
1

ME 310

Numerical Methods

Interpolation

These presentations are prepared by

Dr. Cuneyt Sert

Mechanical Engineering Department

Middle East Technical University

Ankara, Turkey

csert@metu.edu.tr

They can not be used without the permission of the author

2

• Estimating intermediate values between precise data points.

• We first fit a function that exactly passes through the given data points and than evaluate
intermediate values using this function.

Interpolation

• Polynomial Interpolation: A unique nth order polynomial passes through n points.

• Newton’s Divided Difference Interpolating Polynomials

• Lagrange Interpolating Polynomials

• Spline Interpolation: Pass different curves (mostly 3rd order) through different subsets of the
data points.

x

f(x)

Spline Interpolation

x

f(x)

Polynomial Interpolation

extrapolation

interpolation

3

• Given the following n+1 data points

(x1, y1), (x2, y2), (x3, y3), . . . , (xn+1, yn+1)

there is a unique nth order polynomial that passes through them

p(x) = a0 + a1 x + a2 x2 + . . . + an xn

• The question is to find the coefficients a0 , a1 , . . ., an

• Linear Interpolation:

Polynomial Interpolation

• Given: (x0, y0) and (x1, y1)

• A straight line passes from these two points.

• Using similar triangles

x

a0 + a1 x

x1

f(x) = ?

y0 = f(x0)

x0 x

y1 = f(x1)

01

01

0

0

xx

)x(f)x(f

xx

)x(f)x(f










)xx(
xx

)x(f)x(f
)x(f)x(f 0

01

01
0 






Linear interpolation formula

)xx(b b)x(f 0101 

or

4

• Quadratic Interpolation:

Polynomial Interpolation

• Given: (x0, y0) , (x1, y1) and (x2, y2)

• A parabola passes from these three points.

• Similar to the linear case, the equation of
this parabola can be written as

)xx)(xx(b)xx(b b)x(f 1020102 

Quadratic interpolation formula

• How to find b0, b1 and b2 in terms of given quantities?

• at x=x0 f2(x) = f(x0) = b0 

• at x=x1 f2(x) = f(x1) = b0 + b1x1 

• at x=x2 f2(x) = f(x2) = b0 + b1(x2-x0)+ b2 (x2-x0) (x2-x1)



x

x1

y0 = f(x0)

x0 x2

a0 + a1 x + a2 x2

y1 = f(x1)

y2 = f(x2)

) f(x b 00 

01

01
1

xx

)f(x)x(f
 b






02

01

01

12

12

2
xx

xx

)f(x)x(f

xx

)f(x)x(f

 b













5

Newton’s Divided Difference Interpolating Polynomials

• We can generalize the linear and quadratic interpolation formulas for an nth order polynomial
passing through n+1 points

fn(x) = b0 + b1 (x - x0) + b2 (x - x0)(x - x1) + . . . + bn (x - x0)(x - x1) . . . (x - xn-1)

where the constants are

b0 = f(x0) b1 = f [x1, x0] b2 = f [x2, x1, x0] . . . bn = f [xn, xn-1, . . ., x1, x0]

where the bracketed functions are finite divided differences evaluated recursively

ji

ji
ji

xx

)f(x)x(f
]x ,x[f






ki

kjji
kji

xx

]x ,x[f]x ,x[f
]x ,x ,x[f






1st finite divided difference

2nd finite divided difference

0n

011n11nn
011nn

xx

]x ,x ..., ,x[f]x ..., ,x ,x[f
]x ,x ..., ,x ,x[f




 


nth finite divided difference

• There nth order Newton’s Divided Difference Interpolating polynomial is

fn(x) = f(x0) + (x - x0) f[x1, x0] + (x - x0)(x - x1) f[x2, x1, x0] + . . .

+ (x - x0)(x - x1) . . . (x - xn-1) f[xn, xn-1, . . ., x1, x0]

6

Example 29:

The following logarithmic table is given.

(a) Interpolate log(5) using the points x=4 and x=6

(b) Interpolate log(5) using the points x=4.5 and x=5.5

Note that the exact value is log(5) = 0.69897

x f(x)=log(x)

4.0 0.60206

4.5 0.6532125

5.5 0.7403627

6.0 0.7781513

(a) Linear interpolation. f(x) = f(x0) + (x - x0) f[x1, x0]

x0 = 4, x1 = 6  f[x1, x0] = [f(6) – f(4)] / (6 - 4) = 0.0880046

f(5)  f(4) + (5 - 4) 0.0880046 = 0.690106 et = 1.27 %

(b) Again linear interpolation. But this time

x0 = 4.5, x1 = 5.5  f[x1, x0] = [f(5.5) – f(4.5)] / (5.5 - 4.5) = 0.0871502

f(5)  f(4.5) + (5 – 4.5) 0.0871502 = 0.696788 et = 0.3 %

7

Example 29 (cont’d):

(c) Quadratic interpolation.

x0 = 4.5, x1 = 5.5 , x2 = 6  f[x1, x0] = 0.0871502 (already calculated)

f[x2, x1] = [f(6) – f(5.5)] / (6 – 5.5) = 0.0755772

f[x2, x1 , x0] = {f[x2, x1] - f[x1, x0]} / (6 – 4.5) = -0.0077153

f(5)  0.696788 + (5 - 4.5)(5 - 5.5) (-0.0077153) = 0.698717 et = 0.04 %

• Note that 0.696788 was calculate in part (b).

• Errors decrease when the points used are closer to the interpolated point.

• Errors decrease as the degree of the interpolating polynomial increases.

(c) Interpolate log(5) using the points x=4.5, x=5.5 and x=6x f(x)=log(x)

4.0 0.6020600

4.5 0.6532125

5.5 0.7403627

6.0 0.7781513

8

Finite Divided Difference (FDD) Table

Finite divided differences used in the Newton’s Interpolating Polynomials can be presented in a table
form. This makes the calculations much simpler.

x f() f [,] f [, ,] f [, , ,]

x0 f(x0) f [x1 , x0] f [x2 , x1 , x0] f [x3 , x2 , x1 , x0]

x1 f(x1) f [x2 , x1] f [x3 , x2 , x1]

x2 f(x2) f [x3 , x2]

x3 f(x3)

Exercise 27: The first two columns of the following table is given. Calculate the missing finite
divided differences.

x f() f [,] f [, ,] f [, , ,]

4 0.6020600 ? ? ?

4.5 0.6532125 ? ?

5.5 0.7403627 ?

6 0.7781513

• The numbers decrease as we go right in the table. This means that the contribution of higher order
terms are less than the lower order terms.

• This is expected. The opposite behavior is an indication of an inappropriate interpolation (see exam
questions of Fall 2006).

9

Example 30:

Use this previously calculated table to interpolate for log(5).

(a) Using points x=4 and x=4.5.

log (5)  0.60206 + (5 - 4) 0.102305 = 0.704365 et = 0.8 % (this is extrapolation)

(b) Using points x=4.5 and x=5.5.

log (5)  0.6532125 + (5 - 4.5) 0.0871502 = 0.696788 et = 0.3 %

(c) Using points x=4 and x=6.

The entries of the above table can not be used for this interpolation.

(d) Using points x=4.5 , x=5.5 and x=6.

log (5)  0.6532125 + (5-4.5) 0.0871502 + (5-4.5)(5-5.5)(-0.0077153)= 0.698717 et = 0.04 %

(e) Using all four points.

log (5)  0.60206 + (5 - 4) 0.102305 + (5 - 4)(5 - 4.5)(-0.0101032)

+ (5 - 4)(5 - 4.5)(5 – 5.5)(0.001194) = 0.6990149 et = 0.006 %

x f() f [,] f [, ,] f [, , ,]

4 0.6020600 0.1023050 -0.0101032 0.001194

4.5 0.6532125 0.0871502 -0.0077153

5.5 0.7403627 0.0755772

6 0.7781513

10

Exercise 28:

Create the FDD table for the given data set. Use it to
interpolate for f(2).

• For a linear interpolation use the points x=1 and x=3.

• For a quadratic interpolation either use the points x=0, x=1
and x=3 or the points x=1, x=3 and x=4.

• For a third cubic interpolation use the points x=0, x=1, x=3
and x=4.

Important: Always try to put the interpolated point at the
center of the points used for the interpolation.

x f()

-2 -0.909297

-1 -0.841471

0 0.000000

1 0.841471

3 0.141120

4 -0.756802

6 -0.279415

Exercise 29: Complete the following table given for the log function. Do you observe anything
strange? Comment.

x f() f [,] f [, ,] f [, , ,] f [, , , ,] f [, , , , ,]

0.5

1

3

5

8

10

11

Errors of Newton’s DD Interpolating Polynomials

fn(x) = f(x0) + (x - x0) f[x1, x0] + (x - x0)(x - x1) f[x2, x1, x0] + . . .

+ (x - x0)(x - x1) . . . (x - xn-1) f[xn, xn-1, . . ., x1, x0]

• The structure of Newton’s Interpolating Polynomials is similar to the Taylor series.

• Remainder (truncation error) for the Taylor series was

• Similarly the remainder for the nth order interpolating polynomial is

where x is somewhere in the interval containing the interpolated point x and other data points.

• But usually only the set of data points is given and the function f is not known.

• An alternative formulation uses a finite divided difference to approximate the (n+1)th derivative.

• But this includes f(x) which is not known.

• Error can be predicted if an additional data point (xn+1) is availbale

which is nothing but fn+1(x) - fn(x)

1n
i1i

1n

n)xx(
)!1n(

)(f
R 








x


)xx(. . .)xx)(xx(
)!1n(

)(f
R n10

1n

n 


x




)xx(. . .)xx)(xx(]x , . . . , x ,x ,x[f R n1001nnn  

)xx(. . .)xx)(xx(]x , . . . , x ,x ,x[f R n1001nn1nn  

12

Newton’s Interpolating Polynomials for Equally Spaced Data

• If the data points are equally spaced and in ascending order, that is,

(x0, y0) , (x0 + h, y1) , (x0 + 2h, y1) , , (x0 + nh, yn)

finite divided difference simplify.

n

0
n

01nn

2

0
2

2

012

02

01

01

12

12

012

0

01

01
01

h !n

)x(f
]x,...,x,x[f general inor

h2

)x(f

h2

)x(f)x(f2)x(f

xx

xx

)f(x)x(f

xx

)f(x)x(f

]x,x,x[f

h

)x(f

xx

)f(x)x(f
]x,x[f

































where fn(x0) is the nth forward difference.

• With this notation Newton’s DD Interpolating polynomials simplify to

fn(x) = f(x0) + f(x0) a + 2f(x0) a(a - 1) / 2! + . . . + nf(x0) a(a - 1) . . . (a - n + 1) / n! + Rn

where a = (x - x0) / h and Rn = f (n+1)(x) hn+1 a(a - 1) . . . (a - n) / (n+1)!

• This is called the forward Newton-Gregory formula.

13

Lagrange Interpolating Polynomials

• It is a reformulation of Newton’s Interpolating Polynomials.

• For n=1 (linear):

 










n

0i

n

ij
0j ji

j
iiin

xx

xx
)x(L e wher)x(f)x(L)x(f

)x(f
xx

xx
)x(f

xx

xx
)x(f 1

01

0
0

10

1
1











• For n=2:)x(f
)xx)(xx(

)xx)(xx(
)x(f

)xx)(xx(

)xx)(xx(
)x(f

)xx)(xx(

)xx)(xx(
)x(f 2

1202

10
1

2101

20
0

2010

21
2
















• To generalize, nth order polynomial is the summation of (n+1) nth order polynomials.

• Each of these nth order polynomials have a value of 1 at one of the data points and have values of 0
at all other data points.

• This is due to the following property of Lagrange functions

+ + =



 


points dataother all at 0

 xx at 1
)x(L i

i

x1x0 x2

L0(x) f(x0) L1(x) f(x1) L2(x) f(x2) f2(x)

14

Example 31:

Calculate f(4) using Lagrange Interpolating Polynomials

(a) of order 1

(b) of order 2

(c) of order 3

x f(x)

1 4.75

2 4.00

3 5.25

5 19.75

6 36.00

(a) Linear interpolation. Select x0 = 3, x1 = 5

f1(x) = L0(x) f(x0) + L1(x) f(x1) = (x-5)/(3-5) 5.25 + (x-3)/(5-3) 19.75

f(4)  12.5

(b) Quadratic interpolation. Select x0 = 2, x1 = 3 , x1 = 5

f2(x) = L0(x) f(x0) + L1(x) f(x1) + L2(x) f(x2)

= (x-3)(x-5)/(2-3)(2-5) 4.00 + (x-2)(x-5)/(3-2)(3-5) 5.25 + (x-2)(x-3)/(5-2)(5-3) 19.75

f(4)  10.5

Exercise 30: Solve part (b) using the last three points. Also solve part (c).

15

Spline Interpolation

• We learned how to interpolate between n+1 data points using nth order polynomials.

• For high number of data points (typically n > 6 or 7), high order polynomials are necessary, but
sometimes they suffer from oscillatory behavior.

• Instead of using a single high order polynomial that passes through all data points, we can use
different lower order polynomials between each data pair.

• These lower order polynomials that pass through only two points are called splines.

• Third order (cubic) splines are the most preferred ones.

first order splines :

actual function

interpolation
function

16

Linear Splines:

• Given a set of ordered data points, each two point can be connected using a straight line.

x

f(x)

x0 x1 x2 x3

f(x) = f(x0) + m0(x - x0) for x0  x  x1

f(x) = f(x1) + m1(x - x1) for x1  x  x2

f(x) = f(x2) + m2(x - x2) for x2  x  x3

where the slopes are mi = [f(xi+1) – f(xi)] / (xi+1 - xi)

• Functions are not continuous at the interior points.

Quadratic Splines:

• Every pair of data points are connected using quadratic functions.

• For n+1 data points, there are n splines
and 3n unknown constants.

• We need 3n equations to solve for them.

x

f(x)

x0 x1 x2 xn-1

a1x
2+b1x+c1

a2x
2+b2x+c2

anx
2+bnx+cn

xn

. . . .

17

Quadratic Splines (cont’d):

• These 3n equations are

• The first and last functions must pass through the end points (2 equations).

a1 x0
2 + b1 x0 + c1 = f(x0)

an xn
2 + bn xn + cn = f(xn)

• The function values must be equal at interior points (2n-2 equations).

ai-1 xi-1
2 + bi-1 xi-1 + ci-1 = f(xi-1)

ai xi-1
2 + bi xi-1 + ci = f(xi-1)

• First derivatives must be equal at the interior points (n-1 equations).

2 ai-1 xi-1 + bi-1 = 2 ai xi-1 + bi

• This makes a total of 3n-1 equations. One more equation is necessary and we need to make an
arbitrary choice. Among many possibilities we will use the following,

• Take the second derivative at the first point to be zero (1 equation).

a1 = 0 i.e. first two points are connected with a straight line.

• Solve this set of 3n linear algebraic equations with any of the methods that we learned.

for i = 2 to n

for i = 1 to n

18

Cubic Splines:

• For n+1 points, there will be n intervals and for each interval there will be a 3rd order polynomial

ai xi
3 + bi xi

2 + ci x + di for i = 1 to n

• Totally there are 4n unknowns. They can be solved using the following equations

• The first and last functions must pass through the end points (2 equations).

• The function values must be equal at interior points (2n-2 equations).

• First derivatives must be equal at the interior points (n-1 equations).

• Second derivatives must be equal at the interior points (n-1 equations).

• This makes a total of 4n-2 equations. Two extra equations are (other choices are possible)

• Second derivatives at the end points are zero (2 equations).

• Setting up and solving 4n equations is costly. There is another way of constructing cubic splines that
results in only n-1 equations in n-1 unknowns. See pages 502-503 of the book.

19

Example 32:

Develop quadratic splines for these data points and predict f(3.4) and f(2.2)
x f(x)

1 1

2 5

2.5 7

3 8

4 2

• There are 5 points and n=4 splines. Totally there are 3n=12 unknowns. Equations are

• End points: a1 1
2+ b1 1 + c1 = 1 , a4 4

2 + b4 4 + c4 = 2

• Interior points: a1 2
2 + b1 2 + c1 = 5 , a2 2

2 + b2 2 + c2 = 5

a2 2.52 + b2 2.5 + c2 = 7, a3 2.52 + b3 2.5 + c3 = 7

a3 3
2 + b3 3 + c3 = 8 , a4 3

2 + b4 3 + c4 = 8

• Derivatives at the interior points: 2a12 + b1 = 2a2 2 + b2

2a2 2.5 + b2 = 2a3 2.5 + b3

2a3 3 + b3 = 2a4 3 + b4

• Arbitrary choice for the missing equation: a1 = 0

x

f(x)

x0=1 2 4

ai x
2 + bi x + ci

2.5 3

20

Example 32 (cont’d):

• a1=0 is already known. Solve for the remaining 11 unknowns.





































































































































































































































46

36

6-

28-

24

4-

3-

4

0

3-

4

c

b

a

c

b

a

c

b

a

c

b

0

0

0

8

8

7

7

5

5

2

1

c

b

a

c

b

a

c

b

a

c

b

01601600000

00001501500

00000001401

13900000000

00013900000

00015.225.600000

00000015.225.600

00000012400

00000000012

141600000000

00000000011

4

4

4

3

3

3

2

2

2

1

1

4

4

4

3

3

3

2

2

2

1

1

• Equations for the splines are

1st spline: f(x) = 4x – 3 (Straight line.)

2nd spline: f(x) = 4x – 3 (Same as the 1st. Coincidence)

3rd spline: f(x) = -4x2 + 24x – 28

4th spline: f(x) = -6x2 + 36x – 46

• To predict f(3.4) use the 4th spline. f(3.4) = -6 (3.4)2 + 36 (3.4) – 46 = 7.04

To predict f(2.2) use the 2nd spline. f(2.2) = 4 (2.2) – 3 = 5.8

