 (ii) p4q (iii) pn 1 ≤ n ≤ 5

Solution: (i) p2q2 = pq.pq = p2q.q = q2p.p

Zp2q2 , Zpq ⊕ Zpq, Zp2q ⊕ Zq, Zq2p ⊕ Zp

(ii) p4q = p3q.p = p2q.p2 = p2q.p.p = pq.p.p.p

Zp4q, Zp3q ⊕Zp, Zp2q ⊕Zp2 , Zp2q ⊕Zp ⊕Zp and Zpq ⊕
Zp ⊕ Zp ⊕ Zp

(iii) n = 1, Zp

n = 2 p2 = p.p

Zp2 Zp ⊕ Zp

n = 3 p3 = p2.p = p.p.p

Zp3 , Zp2 ⊕ Zp, Zp ⊕ Zp ⊕ Zp

n = 4 p4 = p3.p = p2.p2 = p2.p.p = p.p.p.p

Zp4 , Zp3⊕Zp, Zp2⊕Zp2 , Zp2⊕Zp⊕Zp, Zp⊕Zp⊕Zp⊕Zp

n = 5 p5 = p4.p = p3.p2 = p3p.p = p2.p2.p = p2.p.p.p = p.p.p.p.p

Zp5 , Zp4⊕Zp, Zp3⊕Zp2 , Zp3⊕Zp⊕Zp, Zp2⊕Zp2⊕Zp,

Zp2 ⊕ Zp ⊕ Zp ⊕ Zp, Zp ⊕ Zp ⊕ Zp ⊕ Zp ⊕ Zp

(132) If p and q are distinct primes use elementary divisors to describe all

abelian groups of order p3q2
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Solution: p3q2 = p2pq2 = pppq2 = p2pqq = pppqq = p3qq

Zp3 ⊕ Zq2 , Zp2 ⊕ Zp ⊕ Zq2 , Zp ⊕ Zp ⊕ Zp ⊕ Zq2

Zp2⊕Zp⊕Zq⊕Zq, Zp⊕Zp⊕Zp⊕Zq⊕Zq and Zp3⊕Zq⊕Zq.

(133) Find all solutions X ∈ Z3 to the system of equations AX = 0 if A

is

i)

[
1 −1 1

1 0 2

]

(ii)

 0 2 −1

1 −1 0

2 0 −1


Solution:

 1 −1 1

1 0 2

 −R1+R2→

[
1 −1 1

0 1 1

]
R2+R1→

 1 0 2

0 1 1

 −2C1+C3

−c2 + C3

 1 0 0

0 1 0


P1 =

 1 0

−1 1

 P2 =

 1 1

0 1

 P = P2P1 =

 0 1

−1 1


Q1 =

 1 0 −2

0 1 0

0 0 1

 Q2 =

 1 0 0

0 1 −1

0 0 1

 Q = Q1Q2 =

 1 0 −2

0 1 −1

0 0 1


Let

Y =

 y1

y2

y3

 and X = QY, then
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PAX = PAQY =

 1 0 0

0 1 0


 y1

y2

y3

 =

[
0

0

]
implies

y1 = 0 y2 = 0 and y3 free. Hence X = QY implies x1

x2

x3

 =

 1 0 −2

0 1 −1

0 0 1


 0

0

c


Solution set

{(−2,−1, 1)c | c ∈ Z }

{(−2,−1, 1)} is a basis for the solution set.

(ii)

 0 2 −1

1 −1 0

2 0 −1

 −2r2+r3→

 0 2 −1

1 −1 0

0 2 −1

 −r1+r3
r2↔r1→

 1 −1 0

0 2 −1

0 0 0

 C1+C2→

 1 0 0

0 2 −1

0 0 0

 C2↔C3→

 1 0 0

0 −1 2

0 0 0

 2C2+C3→

 1 0 0

0 −1 0

0 0 0


P1 =

 1 0 0

0 1 0

0 −2 1

 P2 =

 1 0 0

0 1 0

−1 0 1

 P3 =

 0 1 0

1 0 0

0 0 1


Q1 =

 1 1 0

0 1 0

0 0 1

 Q2 =

 1 0 0

0 0 1

0 1 0

 Q3 =

 1 0 0

0 1 2

0 0 1


P = P3P2P1 =

 0 1 0

1 0 0

−1 −2 1
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Q = Q1Q2Q3 =

 1 0 1

0 0 1

0 1 2


X = QY, AX = 0 if and only if AQY = 0 if and only if

PAQY = 0

But PAQ =

 1 0 0

0 −1 0

0 0 0


This gives y1 = 0 y2 = 0 and y3 is free.

X = QY =

 1 0 1

0 0 1

0 1 2


 0

0

y3

 =

 x1

x2

x3


x1 = y3, x2 = y3, x3 = 2y3 Hence {(1, 1, 2)c | c ∈ Z} is the

integer solution set of the given system.

(134) Find all solutions to the following systems AX = B of equations:

(i) A =

[
1 −1 1

1 0 2

]
B =

[
4

5

]

(ii) A =

 0 2 −1

1 −1 0

2 0 −1

 B =

 5

1

7


Solution: Then

 1 −1 1

1 0 2

 −r1+r2→

[
1 −1 1

0 1 1

]
R2+R1→

[
1 0 2

0 1 1

]
−2C1+C3

−C2 + C3

[
1 0 0

0 1 0

]
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P1 =

[
1 0

−1 1

]
, P2 =

[
1 1

0 1

]
, Q1 =

 1 0 −2

0 1 0

0 0 1

 Q2 =

 1 0 0

0 1 −1

0 0 1


P = P2P1 =

[
0 1

−1 1

]
Q = Q1Q2 =

 1 0 −2

0 1 −1

0 0 1


QY = X and AX = B implies AQY = B and PAQY = PB.

Hence[
1 0 0

0 1 0

]  y1

y2

y3

 =

[
0 1

−1 1

] [
4

5

]
=

[
5

1

]
y1 = 5, y2 = 1, y3 is free

QY = X implies

 1 0 −2

0 1 −1

0 0 1


 5

1

y3

 =

 x1

x2

x3


So x1 = 5− 2y3, x2 = 1− y3, x3 = y3

Solution set

{(5− 2c, 1− c, c) | c ∈ Z }

ii) A =

 0 2 −1

1 −1 0

2 0 −1

 B =

 5

1

7


 0 2 −1

1 −1 0

2 0 −1

 −2r2+r3→

 0 2 −1

1 −1 0

0 2 −1

 −R1+R3

R1↔R2→

 1 −1 0

0 2 −1

0 0 0

 C2↔C3→

 1 0 −1

0 −1 2

0 0 0

 C1+C3
→

2C2 + C3

 1 0 0

0 −1 0

0 0 0
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P1 =

 1 0 0

0 1 0

0 −2 1

 P2 =

 1 0 0

0 1 0

−1 0 1

 P3 =

 0 1 0

1 0 0

0 0 1


Q1 =

 1 0 0

0 0 1

0 1 0

 Q2 =

 1 0 1

0 1 0

0 0 1

 Q3 =

 1 0 0

0 1 2

0 0 1


P = P3P2P1 =

 0 1 0

1 0 0

−1 −2 1


Q = Q1Q2Q3 ==

 1 0 1

0 0 1

0 1 2


PAQ =

 1 0 0

0 −1 0

0 0 0

 AX = B implies PAQY = PB. So

 1 0 0

0 −1 0

0 0 0


 y1

y2

y3

 =

 0 1 0

1 0 0

−1 −2 1


 5

1

7

 =

 1

5

0


y1 = 1, y2 = −5, y3 is free.

QY =

 x1

x2

x3

 implies

 1 0 1

0 0 1

0 1 2


 1

−5

y3


 x1

x2

x3

 x1 =

1 + y3, x2 = y3, x3 = −5 + 2y3

{(1 + c, c,−5 + 2c) | c ∈ Z}

(135) If a matrix A over a field F has a minimal polynomial m(x) and

characteristic polynomial f(x) show that f(x) is a divisor of m(x)k

in F [x] for some positive integer k.

Solution: Recall that m(x) divides f(x) and every irreducible

factor of f(x) appear as a product in m(x). Let m(x) = pe11 p
e2
2 · · · p

ek
k
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where pi are irreducible monic polynomials in F [x]. By Cayley-

Hamilton Theorem f(x) = pt11 p
t2
2 · · · p

tk
k where ei ≤ ti. Assume that

least common multiple of t1, t2, · · · tk is n. Then m(x)n is divisible

by f(x) since ptii | p
ein
i

Remark. The above n is not the smallest number.

(136) Determine whether or not

A =

 3 0 2

0 1 −1

−4 0 3

 and B =

 5 −8 4

6 −11 6

6 −12 7

 are similar over

Q.

Solution: A =

 3 0 2

0 1 −1

−4 0 3

 R3+R1→

 −1 0 5

0 1 −1

−4 0 3


−4R1+R3→

 −1 0 5

0 1 −1

0 0 −17


5C1+C3→

 −1 0 0

0 1 −1

0 0 −17

 C2+C3→

 −1 0 0

0 1 0

0 0 −17

 Smith normal

form of A.

For B =

 5 −8 4

6 −11 6

6 −12 7

 −R2+R1→

 −1 3 −2

6 −11 6

6 −12 7

 6R1+R2
→

6R1 +R3

 −1 3 −2

0 7 −6

0 6 −5


3C1+C2
→

−2C1 + C3

 −1 0 0

0 7 −6

0 6 −5





GRADUATE ALGEBRA, PROBLEMS WITH SOLUTIONS 99

C3+C2→

 −1 0 0

0 1 −6

0 1 −5

 −R2+R3
→

 −1 0 0

0 1 −6

0 0 1

 6C2+C3→

 −1 0 0

0 1 0

0 0 1

 Smith normal form of B

So these matrices are not similar. One can observe that these

matrices are not similar in advance because detA = 17 and detB =

−1.

(137) Find the characteristic polynomial, invariant factors, elementary

divisors , rational canonical form, and Jordan canonical form (when

possible ) over Q, for the matrix A =


3 −2 −4

0 2 4

0 −1 −2

 .

Solution xI − A =

 x− 3 2 4

0 x− 2 −4

0 1 x+ 2


R3↔R1

→
R2↔R3 0 1 x+ 2

x− 3 2 4

0 x− 2 −4


C2↔C1→

 1 0 x+ 2

2 x− 3 4

x− 2 0 −4

 − 2R1 +R2
−(x−2)R1+R3 1 0 x+ 2

0 x− 3 −2x

0 0 −(x− 2)(x+ 2)− 4
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(−x−2)C1+C3→

 1 0 0

0 x− 3 −2x

0 0 −x2

C2 + C3
→ 1 0 0

0 x− 3 −x− 3

0 0 −x2

 C3+C2→

 1 0 0

0 −6 −x− 3

0 −x2 −x2

 (−1
6

)R2→

 1 0 0

0 1 x+3
6

0 −x2 −x2

 x2R2+R3→

 1 0 0

0 1 x+3
+6

0 0 x2(x+3)
6
− x2

 −(x+3)
6

C2+C3→

 1 0 0

0 1 0

0 0 x2(x+3
6
− 1)


Hence the invariant factor of the matrix A is x2(x − 3) = x3 −

3x2 + 0x+ 0 Then x3 = 3x2 + 0x+ 0 Therefore the rational form of

A is 0 0 0

1 0 0

0 1 3

 . Since minimal polynomial is not a product

of distinct polynomials of degree one we have the matrix is not

diagonalizable. Elementary divisors of the matrix are x2 and x− 3.

Hence the Jordan form of A is

 0 0 0

1 0 0

0 0 3


(138) An n× n matrix A over a field F is called idempotent if A2 = A

(i) What are the possible minimal polynomials for an idempotent

matrix?

(ii) Show that an idempotent matrix is similar over F to a di-

agonal matrix.

(iii) Show that idempotent n× n matrices A and B are similar

over F if and only if they have the same rank.
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Solution (i) A2 = A implies A2−A = 0 Then A(A− I) = 0

Hence A satisfies the polynomial f(x) = x2 − x . Therefore the

minimal polynomial of A divides f(x) so they are x, (x − 1), or

x(x− 1).

(ii) Since all possible minimal polynomials are product of differ-

ent linear factors A is a diagonalizable matrix.

(iii) The uniqueness of the Jordan form gives the result.

(139) An n × n matrix A over a field F is called nilpotent if Ak = 0 for

some positive integer k

(i) If A is nilpotent and A 6= 0 show that A is not similar to a

diagonal matrix.

(ii) Show that a nilpotent matrix A has a jordan canonical form

over F and list all possible jordan forms for A

Solution. Since Ak = 0, the matrix A satisfies the polynomial

f(x) = xk so minimal polynomial of x is of this form but A 6=
0 implies minimal polynomial is 6= x hence it is not product of

different linear factors. Which implies that A is not diagonalizable.

ii. By part (i) minimal polynomial of A is xm for some m ≤ k

hence minimal polynomial is a product of linear polynomials. Then

as the minimal polynomial is a product of linear factors it has a

Jordan canonical form. The possibilities consists of block diagonal

Jordan matrices of possibly different size


0

1 0

1
. . .

1 0
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0

1 0

1 0

1 0
. . .

1 0

0 0

0
. . .

0



(140) Show that characteristic polynomial of a companion matrix C(f) is

±f(x).

Proof. By induction on degree of f(x). If deg(f(x)) = 2 and

f(x) = x2 + a1x+ a0, then C(f) =

(
0 −a0

1 −a1

)
.

Then det(xI −C(f)) = det

(
x −a0

−1 x+ a1

)
= x2 + a1x+ a0 =

f(x)

Now assume that determinant of companion matrices of

size 6 n − 1 is the corresponding polynomial. Let C(f) =

0 −a0

1 0 −a1

1 0 −a2

. . .
...

0

1 −an−1


be an n× n matrix.
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Then det(xI−C(f) = det



x a0

−1 x a1

−1 x a2

. . .
...

x

−1 x+ an−1



= x det


x

−1 x

x
. . .

−1 x+ an−1

+(−1)n+1a0 det


−1 x

−1 x

−1 x
. . . x

−1


By induction we have det(xI−C(f) = x(xn−1+an−1x

n−2+· · ·+
a2x+a1)+((−1)n−1a0(−1)n−1 = xn+an−1x

n−1+· · ·+a1x+a0 = f(x)

(141) (a) If R has an identity and A is an R-module, then there are

submodules B and C of A such that B is unitary RC = 0 and

A = B ⊕ C
(b) Let A1 be another R-module with A1 = B1 ⊕ C1where B1

is unitary and RC1 = 0. If f : A → A1 is an R-module homomor-

phism, then f(B) ⊆ B1 and f(C) ⊆ C1.

(c) If the map f of part (b) is an epimorphism [resp. isomor-

phism], then so are f |B : B → B1 and f |C : C → C1.

Solution. Let B = {1Ra | a ∈ A} and C = {a ∈ A | 1Ra = 0}.
Now clearly B is a unitary R-module. C is a submodule, RC = 0

and for any a ∈ A the element a− 1Ra ∈ C. Indeed

1R(a− 1Ra) = 1Ra− 1Ra = 0.

Hence

a = 1Ra+ c for some c ∈ C.
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a = 1Ra + a − 1Ra where c = a − 1Ra. Hence we have A =

B + C. If x ∈ B ∩ C, then x = 1Ra ∈ B and x ∈ C. This implies

that x = 1Ra = 1R(1Ra) = 1Rx = 0 since x ∈ C. It follows that

B ∩ C = 0. Hence A = B ⊕ C.
Observe that B and C are unique submodules of A satisfying

the above properties. B is the largest unitary submodule of A and

C is the largest submodule satisfying RC = 0.

(b) Let c ∈ C. Then 1R c = 0. It follows that f(1Rc) =

1Rf(c) = 0. Hence f(C) = {f(c) | c ∈ C} ⊆ C1.

Let 1Rb ∈ B. Then

f(1Rb) = 1Rf(b) ∈ B1 as B1 = {1Rb | b ∈ B}.

(c) Assume that f is an epimorphism. Then for any c1 in C1,

there exists a ∈ A such that f(a) = c1. Then by (a) there exists

b ∈ B and c ∈ C such that a = b+ c where b ∈ B and c ∈ C. Then

f(a) = f(b) + f(c) = c1 where f(b) ∈ B1 and f(c) ∈ C1 by (b).

Then f(b) = 0 because of the direct sum.

Hence f(c) = c1 and c is the required element in C.

It follows that f |C is an epimorphism.

If f is a monomorphism, then ker(f) = 0. Since f |C is a map

from C to C1 the map is a monomorphism on C. By above it is an

epimorphism hence it becomes an isomorphism. It follows that f|C
is an isomorphism. Similarly for f |B is an isomorphism.

(142) Suppose R is a ring, M1 and M2 are right R-modules N1 and N2

are left R-modules, f ∈ HomR(M1,M2) an g ∈ HomR(N1, N2).

(1) Show that there exists a unique h ∈ HomZ(M1⊗RN1,M2⊗R
N2) such that h(x⊗ y) = f(x)⊗ g(y) for all x ∈M1, y ∈ N1.

Hint: Define a balanced map from M1 × N1 to M2 ⊗R N2 via

(x, y) 7→ f(x)⊗ g(y) and see the definition of the tensor product.)
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The unique homomorphism h is denoted by f ⊗ g.

(2) Suppose further that f ′ ∈ HomR(M2,M3) and g′ ∈
HomR(N2, N3) show that (f ′ ⊗ g′)(f ⊗ g) = f ′f ⊗ g′g.

Solution: Let b :
M1 ×N1 →M2 ⊗R N2

(x, y) 7→ f(x)⊗ g(y)
b is a balanced map. Indeed

b(x1 + x2, y) = f(x1 + x2)⊗ g(y) = (f(x1) + f(x2))⊗ g(y)

= f(x1)⊗ g(y) + f(x2)⊗ g(y)

= b(x1, y) + b(x2, y)

and

b(x, y1 + y2) = f(x)⊗ g(y1 + y2) = f(x)⊗ (g(y1) + g(y2))

= f(x)⊗ g(y1) + f(x)⊗ g(y2)

= b(x, y1) + b(x, y2)

and finally

b(xr, y) = f(xr)⊗ g(y) = f(x).r ⊗ g(y) = f(x)⊗ rg(y)

= f(x)⊗ g(ry)

= b(x, ry)

Hence b is a balanced map.

There exists a canonical balanced map t : M1×N1 →M1⊗RN1.

Hence by definition of the tensor product we have a unique group

homomorphism h : M1 ⊗R N1 to M2 ⊗R N2 such that
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-
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�

��	

@
@
@
@R

M1 ×N1 M1 ⊗N1

M2 ⊗N2

b h

t

ht = b i.e. ht(m1, n1) = b(m1, n1) It follows that

h(m1 ⊗ n1) = f(m1)⊗ g(n1)

h is denoted by f ⊗ g.

(2). The composition of R-module homomorphism f ′f is an

R-module homomorphism from M1 into M3 and g′g is an R-module

homomorphism from N1 into N3. Then by the first part f ′f ⊗ g′g
is a unique group homomorphism from M1 ⊗R N1 into M3 ⊗N3

M1 ×N1

M2 ⊗R N2

-

S
S
S
S
S
Sw

@
@
@
@
@@R

�
�
�
�
�
� -

f ′f ⊗ g′g

f ′ ⊗ g′
f ⊗ g

t

M3 ⊗R N3

M1 ⊗R N1

f ⊗ g, f ′ ⊗ g′ and f ′f ⊗ g′g are unique group homomorphisms.

Such that the corresponding diagrams are commutative. i.e., for

any m1 ∈M1 and n1 ∈ N1

(f ′ ⊗ g′)(f ⊗ g)t(m1, n1) = (f ′f ⊗ g′g)t(m1, n1). Since t(m1, n1)

generates M1 ⊗R N1 we get (f ′ ⊗ g′)(f ⊗ g) = f ′f ⊗ g′g
(143) If R is a commutative ring and M,N are R-modules then we can see

M and N as R-bimodules with the natural action from right.(r.m =

m.r). Show that M⊗RN and N⊗RM are isomorphic as R-modules.

Solution: Define a map f : M×N 7→ N⊗RM , f(m,n) = n⊗m.
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M ×N M ⊗R N

N ⊗RM

-

Q
Q
Q
Q
Q
Q
Q
Qs

�
�
�
�
��

t

f
h

γ

�
�
�
���

Then f is a balanced map. Indeed

f(m1 +m2, n) = n⊗ (m1 +m2) = n⊗m1 + n⊗m2 = f(m1, n) + f(m2, n)

f(m,n1 + n2) = (n1 + n2)⊗m = n1 ⊗m+ n2 ⊗m = f(m,n1) + f(m,n2)

f(mr, n) = n⊗mr = n⊗ rm = nr ⊗m = f(m,nr) = f(m, rn)

Hence by definition there exists a unique group homomorphism

h such that the above diagram commutes. i.e., ht = f .

Observe that whenever f is R-bilinear map h and γ are R-linear

map

Similarly there exist a unique homomorphism γ from N⊗RM →
M ⊗R N such that

γf = t

By the uniqueness of γ and h we get the map m : M ⊗N →M ⊗N
such that mt = t and γht = t. We obtain

we obtain γh = idM⊗RN similary hγ = idN⊗RM .

Hence h and γ are invertible R-homomorphisms. This shows M ⊗R
N ∼= N ⊗RM

(144) Suppose A is a finitely generated abelian group.

i) compute A⊗Z Q
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ii) Define f : A → A⊗Z Q by setting f(a) = a⊗ 1 for all a ∈ A.

Show that f is a homomorphism. Under what circumstances

is f a monomorphism?

Solution: Recall that every finitely generated abelian group

can be written as a direct sum of its cyclic subgroups say

A1, · · · , Ak, Ak+1, · · · , Am where Ai, is finite for i = 1, · · · , k and

Ak+1, · · · , Am are infinite cyclic groups. Then as every abelian

group is a Z-module we get

A⊗Z Q = (A1 ⊕+ · · ·+⊕Ak ⊕ Ak+1 ⊕ · · · ⊕ Am)⊗Q
∼= (⊕ki=1(Ai ⊗Z Q)) ⊕ ⊕mi=k+1(Ai ⊗Q)

For i = 1, · · · , k Ai⊗Z Q = 0 and for i = k+ 1, · · · ,m, Ai ∼= Z.

Hence

A⊗Z Q ∼= ⊕mk+1(Z ⊗Z Q) ∼= ⊕mk+1Q
∼= Q(m−k)

ii) f(a+ b) = (a+ b)⊗ 1 = a⊗ 1 + b⊗ 1 = f(a) + f(b)

f(a) = 0 implies that a ⊗ 1 = 0. If a has finite order q, then

a ⊗ 1 = aq ⊗ 1
q

= 0. Hence f is not a monomorphism whenever A

has a non-trivial element of finite order. On the other hand if A

is a finitely generated torsion free abelian group, then A ∼= Zn and

A ⊗Z Q ∼= Qn. let {x1, . . . xn} be a basis for A over Z. Then the

map

A×Q→ A⊗Q l(
∑
aixi, q) =

∑
aiq

then f is a monomorphism.

(145) If A is an abelian group show that

Zn ⊗Z A ∼= A/nA

Solution: Define g :
Zn × A→ A/nA

(m, a)→ ma+ nA
g is well defined because
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(m1, a) = (m2, a) we get m1 −m2 = kn for some k ∈ Z. Then

g(m1, a) = m1a+ nA = (m2 + kn)a+ nA = m2a+ kna+ nA

= m2a+ nA

= g(m2, a)

Now we show that g is a balanced map.

g(m1 +m2, a) = (m1 +m2)a+ nA

= m1a+m2a+ nA = m1a+ nA+m2a+ nA

g(m1, a1 + a2) = m1(a1 + a2) + nA = m1a1 +m1a2 + nA

= g(m1, a1) + g(m1, a2).

g(mk, a) = g(mk, a) = = mka+ nA

= g(m, ka).

Hence there exists a unique homomorphism h : Zn ⊗Z A → A/nA

such that ht = g.

ht(m, a) = h(m⊗ a) = ma+ nA.

h(m ⊗ a) = 0 implies ma + nA = nA. This is true if and only if

ma ∈ nA. But this implies that n|m. Hence m = 0. But then

m⊗a = 0⊗a = 0. The map h is onto since for any a+nA ∈ A/nA,
h(1⊗ a) = a+ nA.

(146) Let V be a vector space of dimension 2. Let BV = {x1, x2} be a basis

of V . Let W be a vector space of dimension 3 and BW = {y1, y2, y3}.
Let S : V → V and T : W → W be linear transformations given by

Sx1 = a11x1 + a21x2

Sx2 = a12x1 + a22x2
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A =

[
a11 a12

a21 a22

]
.

T y1 = b11y1 + b21y2 + b31y3

Ty2 = b12y1 + b22y2 + b32y3

Ty3 = b13y1 + b23y2 + b33y3

B =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 .
Find the matrix representing S ⊗ T in the ordered basis

{x1 ⊗ y1, x1 ⊗ y2, x1 ⊗ y3, x2 ⊗ y1, x2 ⊗ y2, x2 ⊗ y3}

Solution.

(S ⊗ T )(x1 ⊗ y1) =

S(x1)⊗ T (y1) = (a11x1 + a21x2)⊗ (b11y1 + b21y2 + b31y3)

= a11(x1 ⊗ (b11y1 + b21y2 + b31y3)) +

a21(x2 ⊗ (b11y1 + b21y2 + b31y3))

= a11b11(x1 ⊗ y1) + a11b21(x1 ⊗ y2) + a11b31(x1 ⊗ y3)

+ a21b11(x2 ⊗ y1) + a21b21(x2 ⊗ y2) + a21b31(x2 ⊗ y3).

For a general element

(S ⊗ T )(xi ⊗ yj) = S(xi)⊗ T (yj) = (a1ix1 + a2ix2)⊗ (b1jy1 + b2jy2 + b3jy3)

= a1ib1j(x1 ⊗ y1) + a1ib2j(x1 ⊗ y2)

+ a1ib3j(x1 ⊗ y3) + a2ib1j(x2 ⊗ y1)

+ a2ib2j(x2 ⊗ y2) + a2ib3j(x2 ⊗ y3)
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Then

A⊗B =



a11b11 a11b12 a11b13 a12b11 a12b12 a12b13

a11b21 a11b22 a11b23 a12b21 a12b22 a12b23

a11b31 a11b32 a11b33 a12b31 a12b32 a12b33

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13

a21b21 a21b22 a21b23 a22b21 a22b22 a22b23

a21b31 a21b32 a21b33 a22b31 a22b32 a22b33


=

 a11B a12B

a21B a22B

 .

(147) If F is a field and K is an extension field of F show that

Mn(K) ∼= K ⊗F Mn(F ) as F -algebras.

Solution: Recall that K is an F -F -bimodule and moreover K

is an F -algebra. Mn(F ) is an F -algebra. Hence K ⊗F Mn(F ) is an

F -algebra
K ×Mn(F ) -

Q
Q
Q
Q
Q
Q
Q
Qs

�
�
�
�
��/

�
�
�
�
�7

h

γ

Mn(K) ∼= K ⊗Mn(K)

f

t K ⊗F Mn(F )

f(k,A) = kA, where k ∈ K,A ∈Mn(F ).

f(k1 + k2, A) = (k1 + k2)A = k1A+ k2A = f(k1, A) + f(k2, A)

f(k,A1 + A2) = k(A1 + A2) = kA1 + kA2 = f(k,A1) + f(k,A2)

f(kc, A) = (kc)A = k(cA) = f(k, cA) for all c ∈ F.

Hence f is a balanced map. Then by definition of the tensor product

there exists a unique group homomorphism h such that the above

diagram commutes i.e., ht = f , h(k ⊗ A) = kA

h(s(k ⊗ A)) = skA = sh(k ⊗ A), s ∈ F. So h is a module

homomorphism. Moreover
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h((k⊗A)(s⊗B)) = h(ks⊗AB) = ks(AB) = (kA)(sB) = h(k⊗A)h(s⊗B)

Hence h is an algebra homomorphism we assumed above Mn(K) is

an algebra and the product on the algebra K⊗FMn(F ) are known.

K ⊗Mn(K) ∼= Mn(K) isomorphism of algebras

Hence we may consider f as a balanced map from K×Mn(F )→
K ⊗ Mn(K). Then the exists a unique homomorphism from γ :

K ⊗Mn(K) → K ⊗F Mn(F ) such that diagram commutes. Then

γf = t, ht = f, hγf = f.

Since imf generates as an algebra Mn(K) and the uniqueness of

maps hence γ gives the map hγ is unique from Mn(K) → Mn(K).

Since we have identity map from Mn(K) to Mn(K) we get hγ = id

i.e., hence γ are bijective in particular h and γ are isomorphisms of

algebras.

(148) Suppose R is a ring with 1. A unitary R-module P is called projec-

tive if given an exact sequence M
g→ N → 0 of R-modules and an

R-homomorphism f : P → N, then there is an R-homomorphism

h : P →M such that f = gh i.e., the diagram
P
A
A
A
A
AU

-N 0

�
�
�
�
��

-M

h f

g

is commutative.

(i) Show that free modules are projective.

(ii) If P = P1⊕P2 show that P is projective if and only if both

P1 and P2 are projective.

Solution: Let F be a free module on a set X. Then for any

map and any R-module T such that f : X → T there exists unique

R-module homomorphism h : F → T such that diagram
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X F
i -

Q
Q
Q
Q
Q
QQs

�
�
�
��

T

f
h

commutes. So assume that F is free on X and we have the

exact sequence M
g→ N → 0 with the R-module homomorphism

α : F → N . Then
X F

M N 0

-

?
- -
?

�
�
�

�
�
�

�
�=

i

αβ

g

∃!h

αi is a map from X into N . Since g is onto we may define a

map β : X → M such that αi(x) = gβ(x). Then there exists a

unique module homomorphism h : F → M (by the freeness of F )

such that hi = β. Then ghi = gβ = αi. Since i(X) generates F as

a free module we get gh = α and h is unique. Hence F is projective

ii) If P is projective and M → N → 0 is an exact sequence,

then P
A
A
A
A
AU

-N 0

�
�
�
�
��

-M

h
f

g

the restriction of h to Pi gives a homomorphism such that the

diagrams
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Pi

N 0
?

--

�
�
�

�
�
�

��	

M

f |
Pi

g

commutes. Let f ′ : Pi → N . Let f ′π = f, πi : P → Pi
projection.

Conversely assume that P1 and P2 are projective and M → N →
0 be an exact sequence and f : P = P1 ⊕ P2 → N be a module

homomorphism. Then f |Pi
gives a homomorphism of R-modules

hence there exists hi such that

ghi = fi

Let h : P → M such that h(x, y) = h1(x) + h2(y). Then h is a

homomorphism of R-modules and

gh(x, y) = g(h1(x) + h2(y)) = gh1(x) + gh2(y)

= f1(x, 0) + f2(0, y)

= f(x, 0) + f(0, y)

= f(x, y)

(149) Show that an R-module P is projective if and only if P is a direct

summand of some free module F .

Solution: Assume that P is a direct summand of a free module

F = P ⊕K where F is a free module. Let M
g→ N → 0 be an exact

sequence with a map f : P → N . Then we can extend f : F → N

by defining zero on K. Hence we have the following diagram
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X

M N O

-

??
- -

�
�

�
�
�
�	

i

f̃h

g

γ

F = P ⊕K

f̃ = fπ where π is the projection map from F to P . Let F

be a free module on the set X and i : X → F , and fi(x) ∈ N

and g is onto. Hence for any x ∈ X define h from X into M

to satisfy fi(x) = gh(x). Since F is a free module there exists a

unique homomorphism γ : F → M such that diagram commutes.

i.e. γi = h. Then gγi = gh = fi. This implies gγ = f .

Let γ

∣∣∣∣
P

= γ′ restriction of γ to P . Then gγ′(x, 0) = gγ(x, 0) =

f(x, 0). Hence gγ′ = f and γ′ : P →M is a module homomorphism.

Conversely assume that P is a projective module. Let X be a

generating set of P and F be a free module on a set X. Then by

definition of a free module
X F-

�
�
�
�
�
�/

S
S
S
S
S
Sw

!hid

i

P

there exists unique module homomorphism h : F → P such that

diagram commutes. i.e., hi = id

Since image of h contains X and Im h is a submodule of P we

get h is onto.

(Remark: This explanation shows that every module is an epi-

morphic image of a free module.)
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Since P is projective there exists f : P → F such that the

following diagram is commutative.
P

P

1p

0

f

h
?

--

�
�
�

�
�
��	

F

Verify F = fh(F )⊕ (1F − fh)(F ) and fh(F ) ∼= P .

(150) An additive abelian group A is called divisible if nA = A for all

non-zero n ∈ Z.

i) Show that A = Q is divisible

ii) Show that any homomorphic image of a divisible group is di-

visible. Thus for example Q/Z is divisible.

iii) Show that no finitely generated abelian group A( 6= 0) can be

divisible.

Solution: (i) It is clear that nQ ⊆ Q. Now for any x ∈ Q and

any 0 6= n ∈ Z, x
n
∈ Q hence x ∈ nQ. It follows that Q ⊆ nQ and

hence Q = nQ.

(ii) Any homomorphic image of A is isomorphic to A/K where

K is the kernel of the epimorphism. Hence it is enough to show that

A/K is divisible whenever A is divisible. For any a+K ∈ A/K and

n 6= 0 there exists b ∈ A such that nb = a. Hence nb+K = a+K.

This implies n(A/K) = A/K for any nonzero n ∈ Z.

Therefore Q/Z is a divisible abelian group.

(iii) Recall that every finitely generated abelian group can be

written as a direct sum of finite cyclic groups A1, · · · , Am and infi-

nite cyclic groups Am+1, · · · , An where Ai ∼= Z for i ≥ m+ 1.

A = A1 ⊕ · · · ⊕ Am ⊕ Am+1 ⊕ · · · ⊕ An.
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Assume max{|Ai| i = 1, · · · ,m} = k. Then

kA = kAm+1 ⊕ · · · ⊕ kAn which is a proper subgroup of A.

Hence A is not divisible as A/kA is a non-trivial finite group and a

divisible group can not have a subgroup of finite index grater than

or equal to two.


