ME 310

Numerical Methods

Least Squares Regression

These presentations are prepared by
Dr. Cuneyt Sert
Mechanical Engineering Department
Middle East Technical University
Ankara, Turkey
csert@metu.edu.tr

They can not be used without the permission of the author

About Curve Fitting

- Curve fitting is expressing a discrete set of data points as a continuous function.
- It is frequently used in engineering. For example the emprical relations that we use in heat transfer and fluid mechanics are functions fitted to experimental data.
- Regression: Mainly used with experimental data, which might have significant amount of error (noise). No need to find a function that passes through all discrete points.

- Interpolation: Used if the data is known to be very precise. Find a function (or a series of functions) that passes through all discrete points.

Least Squares Regression

(Read the statistics review from the book.)

- Fitting a straight line to a set of data set (paired data points).

$$
\left(x_{1}, y_{1}\right), \quad\left(x_{2}, y_{2}\right), \quad\left(x_{3}, y_{3}\right), \quad \ldots, \quad\left(x_{n}, y_{n}\right)
$$

a_{0} : y-intercept (unknown)
a_{1} : slope (unknown)
$e_{i}=y_{i}-a_{0}-a_{1} x_{i}$
Error (deviation) for the ith data point

- Minimize the error (deviation) to get a best-fit line (to find $\mathrm{a}_{\mathbf{0}}$ and $\mathrm{a}_{\mathbf{1}}$). Several posibilities are:
- Minimize the sum of individual errors.
- Minimize the sum of absolute values of individual errors.
- Minimize the maximum error.
- Minimize the sum of squares of individual errors. This is the preferred strategy (Check the bookto see why others fail).

Minimizing the Square of Individual errors

$$
\mathbf{S}_{r}=\sum_{i=1}^{n} \mathbf{e}_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} \mathbf{x}_{i}\right)^{2} \quad \text { Sum of squares of the residuals }
$$

- Determine the unknowns a_{0} and a_{1} by minimizing S_{r}.
- To do this set the derivatives of S_{r} wrt $a_{\mathbf{0}}$ and $a_{\mathbf{1}}$ to zero.

$$
\begin{aligned}
& \frac{\partial S_{r}}{\partial a_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)=0 \quad \rightarrow \quad n a_{0}+\left(\sum x_{i}\right) a_{1}=\sum y_{i} \\
& \frac{\partial S_{r}}{\partial a_{1}}=-2 \sum_{i=1}^{n}\left[\left(y_{i}-a_{0}-a_{1} x_{i}\right) x_{i}\right] \quad \rightarrow \quad\left(\sum x_{i}\right) a_{0}+\left(\sum x_{i}^{2}\right) a_{1}=\sum x_{i} y_{i} \\
& \text { or }\left[\begin{array}{cc}
n & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right]\left\{\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right\}=\left\{\begin{array}{l}
\sum y_{i} \\
\sum x_{i} y_{i}
\end{array}\right\} \quad \text { These are called the normal equations. }
\end{aligned}
$$

- Solve these for a_{0} and a_{1}. The results are

$$
a_{1}=\frac{n \sum\left(x_{i} y_{i}\right)-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \quad a_{0}=\bar{y}-a_{1} \bar{x}
$$

where y-bar and x-bar are the means of y and x, respectively.

Example 24:

Use least-squares regression to fit a straight line to

x	1	3	5	7	10	12	13	16	18	20
y	4	5	6	5	8	7	6	9	12	11

$$
\begin{array}{ll}
n=10 & \\
\sum x_{i}=105 & a_{1}=\frac{n \sum\left(x_{i} y_{i}\right)-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}=\frac{10 * 906-105 * 73}{10 * 1477-105^{2}}=0.3725 \\
\sum y_{i}=73 & a_{0}=7.3-0.3725 * 10.5=3.3888 \\
\bar{x}=10.5 & \\
\bar{y}=7.3 & \\
\sum x_{i}^{2}=1477 & \\
\sum x_{i} y_{i}=906 &
\end{array}
$$

Exercise 24: It is always a good idea to plot the data points and the regression line to see how well the line represents the points. You can do this with Excel. Excel will calculate $a_{\mathbf{0}}$ and a_{1} for you.

Error of Linear Regression (How good is the best line?)

Spread of data around the mean

$$
S_{t}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

$s_{y}=\sqrt{\frac{S_{t}}{n-1}} \quad$ std. deviation

Spread of data around the regression line

$S_{r}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}$
$s_{y / x}=\sqrt{\frac{S_{r}}{n-2}} \quad$ std. error of estimate

- The improvement obtained by using a regression line instead of the mean gives a maesure of how good the regression fit is.

coefficient of determination	$\mathbf{r}^{2}=\frac{S_{t}-S_{r}}{S_{t}}$
correlation coefficient	$\mathbf{r}=\frac{n \sum\left(x_{i} y_{i}\right)-\sum x_{i} \sum y_{i}}{\sqrt{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \sqrt{n \sum y_{i}^{2}-\left(\sum y_{i}\right)^{2}}}$

How to interpret the correlation coefficient?

- Two extreme cases are
- $S_{r}=0 \rightarrow r=1 \quad$ describes a perfect fit (straight line passing through all points).
- $\mathrm{S}_{\mathrm{r}}=\mathrm{S}_{\mathrm{t}} \rightarrow \mathrm{r}=0 \quad$ describes a case with no improvement.
- Usually an r value close to 1 represents a good fit. But be careful and always plot the data points and the regression line together to see what is going on.

Example 24 (cont'd): Calculate the correlation coefficient.

$$
\begin{array}{ll}
n=10 & S_{t}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=64.1 \\
\sum x_{i}=105 & S_{r}=\sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}=12.14 \\
\sum y_{i}=73 & r^{2}=\frac{S_{t}-S_{r}}{S_{t}}=0.8107 \\
\bar{x}=10.5 & r=0.9 \\
\bar{y}=7.3 &
\end{array}
$$

Example 24 (cont'd): Reverse x and y. Find the linear regression line and calculate r.

$$
\begin{aligned}
& x=-5.3869+2.1763 y \\
& S_{t}=374.5, \quad S_{r}=70.91 \text { (different than before). } \\
& r^{2}=0.8107, \quad r=0.9 \quad \text { (same as before). }
\end{aligned}
$$

Exercise 25: When working with experimental data we usually take the variable that is controlled by us in a precise way as x. The measured or calculated quantities are y. See Midterm II of Fall 2003 for an example.

Linearization of Nonlinear Behavior

- Linear regression is useful to represent a linear relationship.
- If the relation is nonlinear either another technique can be used or the data can be transformed so that linear regression can still be used. The latter technique is frequently used to fit the the following nonlinear equations to a set of data.
- Exponential equation ($\left.y=A_{1} e^{B_{1} \mathbf{x}}\right)$
- Power equation $\left(y=A_{2} x^{B_{\mathbf{2}}}\right)$
- Saturation-growth rate equation $\left(y=A_{3} x /\left(B_{3}+x\right)\right)$

Linearization of Nonlinear Behavior (contd)

(1) Exponential Equation $\left(y=A_{1} e^{B_{1} \mathrm{x}}\right)$

$\ln y=\ln A_{1}+B_{1} x$

Example 25: Fit an exponential model to the following data set.

x	0.4	0.8	1.2	1.6	2.0	2.3
y	750	1000	1400	2000	2700	3750

- Create the following table.

x	0.4	0.8	1.2	1.6	2.0	2.3
$\ln \mathrm{y}$	6.62	6.91	7.24	7.60	7.90	8.23

- Fit a straight line to this new data set. Be careful with the notation. You can define $z=\ln y$
- Calculate $a_{\mathbf{0}}=6.25$ and $a_{\mathbf{1}}=0.841$. Straight line is $\ln y=6.25+0.841 x$
- Switch back to the original equation. $A_{\mathbf{1}}=e^{a_{0}}=518, \quad B_{1}=a_{1}=0.841$.
- Therefore the exponential equation is $y=518 \mathrm{e}^{\mathbf{0 . 8 4 1 x}}$. Check this solution with couple of data points. For example $y(1.2)=518 \mathrm{e}^{0.841(1.2)}=1421$ or $\mathrm{y}(2.3)=518 \mathrm{e}^{0.841(2.3)}=3584$. OK.

Linearization of Nonlinear Behavior (cont'd)

(2) Power Equation $\left(y=A_{2} x^{B_{2}}\right)$

Example 26: Fit a power equation to the following data set.

x	2.5	3.5	5	6	7.5	10	12.5	15	17.5	20
y	7	5.5	3.9	3.6	3.1	2.8	2.6	2.4	2.3	2.3

$\log \mathrm{x}$	0.398	0.544	0.699	0.778	0.875	1.000	1.097	1.176	1.243	1.301
$\log \mathrm{y}$	0.845	0.740	0.591	0.556	0.491	0.447	0.415	0.380	0.362	0.362

- Fit a straight line to this new data set. Be careful with the notation.
- Calculate $a_{0}=1.002$ and $a_{1}=-0.53$. Straight line is $\log y=1.002-0.53 \log x$
- Switch back to the original equation. $A_{2}=10^{a_{0}}=10.05, \quad B_{2}=a_{1}=-0.53$.
- Therefore the power equation is $\mathrm{y}=10.05 \mathrm{x}^{-0.53}$. Check this solution with couple of data points. For example $y(5)=10.05 * 5^{-0.53}=4.28$ or $y(15)=10.05 * 15^{-0.53}=2.39$. OK.

Linearization of Nonlinear Behavior (cont'd)

(3) Saturation-growth rate Equation $\left(y=A_{3} x /\left(B_{3}+x\right)\right)$

Example 27: Fit a saturation-growth-rate equation to the following data set.

x	0.75	2	2.5	4	6	8	8.5
y	0.8	1.3	1.2	1.6	1.7	1.8	1.7

$1 / \mathrm{x}$	1.333	0.5	0.4	0.25	0.1667	0.125	0.118
$1 / \mathrm{y}$	1.25	0.769	0.833	0.625	0.588	0.556	0.588

- Fit a straight line to this new data set. Be careful with the notation.
- Calculate $a_{0}=0.512$ and $a_{1}=0.562$. Straight line is $1 / y=0.512+0.562(1 / x)$
- Switch back to the original equation. $A_{3}=1 / a_{0}=1.953, \quad B_{3}=a_{1} A_{3}=1.097$.
- Therefore the saturation-growth rate equation is $1 / \mathrm{y}=1.953 \mathrm{x} /(1.097+\mathrm{x})$. Check this solution with couple of data points. For example $y(2)=1.953 * 2 /(1.097+2)=1.26 \quad$ OK.

Polynomial Regression (Extension of Linear Least Sqaures)

- Used to find a best-fit line for a nonlinear behavior.
- This is not nonlinear regression described at page 468 of the book. That section is omitted.

Example for a second order polynomial regression
$e_{i}=y_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}$
Error (deviation) for the $\mathrm{i}^{\text {th }}$ data point
$S_{r}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}\right)^{2} \quad$ Sum of squares of the residuals

- Minimize this sum to get the normal equations $\frac{\partial S_{r}}{\partial a_{0}}=0, \quad \frac{\partial S_{r}}{\partial a_{1}}=0, \quad \frac{\partial S_{r}}{\partial a_{2}}=0$
- Solve these equations with one of the techniques that we learned to get a_{0}, a_{1} and a_{2}.

Polynomial Regression Example

- Find the least-squares parabola that fits to the following data set.

x	0	1	2	3	4	5
y	2.1	7.7	13.6	27.2	40.9	61.1

- Normal equations to find a least-squares parabola are

$$
\left[\begin{array}{ccc}
n & \sum x_{i} & \sum x_{i}^{2} \\
\sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\
\sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4}
\end{array}\right]\left\{\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\sum y_{i} \\
\sum x_{i} y_{i} \\
\sum x_{i}^{2} y_{i}
\end{array}\right\}
$$

$\mathrm{n}=6$
$\sum x_{i}=15 \quad \sum y_{i}=152.6$

$$
\begin{aligned}
& a_{0}=2.479, \quad a_{1}=2.359, \quad a_{2}=1.861 \\
& y=2.479+2.359 x+1.861 x^{2} \\
& r^{2}=\frac{S_{t}-S_{r}}{S_{t}}=\frac{2573.4-3.75}{2573.4}=0.999 \\
& r=0.999
\end{aligned}
$$

Multiple Linear Regression

- $y=y\left(x_{1}, x_{2}\right)$
- Individual errors are $e_{i}=y_{i}-a_{0}-a_{1} x_{1 i}-a_{2} x_{2 i}$
- Sum of squares of the residuals is $\mathbf{S}_{\mathbf{r}}=\sum_{i=1}^{n} \mathbf{e}_{\mathbf{i}}^{\mathbf{2}}=\sum_{\mathrm{i}=\mathbf{1}}^{\mathrm{n}}\left(\mathbf{y}_{\mathrm{i}}-\mathbf{a}_{\mathbf{0}}-\mathbf{a}_{\mathbf{1}} \mathbf{x}_{\mathbf{1 i}}-\mathbf{a}_{\mathbf{2}} \mathbf{x}_{\mathbf{2 i}}\right)^{\mathbf{2}}$
- Minimize this sum to get the normal equations $\frac{\partial \mathbf{S}_{\mathbf{r}}}{\partial \mathbf{a}_{\mathbf{0}}}=\mathbf{0}, \frac{\partial \mathbf{S}_{\mathbf{r}}}{\partial \mathbf{a}_{\mathbf{1}}}=\mathbf{0}, \frac{\partial \mathbf{S}_{\mathbf{r}}}{\partial \mathbf{a}_{\mathbf{2}}}=\mathbf{0}$

$$
\left[\begin{array}{ccc}
n & \sum x_{1 i} & \sum x_{2 i} \\
\sum x_{1 i} & \sum x_{1 i}^{2} & \sum x_{1 i} x_{2 i} \\
\sum x_{2 i} & \sum x_{1 i} x_{2 i} & \sum x_{2 i}^{2}
\end{array}\right]\left\{\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\sum y_{i} \\
\sum x_{1 i} y_{i} \\
\sum x_{2 i} y_{i}
\end{array}\right\}
$$

- Solve these equations to get a_{0}, a_{1} and a_{2}.

Example 28:

- Use multiple linear regression to fit

x	0	1	1	2	2	3	3	4	4
y	0	1	2	1	2	1	2	1	2
z	15	18	12.8	25.7	20.6	35	29.8	45.5	40.3

$\mathbf{n}=\mathbf{9}$
$\sum x_{i}=20 \quad \sum x_{i} y_{i}=30$
$\sum x_{i}^{2}=60 \quad \sum z_{i}=242.7$
$\sum y_{i}=12 \quad \sum x_{i} z_{i}=661$
$\longrightarrow \quad\left[\begin{array}{ccc}9 & 20 & 12 \\ 20 & 60 & 30 \\ 12 & 30 & 20\end{array}\right]\left\{\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right\}=\left\{\begin{array}{c}242.7 \\ 661 \\ 331.2\end{array}\right\}$
$\sum y_{i}^{2}=20 \quad \sum y_{i} z_{i}=331.2$
$a_{0}=14.40, \quad a_{1}=9.03, \quad a_{2}=-5.62$
$z=14.4+9.03 x-5.62 y$

Exercise 26: Calculate the standard error of the estimate $\left(s_{y / x}\right)$ and the correlation coefficient (r).

