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Chapter 1 

Governing Equations of Fluid Flow and Heat Transfer 
 

Following fundamental laws can be used to derive governing differential equations that are solved in 
a Computational Fluid Dynamics (CFD) study [1] 

 conservation of mass 

 conservation of linear momentum (Newton's second law) 

 conservation of energy (First law of thermodynamics) 

In this course we’ll consider the motion of single phase fluids, i.e. either liquid or gas, and we'll treat 
them as continuum. The three primary unknowns that can be obtained by solving these equations 
are (actually there are five scalar unknowns if we count the three velocity components separately) 

 velocity vector  ⃗  

 pressure   

 temperature   

But in the governing equations that we solve numerically following four additional variables appear 

 density   

 enthalpy   (or internal energy  ) 

 viscosity   

 thermal conductivity   

Pressure and temperature can be treated as two independent thermodynamic variables that define 
the equilibrium state of the fluid. Four additional variables listed above are determined in terms of 
pressure and temperature using tables, charts or additional equations. However, for many problems 
it is possible to consider  ,   and   to be constants and   to be proportional to   with the 
proportionally constant being the specific heat   . 

Due to different mathematical characters of governing equations for compressible and 
incompressible flows, CFD codes are usually written for only one of them. It is not common to find a 
code that can effectively and accurately work in both compressible and incompressible flow regimes. 
In the following two sections we'll provide differential forms of the governing equations used to 
study compressible and incompressible flows. 

1.1 Conservation of Mass (Continuity Equation) 
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These equations are known to be the conservative and non-conservative forms of mass conservation, 
respectively. Conservation forms of equations can be obtained by applying the underlying physical 
principle (mass conservation in this case) to a fluid element fixed in space. Non-conservative forms 
are obtained by considering fluid elements moving in the flow field. The link between these two 
equations can be established using the following general equation that relates spatial and material 
descriptions of fluid flow 

  

  
 

  

  
   ⃗                                                                        

The term on the left hand side of this equation is known as the material derivative of property  . 
First term on the right hand side is the partial time derivative or local derivative. Last term is called 
the convective derivative of  . 

1.2 Conservation of Linear Momentum 

 

Equation for the conservation of linear momentum is also known as the Navier-Stokes equation (In 
CFD literature the term Navier-Stokes is usually used to include both momentum and continuity 
equations, and even energy equation sometimes). It is possible to write it in many different forms. 
One possibility is 

 
  ⃗ 

  
        ̿                                                                     

In order to be able to use an Eulerian description, material derivative at the left hand side, which is 
the acceleration vector, can be replaced with the sum of local and convective accelerations to get 

 [
  ⃗ 

  
   ⃗     ⃗ ]         ̿                                                          

where    is the body force per unit mass. If the weight of the fluid is the only body force we can 

replace    with the gravitational acceleration vector   . 

 ̿ of the above equation is the viscous stress tensor. For Newtonian fluids viscous stresses only 
depend on the velocity gradient and the dependency is linear. Also it is known that  ̿ needs to be 
symmetric in order to satisfy the conservation of angular momentum. For a Newtonian fluid the 
relation between  ̿ and the velocity components is as follows 

     (
   

   
 

   

   
)    (   ⃗ )                                                          

where    denote mutually perpendicular coordinate directions.   is the dynamic viscosity and   is 
known as the coefficient of bulk viscosity. It is related to the viscosity through the Stokes’ hypothesis 

  
 

 
                                                                             

and using this hypothesis viscous stress tensor becomes 

     (
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where     is the Kronecker-Delta operator which is equal to 1 if     and it is zero otherwise. Navier-

Stokes equation given in Eqn (1.5) is said to be in non-conservative form. A mathematically 
equivalent conservative form, given below, can also be derived by using the continuity equation and 
necessary vector identities 

 

  
(  ⃗ )    (  ⃗   ⃗ )         ̿                                                    

where  ⃗   ⃗  is the tensor product of the velocity vector with itself, as given below 

 ⃗   ⃗  [

            

            

            

]                                                           

divergence of which is the following vector 
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For compressible flow simulations it is quite common to see the use of Euler's equation instead of 
Navier-Stokes. Euler's equation is obtained by dropping the viscous term of the Navier-Stokes 
equation, which makes it a first order PDE. It is frequently used to obtain the pressure distribution of 
high speed (and therefore high   ) aerodynamic flows around/inside flying bodies where viscous 
affects are squeezed inside very thin boundary layers. However, one needs to be careful in using the 
Euler's equation since it can not predict flow fields with separation and circulation zones successfully. 

1.3 Conservation of Energy 

 

Energy equation can be written in many different ways, such as the one given below 

 [
  

  
   (  ⃗ )]   

  

  
                                                    

where   is the specific enthalpy which is related to specific internal energy as        .   is the 
absolute temperature and   is the dissipation function representing the work done against viscous 
forces, which is irreversibly converted into internal energy. It is defined as 

    ̿     ⃗     
   

   
                                                                 

Pressure term on the right hand side of equation (1.12) is usually neglected. To derive this energy 
equation we considered that the conduction heat transfer is governed by Fourier’s law with   being 
the thermal conductivity of the fluid. Also note that radiative heat transfer and internal heat 
generation due to a possible chemical or nuclear reaction are neglected. 
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Equation of state: 

For compressible flows the relation between density, pressure and temperature is given by a special 
equation called equation of state. The most commonly used one is the following ideal gas relation 

                                                                                    

where   is the gas constant, being equal to            for air. For an ideal gas it is also possible to 
use the following relations to relate enthalpy and internal energy to temperature so that energy 
equation can be written as temperature being the only unknown. 

                                                                                    

In general all three conservation equations (conservation of mass, momentum and energy) are 
coupled and they need to be solved simultaneously. Overall we have 6 scalar unknowns (density, 
pressure, 3 velocity components and temperature) which can be obtained by solving 6 scalar 
equations (conservation of mass, 3 components of conservation of momentum, conservation of 
energy and equation of state). 

1.4 Incompressible Flows 

 

For incompressible flows density has a known constant value, i.e. it is no longer an unknown. Also for 
an incompressible fluid it is not possible to talk about an equation of state. 

 

Conservation of Mass: 

For constant density, Eqn (1.2) simplifies to 

   ⃗                                                                                 

which means that the velocity field of an incompressible flow should be divergence free, which is 
known as the divergence free constraint in CFD literature. Note that there is no time derivative in the 
continuity equation even for unsteady flows, which is one of the reasons that make numerical 
solution of incompressible flows difficult. 

 

Conservation of Linear Momentum: 

For incompressible flows second term of the viscous stress tensor given in Eqn (1.8) is zero due to the 
incompressibility constraint given in Eqn (1.16). Considering this simplification together with viscosity 
being constant, Eqn (1.5) can be written as follows 

 [
  ⃗ 

  
   ⃗     ⃗ ]            ⃗                                                       

Dividing the equation by density we get the following form of the Navier-Stokes equation 

  ⃗ 

  
   ⃗     ⃗   

 

 
         ⃗                                                       

where   is the constant kinematic viscosity. 
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The term ( ⃗   ) ⃗  on the right hand side is known as the convective term. It is the term which makes 

the Navier-Stokes equation nonlinear.      ⃗  is known as the viscous term or the diffusion term. For 
diffusion dominated flows the convective term can be dropped and the simplified equation is called 
the Stokes equation, which is linear.  Stokes equations can be used to model very low speed flows 
known as creeping flows or flows with very small length scales (micro or nano flows) where Reynolds 
number is small. Convection dominated flows, which are typically characterized by high Reynolds 
numbers, are much more difficult to solve numerically compared to diffusion dominated flows. For 
most solid mechanics problems convection (flow of material) does not exist, which is the main reason 
of the differences seen in mathematical modeling (Eulerian vs. Lagrangian formulations) and in 
numerical solution techniques (e.g. need for upwinding) used in the disciplines of fluid and solid 
mechanics.   

 

Conservation of Energy: 

Conservation of energy given in Eqn (1.12) can be simplified by considering the fact that density is 
constant for incompressible flows. Also using the definition of enthalpy given previously and 
        relation, Eqn (1.12) takes the following form 

   [
  

  
 ( ⃗   ) ]                                                                 

where    is the specific heat at constant pressure. Note that       for incompressible flows. 

Here it is important to note that for incompressible flows equation of state does not exist. In practice 
this means that the energy equation is decoupled from the other two equations. Therefore we can 
first solve continuity and Navier-Stokes equations to find the unknown velocity and pressure 
distribution without knowing the temperature (We assume that fluid properties are taken to be 
constant, i.e. not functions of temperature. If fluid properties change with temperature all equations 
becomes coupled as in the case of compressible flows). After finding the velocity field, energy 
equation can be solved by itself to find the temperature distribution. However for buoyancy driven 
flows (natural convection) where the density changes due to temperature variations are considered 
in the body force term of the momentum equation (Boussinesq approximation), all three 
conservation equations again become coupled. 

Heat transfer and therefore the energy equation is not always a primary concern in an 
incompressible flow. For isothermal (constant temperature) incompressible flows energy equation 
(and therefore temperature) can be dropped and only the mass and linear momentum equations are 
solved to obtain the velocity and pressure fields. 

Numerical solution of incompressible flows is usually considered to be more difficult compared to 
compressible flows. The main numerical difficulty of solving incompressible flows lies in the role of 
pressure. For incompressible flows pressure is no longer a thermodynamic quantity and it can not be 
related to density or temperature through an equation of state. It just establishes itself 
instantaneously in a flow field so that the velocity field always remains divergence free. In the 
continuity equation there is no pressure term and in the momentum equation there are only the 
derivatives of pressure, but not the pressure itself. This means that the actual value of pressure in an 
incompressible flow solution is not important, only the changes of pressure in space are important. 
Additionally there is no time derivative of pressure, even for incompressible flows. 
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1.5 Flow Equations in Cartesian and Cylindrical Coordinate Systems 

 

Conservation of mass, momentum and energy given in equations (1.1), (1.5) and (1.12) (or 
alternatively given in (1.16), (1.18) and (1.19) for incompressible flows) are valid for any coordinate 
system. In order to write them for a specific coordinate system first we need to define the velocity 
vector components in these systems, such as the following ones 

 artesian  
 

 ylindrical  

 ⃗               ⃗ 

 

          ⃗       ⃗⃗⃗        ⃗⃗  ⃗       ⃗⃗  

                                               

Furthermore we need to use the following mathematical identities 

 artesian     
  

  
    

  

  
    

  

  
  ⃗ 

  

     
   

   
 

   

   
 

   

   
  

    ⃗  
  

  
 

  

  
 

  

  
  

  ⃗     
 

  
  

 

  
  

 

  
  
  

 ylindrical     
  

  
   ⃗⃗⃗   

 

 

  

  
   ⃗⃗  ⃗  

  

  
   ⃗⃗  

  

     
 

 

 

  
( 

  

  
)  

 

  

   

   
 

   

   
  

    ⃗  
 

 

 

  
      

 

 

   

  
 

   
    

  ⃗      
 

  
 

  

 

 

  
   

 

  

                                         

Using these identities governing equations for incompressible flows in Cartesian coordinate system 
can be obtained as follows 
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where the kinematic viscosity and the thermal conductivity are taken to be constants.  ,   and   are 
the velocity components in the  ,   and   directions, respectively. Dissipation function of the energy 
equation is given by 

   { [(
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which, as seen, always has a positive value. This term is rarely important (e.g. for high speed flows in 
long, narrow capillaries, where viscous heating is not negligible). 

Incompressible flow equations in cylindrical coordinate system are 
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1.6 Nondimensionalization of Governing Equations 

 

It is possible, and sometimes preferable, to write governing equations in nondimensional form. To do 
this we need to select a characteristic quantities that describe the flow problem, such as a 
characteristic length  , characteristic velocity   , characteristic pressure     and characteristic 
temperature   . Using these characteristic quantities the following nondimensional parameters can 
be defined 
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where    is a known reference temperature difference in the flow field such as the one between a 
constant wall temperature (if it exists) and   . Note that these nondimensionalizations are not 
unique and can also be done in other ways. Using these definitions in the governing equations 
nondimensional forms of them can be obtained. For example for an incompressible flow without 
body forces, equations (1.22)-(1.24) can be converted into the following ones 
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As seen the equations are very similar to their dimensional counterparts with additional 
nondimensional numbers. Reynolds number (        ) is seen in the momentum and energy 
equations. In the energy equation we also have Eckert and Prandtl numbers.  

Reynolds number is a measure of the balance between convective and diffusive terms of the Navier-
Stokes equation. High and low    flows are said to be convection and diffusion dominated, 
respectively. The nondimensional time given in equation (1.29) is suitable for convection dominated 

(high   ) flows. For diffusion dominated problems using a diffusion time scale as    
 

    
 is more 

suitable. In this case the form of the nondimensional momentum equations will be different. 

Eckert number (     
       ) is the ratio of flow's kinetic energy to a representative enthalpy 

difference. As it gets larger the importance of viscous dissipation is amplified. Prandtl number 
(     ⁄           ) is the ratio of momentum and thermal diffusivities. As it gets larger the 

importance of diffusion term on the right hand side of equation (1.32) diminishes and the convective 
heat transfer modeled by the terms on the left hand side becomes more dominant. Multiplication of 
Reynolds and Prandtl numbers is called the Peclet number (  ). 

There are many other important nondimensional numbers in fluid mechanics and heat transfer. 
Some of them appear in the equations as the ones seen above (such as the Grashof number seen in 
natural convection flows), and some others appear inside the boundary conditions (such as the 
Nusselt number). 

1.7 Turbulence Modeling 

 

One of today’s most important challenge for the numerical solution of fluid flow problems is the 
modeling and simulation of turbulence. Although Navier-Stokes equations are believed to be capable 
of describing turbulent flows in full detail, with today’s computational resources it is simply 
impossible to have simulations that will yield all the details of a turbulent flow in a realistically 
complicated 3D domain with realistically high Reynolds numbers. The difficulty arises from the fact 
that turbulent flows are violently unsteady by nature and the length scales that need to be resolved 
involve both large and extremely small eddies. Therefore a computational study is restricted to use 
extremely small space and time discretizations, which exceeds today's computational power. 

Solving N-S equations with very fine computational grids and very small time steps to get the whole 
detail of a turbulent flow is called Direct Numerical Simulation (DNS). Today DNS is a very active 
research area. However, for practical real world problems it is too restrictive and instead people try 
to model the effect of viscous dissipation mechanism of turbulent flows by supporting the governing 
conservation laws with extra equations and unknowns, which is known as turbulence modeling. 
Turbulence modeling is a very active CFD discipline with dedicated researchers, conferences and 
books. 
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Today there are tens of different turbulence models in use and they show a wide range of 
complexity. Although some of them are clearly superior to the others based on the physics they 
involve, unfortunately none of them can predict all types of turbulent flows more accurately and 
efficiently than the others. They all contain empiric constants, which are tuned numbers so that 
numerical results fit to known experimental and/or analytical ones better. The use of turbulence 
models together with the governing equations bring terms such as turbulent viscosity or turbulent 
thermal diffusivity along their laminar counterparts. These additional terms simply model the 
increased momentum and heat transfer exchange typically seen turbulent flows. 

1.8 Model Differential Equations 

 

Governing equations of fluid mechanics and heat transfer problem are usually second or PDEs. There 
are more than one unknown and coupled PDEs need to be solved simultaneously. Also Navier-Stokes 
equations are nonlinear. In short, these equations are not the most appropriate ones for learning the 
basics of a numerical technique, such as the Finite Element Method. Instead we prefer to start with 
simplified model ordinary or partial differential equations. These model equations usually involve a 
single space dimension and maybe time. It is possible to construct problems governed by them with 
known analytical solutions so that numerical codes can be validated easily. Although these model 
equations are much simpler than the actual governing equations of fluid mechanics, they still give us 
a chance to get an experience about the numerical difficulties that we'll face with when we start 
working with more realistic ones.  

Commonly used model differential equations are 

 1D wave equation :      
   

   
    

   

    

 

 1D unsteady advection diffusion equation :    
  

  
  (

  

  
)    

   

    

 

 1D nonlinear Burgers equation :    
  

  
  (

  

  
)    

   

    

 

 2D Laplace's equation :        
   

    
   

      

 

 2D Poisson equation :               
 

 2D unsteady heat conduction (diffusion) equation :    
  

  
       

 

 2D unsteady advection-diffusion equation :    
  

  
  ⃗             

1.9 Mathematical and Physical Classification of PDEs 

 

It is possible to classify PDEs in three categories 

 Elliptic 

 Parabolic 

 Hyperbolic 
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This classification is related to the "characteristics" of PDEs. Characteristics are paths (curved 
surfaces in      hyperspace in general) in the solution domain along which information propagates. 
If a PDE possesses real characteristics, then information propagates along these characteristics. If no 
real characteristics exist, then there are no preferred paths of information propagation. The presence 
or absence of real characteristics has a significant impact on the solution of a PDE, both analytically 
and numerically. 

Mathematical procedure of identifying the type of a PDE depends on the mathematical details such 
as the order of the PDE and it can be studied from Hoffmann [2] and Hoffmann and Chiang [3] 
(related chapters of these two references are available as PDF files at the Files tab of the course web 
site). Here let's concentrate on the difference of the physics of the problems that are governed by 
different types of PDEs. 

Parabolic and hyperbolic PDEs have real characteristics. Problems governed by these two types of 
PDEs are called propagation problems, which are actually initial value problems in which the solution 
starts from a known initial condition and propagates in time. In the meantime the solution is guided 
by the boundary conditions. Solution domains of parabolic and hyperbolic PDEs are said to be open 
in the sense that in theory the solution may continue infinitely long in the time domain. 

2D unsteady heat conduction equation given in the previous section is a parabolic PDE. For simplicity 
consider its 1D version, which can be used to study the temperature distribution of a bar which is left 
to cool down from a known initial temperature distribution. We are interested in the temperature 
distribution at various stages of this cooling. To solve this problem, boundary conditions need to be 
specified at both ends of the bar, e.g. two ends are kept at fixed temperatures. Starting from the 
known initial temperature distribution, new temperature values at different time levels can be 
calculated numerically. In practice the solution does not continue infinitely long in time, but it ends 
at a proper final time, e.g. when the process reaches steady-state, if such a state exists, where the 
temperature of the bar no longer changes. 

As said before, parabolic PDEs have real characteristics. From a physical standpoint this divides the 
solution domain into a zone of dependence and a zone of influence as seen in Figure 1.1. In the 
"cooling of a bar" problem defined above consider the mid-point P of the bar. Initially this point has a 
certain temperature and this temperature value affects the temperature of all points on the bar at all 
future times. That is if we start the solution with a different temperature at point P, temperature all 
along the bar at all time levels will change. Therefore at the beginning of a solution all the problem 
domain, both in space and in time, is zone of influence for point P. Now consider the same point P at 
    seconds after cooling starts. Point P has a certain temperature value at    , but this value 
can affect only the solution ahead in time, i.e. it can only affect the solution between      . 
Now the part of the problem domain corresponding to       is the zone of dependence and the 
part       is the zone of influence. The solution at point P at     depends on the solution in 
the zone of dependence and will affect the solution in the zone of influence. 
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Figure 1.1 Domain of dependence and domain and influence for a parabolic PDE (left) and a 
hyperbolic PDE (right) [2] 

Hyperbolic PDEs also have real characteristics and they also govern propagation problems. Consider 
the 1D wave equation given in the previous section, which is a hyperbolic PDE. It can be used to 
study the travel of a pressure disturbance (acoustic pressure) with a known initial shape in a 1D 
domain with a constant speed of sound  . The value of   determines how fast the information can 
propagate in the solution domain. Since   has a finite value, the solution at a certain point P of the 
solution domain can only affect certain parts of the future solutions. Similarly it can be affected by 
only certain parts of the previous solutions. 

The lines drawn in Figure 1.1 (right) are called characteristic lines. These are the lines along which 
information, i.e. the pressure disturbance travels. The slopes of these lines are determined by the 
constant speed   of the pressure wave. As the wave speed increases the slopes of these lines will 
change and in the limiting case of infinite wave speed the characteristic lines will be parallel to the x 
axis, which is the case for the previously discussed parabolic PDEs. So for a parabolic PDE information 
travels with infinite speed and can reach and influence all problem domain immediately. 

Finally elliptic problems govern equilibrium problems, which are used to obtain steady state solutions 
in closed domains. 2D Laplace's equation given in the previous section that may be used to calculate 
the temperature distribution over a square plate heated at the center with a known heat source. 
Here the problem domain is in the    plane and time is not an independent variable. Depending on 
the amount of heat source and the boundary conditions specified at the four edges of the plate a 
certain steady-state temperature distribution can be calculated. 

Elliptic PDEs have no real characteristics and both the domain of dependence and the domain of 
influence is the whole problem domain for all points. Solution at every point of the problem domain 
is influenced by the solution at all other points, and the solution at each point influences the solution 
at all other points. 
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1.10 Advection-Diffusion (A-D) Equation 

 

A-D equation, given below, is the simplest model equation that can be used to test the performance 
of different numerical schemes for problems involving advection (convection) and diffusion 
phenomena. 

  

  
  ⃗                                                                           

A-D equation can be seen as a linearized and simplified scalar form of the Navier-Stokes equation 
with a single variable. It is also very similar to the energy equation solved separately by itself for 

incompressible flows. The scalar unknown   is advected (convected) with a known velocity field  ⃗ , 
which can be taken to be divergence free to simulate the constraint due to the continuity equation of 
incompressible flows.  At the same time   is diffused with a known constant and isotropic diffusivity 
of  .   represents the known source term. Physically the problem corresponds to the calculation of 
the temperature field of a heat transfer problem or concentration field of a species transport 
problem with the use of a known velocity field. 

In this course we'll use A-D equation extensively to study the difficulties faced with highly convective 

cases and alternative solutions methods. Note that for a special case of no velocity ( ⃗   , pure 

diffusion), we obtain the transient heat equation which is parabolic. If   ⃗    and 
  

  
  , we get the 

steady Poisson equation which is elliptic. For the pure advection case (   ) the equation becomes 
hyperbolic. 

To discuss dimensionless form of the A-D diffusion equation we can consider the following 1D form 
of it and neglect the source term for simplicity 

  

  
  

  

  
  

   

   
                                                                   

Using a characteristic length  , a characteristic velocity    and a characteristic time     , following 
dimensionless variables can be defined 

   
 

  
               

 

 
                 

 

  
                

 

    
                                  

where    is the characteristic driving temperature difference for a heat transfer problem. Using 
these dimensionless variables the following nondimensional form of the A-D equation can be derived 

   

   
   

   

   
 

 

  

    

    
                                                                

where Peclet number (        ) is similar to the Reynolds number of the Navier-Stokes equation. 
It represents a ratio between the "strength" of advection and diffusion processes. Convection 
dominated flows are characterized by high Peclet values. Note that for diffusion dominated problems 
using a characteristic time of      is more appropriate. 
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1.11 Exercises 

 

E-1.1. In this course fluids are treated as continuum. Define continuum. What is its relation with the 
nondimensional Knudsen number? Give engineering examples for which it is no longer is valid. Which 
equations need to be solved when continuum does not hold? What are "slip" and "temperature 
jump" boundary conditions? What are the popular numerical techniques specifically used to simulate 
non-continuum flows? 

E-1.2. What is the axisymmetric flow assumption? How is it different than the 2D planar flow 
assumption? Provide examples of engineering problems involving axisymmetric fluid flow and/or 
heat transfer. 

E-1.3. Fluid properties such as kinematic viscosity and thermal conductivity are commonly assumed 
to be constant. However, in general they are known to be functions of pressure and temperature. 
How do these two properties change with temperature (at standard atmospheric pressure) for the 
most common fluids air and water? What about their change with pressure at 20 oC? Provide your 
results as figures. 

E-1.4. What is the physical simplification behind the ideal gas assumption? Under which conditions 
does it hold nicely and under which conditions do fluids show non-ideal behavior? 

E-1.5. In fluid mechanics it is possible to define two different pressures; thermodynamic and 
mechanical. How are they defined for incompressible and compressible flows? What is the role of 
Stoke's hypothesis in their relation? 

E-1.6. What is the Boussinesq approximation mentioned in Section 1.4? 
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