ME 310

Numerical Methods

Finding Roots of Nonlinear Equations

These presentations are prepared by
Dr. Cüneyt Sert
Mechanical Engineering Department
Middle East Technical University
Ankara, Turkey
csert@metu.edu.tr

They can not be used without the permission of the author

Part 2. Finding Roots of Equations

$$
\begin{aligned}
& f(x) \text { is given } \\
& f\left(x_{r}\right)=0 \quad \rightarrow \quad x_{r}=?
\end{aligned}
$$

- Bracketing Methods (Need two initial estimates that will bracket the root. Always converge.)
- Bisection Method
- False-Position Method
- Open Methods (Need one or two initial estimates. May diverge.)
- Simple One-Point Iteration
- Newton-Raphson Method (Needs the derivative of the function.)
- Secant Method

Ch 5. General Idea of Bracketing Methods

Rule 1: If $\mathrm{f}\left(\mathrm{x}_{\mathrm{L}}\right) * \mathrm{f}\left(\mathrm{x}_{\mathrm{u}}\right)<0$ than there are odd number of roots

Rule 2: If $\mathrm{f}\left(\mathrm{x}_{\mathrm{L}}\right) * \mathrm{f}\left(\mathrm{x}_{\mathrm{u}}\right)>0$ than ther are
i) even number of roots
ii) no roots

Violations:

i) multiple roots
ii) discontinuities

Bisection Method

- Start with two initial guesses, $\mathrm{x}_{\text {LOwER }}$ and $\mathrm{x}_{\text {UPPER }}$.
- They should bracket the root, i.e. $\mathrm{f}\left(\mathrm{X}_{\mathrm{L}}\right) * \mathrm{f}\left(\mathrm{X}_{\mathbf{U}}\right)<0$

- Estimate the root as the midpoint of this interval. $\mathrm{x}=\left(\mathrm{x}_{\mathrm{L}}+\mathrm{x}_{\mathrm{U}}\right) / 2$
- Determine the interval which contains the root if $f\left(x_{L}\right) * f(x)<0$ root is between x_{L} and x else root is between x and $x_{\mathbf{U}}$

- Estimate a new root in this new interval
- Iterate like this and compute the error after each iteration.
- Stop when the specified tolerance is reached.

Bisection Method (cont'd)

- It always converge to the true root (but be careful about the following)
- $f\left(x_{L}\right) * f\left(x_{\mathbf{U}}\right)<0$ is true if the interval has odd number of roots, not necessarily one root.

Example 6: Find the square root of 11.
$x^{2}=11 \rightarrow f(x)=x^{2}-11$
Select initial guesses: $3^{2}=9<11,4^{2}=16>11 \quad \rightarrow \quad x_{L}=3, x_{U}=4$

Iteration no.	x	$\mathrm{f}(\mathrm{x})$	$\left\|\varepsilon_{\mathbf{t}}\right\| \%$	$\left\|\varepsilon_{\mathbf{a}}\right\| \%$
1	3.5	1.25	5.53	----
2	3.25	-0.4375	2.01	7.69
3	3.375	0.390625	1.76	3.70
4	3.3125	-0.02734375	0.12	1.89
5	3.34375	0.180664062	0.82	0.93
6	3.328125	0.076416015	0.35	0.47

- Errors do not drop monotonically but oscillate.
$\bullet \varepsilon_{\mathrm{a}}>\varepsilon_{\mathrm{t}}$ at each step, which is good. It means using ε_{a} is conservative.
- $\varepsilon_{\mathbf{a}}$ can also be estimated as $\varepsilon_{\mathbf{a}}=\left(\mathrm{X}_{\mathbf{U}}-\mathrm{x}_{\mathbf{L}}\right) /\left(\mathrm{X}_{\mathbf{U}}+\mathrm{X}_{\mathbf{L}}\right)$. This can be used for the $1^{\text {st }}$ iteration too.

False-Position Method

- Start with two initial guesses, $\mathrm{x}_{\text {LOWER }}$ and $\mathrm{x}_{\text {UPPER }}$.
- They should bracket the root, i.e.
$\mathrm{f}\left(\mathrm{x}_{\mathrm{L}}\right) * \mathrm{f}\left(\mathrm{x}_{\mathrm{U}}\right)<0$
- Estimate the root using similar triangles.
$x=x_{U}-\frac{f\left(x_{U}\right)\left(x_{L}-x_{U}\right)}{f\left(x_{L}\right)-f\left(x_{U}\right)}$
- Determine the interval which contains the root if $f\left(x_{L}\right) * f(x)<0 \quad$ root is between x_{L} and x else root is between x and $x_{\mathbf{U}}$

- Estimate a new root in this new interval
- Iterate like this and compute the error after each iteration.
- Stop when the specified tolerance is reached.

False-Position Method (cont'd)

- It always converge to the true root.
- $f\left(x_{\mathbf{L}}\right) * f\left(x_{\mathbf{U}}\right)<0$ is true if the interval has odd number of roots, not necessarily one root.
- Generally converges faster than the bisection method (See page 127 for an exception).

Example 7: Repeat the previous example (Find the square root of 11).

Iteration no.	x	$\mathrm{f}(\mathrm{x})$	$\left\|\boldsymbol{\varepsilon}_{\mathbf{t}}\right\| \%$	$\left\|\varepsilon_{\mathbf{a}}\right\| \%$
1	3.28571429	-0.1040816	0.932	----
2	3.31372549	-0.0192234	0.087	0.845
3	3.31635389	-0.0017969	0.0082	0.079
4	3.31659949	-0.0001678	0.00076	0.0074
5	3.31662243	-0.0000157	0.00007	0.00069
6	3.31662457	-0.0000015	0.00001	0.00006

- Errors drop monotonically. Converges faster than the bisection method.
$-\varepsilon_{\mathrm{a}}>\varepsilon_{\mathrm{t}}$ at each step, which is good. It means ε_{a} is conservative.

About bracketing methods

- A plot of the function is always helpful.
- to determine the number of all roots, if there are any.
- to determine whether the roots are multiple or not.
- to determine whether to method converges to the desired root.
- to determine the initial guesses.
- Incremental search technique can be used to determine the initial guesses.
- Start from one end of the region of interest.
- Evaluate the function at specified intervals.
- If the sign of the function changes, than there is a root in that interval.
- Select your intervals small, otherwise you may miss some of the roots. But if they are too small, incremental search might become too costly.
- Incremental search, just by itself, can be used as a root finding technique with very small intervals (not efficient).

Fortran Code for Bisection Method

PROGRAM BISECTION ! Calculates the root of a function

INTEGER :: iter, maxiter
REAL(8) :: $\mathbf{x L}, \mathbf{x U}, \mathbf{x}, \mathrm{fxL}, \mathrm{fxU}, \mathrm{fx}$, tol, error
READ(*,*) $x L$, $x U$, tol, maxiter
DO iter $=1$, maxiter
$x=(x L+x U) / 2 \quad$! Only this line changes for the False-Position Method
$f x=$ FUNC (x) ! Call a subroutine to calculate the function.
error $=(x U-x L) /(x U+x L) * 100$! See page 121
WRITE(*,*) iter, x, fx, error
IF (error < tol) STOP
fxL = FUNC (xL)
$\mathrm{fxU}=\mathrm{FUNC}(\mathrm{xU})$
IF(fxL * $\mathrm{fx}<0$) THEN
$\mathbf{x U}=\mathbf{x}$
ELSE

$$
\mathbf{x L}=\mathbf{x}
$$

ENDIF
ENDDO
END PROGRAM BISECTION

Exercise 5: Write a C program for the Bisection method and implement the following improvements

- Check if the initial guesses bracket the root or not.
- Read the true value if it is known and calculate $\varepsilon_{\mathbf{t}}$ in addition to $\varepsilon_{\mathbf{a}}$.
- Check for the cases of $f\left(x_{L}\right)=0$ or $f\left(x_{U}\right)=0$

Ch 6. Open Methods

Simple One-Point Iteration

- Put the original formulation of $f(x)=0$ into a form of $x=g(x)$.
- Many possibilities are possible
- $\ln (x)-3 x+5=0 \rightarrow \quad x=[\ln (x)+5] / 3 \quad$ or $\quad x=e^{3 x-5}$
- $\cos (x)=0 \quad \rightarrow \quad x=x+\cos (x)$
- Start with an initial guess $\mathrm{x}_{\mathbf{0}}$
- Calculate a new estimate for the root using $x_{1}=g\left(x_{0}\right)$
- Iterate like this. General formula is $x_{i+1}=g\left(x_{i}\right)$
- Converges if $\left|\mathrm{g}^{\prime}(\mathrm{x})\right|<1 \quad$ in the region of interest (Easier to see graphically in the coming slides).

Simple One-Point Iteration (cont'd)

Example 8: Repeat the previous example (Find the square root of 11). Start with $\mathrm{x}_{\mathbf{0}}=3$.
(a) $x^{2}-11=0 \rightarrow x=x+x^{2}-11$

\mathbf{i}	$x_{\mathbf{i}}$	$x_{i+1}=g\left(x_{\mathbf{i}}\right)$	$\left\|\varepsilon_{\mathbf{t}}\right\| \%$
0	3	1	70
1	1	-9	371
2	-9	61	1739
3	61	3771	113600
Diverges			

(b) $11-x^{2}=0 \rightarrow x=\left(4 x+11-x^{2}\right) / 4$

i	$x_{\mathbf{i}}$	$x_{\mathbf{i}+\mathbf{1}}=g\left(x_{\mathbf{i}}\right)$	$\left\|\varepsilon_{\mathbf{t}}\right\| \%$
0	3	3.5	5.53
1	3.5	3.1875	3.89
2	3.1875	3.39746094	2.44
3	3.39746094	3.26177573	1.65
4	3.26177573	3.35198050	1.07
5	3.35198050	3.29303718	0.71
Converges			

- Selection of $\mathrm{g}(\mathrm{x})$ is important. Note that we did not use the trivial one, $\mathrm{x}=\sqrt{11}$.
- If the method converges, convergence is linear. That is the relative error at each iteration is roughly proportional to the half of the previous error. This is easier to see for $\varepsilon_{\mathbf{t}}$.

Exercise 6: Show that (a) violates the convergence criteria $\left|g^{\prime}(x)\right|<1$.

Simple One-Point Iteration (cont'd)

- We can use the two-curve graphical method to check convergence $\left|g^{\prime}(x)\right|<1$.
(a) Monotone convergence
(b) Spiral convergence

(a)
(c) Monotone divergence
(d) Spiral divergence

(b)

(d)

Newton-Raphson Method

- Start with an initial guess x_{0} and calculate x_{1} as

$$
\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)=\frac{f\left(x_{0}\right)-\mathbf{0}}{\mathbf{x}_{1}-\mathbf{x}_{0}} \quad \rightarrow \quad \mathbf{x}_{1}=\mathbf{x}_{0}-\frac{f\left(x_{0}\right)}{\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)}
$$

- Continue like this until you reach the specified tolerance or maximum number of iterations.

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

Newton-Raphson Method (cont'd)

Example 9: Repeat the previous example (Find the square root of 11). Start with $\mathrm{x}_{\mathbf{0}}=3$.

$$
f(x)=x^{2}-11=0, f^{\prime}(x)=2 x \quad \rightarrow \quad x_{i+1}=x_{i}-\left(x^{2}-11\right) / 2 x
$$

iter	x	$\mathrm{f}(\mathrm{x})$	$\left\|\varepsilon_{\mathbf{t}}\right\| \%$
0	3	-2	9.55
1	3.33333333	0.1111111	0.50
2	3.31666667	0.0002778	0.00126
3	3.31662479	0.0000000	0.00000

Selection of the initial guess affects the convergence a lot.

Exercise 7: NR method is quite sensitive to the starting point. Try to find the first positive root of $\sin (x)$ (which is 1.570796) starting with a) $x_{0}=1.5$, b) $x_{0}=1.7$, c) $x_{0}=1.8$, d) x_{0} $=1.9$ (They all converge to different roots).

Derivation of NR Method from Taylor Series

$f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)+\frac{f^{\prime \prime}(\xi)}{2!}\left(x_{i+1}-x_{i}\right)^{\mathbf{2}}$
Use first order approximation $\rightarrow \mathbf{f}\left(\mathbf{x}_{\mathbf{i}+\mathbf{1}}\right) \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)+\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)\left(\mathbf{x}_{\mathbf{i}+\mathbf{1}}-\mathbf{x}_{\mathbf{i}}\right)$
To find the root, $\mathrm{f}\left(\mathrm{x}_{\mathbf{i + 1}}\right)$ should be zero $\rightarrow \mathbf{0} \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)+\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)\left(\mathbf{x}_{\mathbf{i}+\mathbf{1}}-\mathbf{x}_{\mathbf{i}}\right)$
Solve for $\mathbf{x}_{\mathbf{i + 1}} \quad \rightarrow \quad \mathbf{x}_{\mathbf{i + 1}}=\mathbf{x}_{\mathbf{i}}-\frac{\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)}{\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)}$

Error Analysis

If we use the complete Taylor Series the result would be exact.
$\mathbf{f}\left(\mathbf{x}_{\mathrm{e}}\right)=\mathbf{0}=\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)+\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)\left(\mathbf{x}_{\mathbf{e}}-\mathbf{x}_{\mathbf{i}}\right)+\frac{\mathbf{f}^{\prime \prime}(\xi)}{\mathbf{2 !}}\left(\mathbf{x}_{\mathbf{e}}-\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{2}} \quad \mathrm{x}_{\mathrm{e}}$ is the exact root
Subtract this from the $3^{\text {rd }}$ equation $\rightarrow \mathbf{0}=\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)\left(\mathbf{x}_{\mathbf{e}}-\mathbf{x}_{\mathbf{i}+\mathbf{1}}\right)+\frac{\mathbf{f}^{\prime \prime}(\xi)}{\mathbf{2}}\left(\mathbf{x}_{\mathbf{e}}-\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{2}}$
Note that $E_{t, i}=\left(x_{e}-x_{i}\right)$ and $E_{t, i+1}=\left(x_{e}-x_{i+1}\right) \quad \rightarrow \quad \mathbf{0}=\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right) \mathbf{E}_{\mathbf{t}, \mathbf{i}+\mathbf{1}}+\frac{\mathbf{f}^{\prime \prime}(\xi)}{\mathbf{2}} \mathbf{E}_{\mathbf{t}, \mathbf{i}}^{\mathbf{2}}$
For convergence both $\mathrm{x}_{\mathbf{i}}$ and ξ should approach to $\mathrm{x}_{\mathbf{e}} \rightarrow \quad \mathbf{E}_{\mathbf{t}, \mathbf{i + 1}} \approx \frac{\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathbf{e}}\right)}{\mathbf{2} \mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{e}}\right)} \mathbf{E}_{\mathbf{t}, \mathbf{i}}^{\mathbf{2}}$
This is quadratic convergence. That is the error at each iteration is roughly proportional to the square of the previous error. (See page 141 for a nice example).

Exercise 8: We showed that the NR can be derived from a $1^{\text {st }}$ order Taylor series expansion. Derive a new method using $2^{\text {nd }}$ order Taylor series expansion. Compare the convergence of this method with NR. Comment on the practicality of this new method.

Exercise 9: NR method can be seen as Simple One-Point Iteration method with $g(x)=x_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)$. Using the convergence criteria of the Simple One-Point Iteration Method, derive a convergence criteria for the NR Method.

Difficulties with the NR Method (page 144)

- Need to know the derivative of the function.
- May diverge around inflection points.
- May give oscillations around local minimums or maximums.
- Zero or near zero slope is a problem, because f^{\prime} is at the denominator.
- Convergence may be slow if the initial guess is poor.

Exercise 9.1 : Use the NR method to locate one of the roots of $f(x)=x(x-5)(x-6)+3$ starting with $\mathrm{x}_{0}=3.5$ (NR will oscillate around the local minimum).

Secant Method

- Start with two initial guess $\mathrm{x}_{\mathbf{- 1}}$ and $\mathrm{x}_{\mathbf{0}}$.

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{-1}\right)-f\left(x_{0}\right)}{x_{-1}-x_{0}}
$$

Use this in the equation of NR method.

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)\left(x_{-1}-x_{0}\right)}{f\left(x_{-1}\right)-f\left(x_{0}\right)}
$$

- Continue like this until you reach the specified tolerance or maximum number of iterations.

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)\left(x_{i-1}-x_{i}\right)}{f\left(x_{i-1}\right)-f\left(x_{i}\right)}
$$

Secant Method (cont'd)

Example 10: Repeat the same example (Find the square root of 11).
Start with $\mathrm{X}_{-1}=2, \mathrm{x}_{0}=3$
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-11=0$

iter	x	$f(x)$	$\left\|\varepsilon_{\mathbf{t}}\right\| \%$
-1	2	-7	-311
0	3	-2	-160
1	3.4	0.56	2.51
2	3.3125	-0.0273438	0.12
3	3.31657356	-0.0003398	0.0015
4	3.31662482	0.0000002	0.0000

Selection of the initial guess affects the convergence a lot.

Exercise 10: There is no guarantee for the secant method to converge. Try to calculate the root of $\ln (x)$ starting with (a) $x_{-1}=0.5$ and $x_{0}=4$, (b) $x_{-1}=0.5$ and $x_{0}=5$. Part (a) converges, but not part (b)

Secant vs. False Position

Secant: $\quad \mathbf{x}_{\mathbf{i} \mathbf{+ 1}}=\mathbf{x}_{\mathbf{i}}-\frac{\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)\left(\mathbf{x}_{\mathbf{i} \mathbf{- 1}}-\mathbf{x}_{\mathbf{i}}\right)}{\mathbf{f}\left(\mathbf{x}_{\mathbf{i} \mathbf{- 1}}\right)-\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)}$
False-Position: $\quad \mathbf{x}=\mathbf{x}_{\mathbf{U}}-\frac{\mathbf{f}\left(\mathbf{x}_{\mathbf{U}}\right)\left(\mathbf{x}_{\mathbf{L}}-\mathbf{x}_{\mathbf{U}}\right)}{\mathbf{f}\left(\mathbf{x}_{\mathbf{L}}\right)-\mathbf{f}\left(\mathbf{x}_{\mathbf{U}}\right)}$

Secant

First iterations of both methods are the same.

Second iterations are different in terms of how the previous estimates are replaced with the newly calculated root.

- False-position Method drops one of previous estimates so that the reamining ones bracket the root.
- Secant Method always drops the oldest estimate.

Special Treatment of Multiple Roots

- At even multiple roots, bracketing methods can not be used at all.
- Open methods still work but
- $f^{\prime}(x)$ also goes to zero at a multiple root. Possibility of division by zero for Secant and NR. $f(x)$ will reach zero faster than $f^{\prime}(x)$, therefore use a zero-check for $f(x)$ and stop properly.
- they converge slowly (linear instead of quadratic convergence).
- Some modifications can be made for speed up.
i) If you know the multiplicity of the root NR can be modified as

$$
\mathbf{x}_{\mathbf{i}+\mathbf{1}}=\mathbf{x}_{\mathbf{i}}-\mathbf{m} \frac{\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)}{\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)} \quad m=2 \text { for a double root, } m=3 \text { for a triple root, etc. }
$$

ii) Another alternative is to define a new function $u(x)=f(x) / f^{\prime}(x)$ and use it in the formulation of NR Method

$$
\mathbf{x}_{i+1}=\mathbf{x}_{\mathbf{i}}-\frac{\mathbf{u}\left(\mathbf{x}_{\mathbf{i}}\right)}{\mathbf{u}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)}=\frac{\mathbf{f (\mathbf { x } _ { i }) f ^ { \prime } (\mathbf { x } _ { \mathbf { i } })}}{\left[\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)\right]^{2}-\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right) \mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathbf{i}}\right)} \quad \text { You need to know } f^{\prime \prime}(x)
$$

(Similar modifications can be made for the Secant Method. See the book for details.)

Solving System of Nonlinear Equations

Using Simple One-Point Iteration Method

Solve the following system of equations

$$
\begin{aligned}
& x^{2}+y^{2}=4 \\
& e^{x}+y=1
\end{aligned}
$$

Put the functions into the form $x=g_{1}(x, y), y=g_{2}(x, y)$

$$
\begin{aligned}
& x=g_{1}(y)=\ln (1-y) \\
& y=g_{2}(x)=-\sqrt{4-x^{2}}
\end{aligned}
$$

Select a starting values for x and y, such as $x_{0}=0.0$ and $y_{0}=0.0$. They don't need to satisfy the equations. Use these values in g functions to calculate new values.
$\mathrm{x}_{1}=\mathrm{g}_{1}\left(\mathrm{y}_{0}\right)=0$

$$
y_{1}=g_{2}\left(x_{1}\right)=-2
$$

$x_{2}=g_{1}\left(y_{1}\right)=1.098612289 \quad y_{2}=g_{2}\left(x_{2}\right)=-1.67124236$
$x_{3}=g_{1}\left(y_{2}\right)=0.982543669 \quad y_{3}=g_{2}\left(x_{3}\right)=-1.74201261$
$\mathrm{x}_{4}=\mathrm{g}_{1}\left(\mathrm{y}_{3}\right)=1.00869218 \quad \mathrm{y}_{4}=\mathrm{g}_{2}\left(\mathrm{x}_{4}\right)=-1.72700321$
The solution is converging to the exact solution of $x=1.004169, y=-1.729637$

Exercise 11: Solve the same system but rearrange the equations as $x=\ln (1-y) \quad y=\left(4-x^{2}\right) / y$ and start from $x_{0}=1 y_{0}=-1.7$. Remember that this method may diverge.

Solving System of Nonlinear Equations

Using Newton-Raphson Method

Consider the following general form of a two equation system

$$
\begin{aligned}
& u(x, y)=0 \\
& v(x, y)=0
\end{aligned}
$$

Write $1^{\text {st }}$ order TSE for these equations
$\mathbf{u}_{\mathbf{i}+\mathbf{1}}=\mathbf{u}_{\mathbf{i}}+\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{x}}\left(\mathbf{x}_{\mathbf{i}+\mathbf{1}}-\mathbf{x}_{\mathbf{i}}\right)+\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{y}}\left(\mathbf{y}_{\mathbf{i + 1}}-\mathbf{y}_{\mathbf{i}}\right)$
$\mathbf{v}_{\mathbf{i}+\mathbf{1}}=\mathbf{v}_{\mathbf{i}}+\frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{x}}\left(\mathbf{x}_{\mathbf{i}+\mathbf{1}}-\mathbf{x}_{\mathbf{i}}\right)+\frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{y}}\left(\mathbf{y}_{\mathbf{i}+\mathbf{1}}-\mathbf{y}_{\mathbf{i}}\right)$
To find the solution set $u_{i+1}=0$ and $v_{i+1}=0$. Rearrange
$\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{x}} \mathbf{x}_{\mathbf{i}+\mathbf{1}}+\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{y}} \mathbf{y}_{\mathbf{i}+\mathbf{1}}=-\mathbf{u}_{\mathbf{i}}+\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{x}} \mathbf{x}_{\mathbf{i}}+\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{y}} \mathbf{y}_{\mathbf{i}}$
$\frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{x}} \mathbf{x}_{\mathbf{i}+\mathbf{1}}+\frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{y}} \mathbf{y}_{\mathbf{i}+\mathbf{1}}=-\mathbf{v}_{\mathbf{i}}+\frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{x}} \mathbf{x}_{\mathbf{i}}+\frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{y}} \mathbf{y}_{\mathbf{i}}$
$\left[\begin{array}{ll}\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{x}} & \frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{x}} & \frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{y}}\end{array}\right]\left\{\begin{array}{l}\mathbf{x}_{\mathbf{i}+\mathbf{1}} \\ \mathbf{y}_{\mathbf{i}+\mathbf{1}}\end{array}\right\}=\left\{\begin{array}{l}-\mathbf{u}_{\mathbf{i}}+\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{x}} \mathbf{x}_{\mathbf{i}}+\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial \mathbf{y}} \mathbf{y}_{\mathbf{i}} \\ -\mathbf{v}_{\mathbf{i}}+\frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{x}} \mathbf{x}_{\mathbf{i}}+\frac{\partial \mathbf{v}_{\mathbf{i}}}{\partial \mathbf{y}} \mathbf{y}_{\mathbf{i}}\end{array}\right\}$
The first matrix is called the Jacobian matrix. Solve for $\mathrm{x}_{\mathrm{i+1}}, \mathrm{y}_{\mathrm{i+1}}$ and iterate.
Can be generalized for n simultaneous equations

Solving System of Eqns Using NR Method (cont'd)

Solve for $\mathrm{x}_{\mathrm{i+1}}$ and $\mathrm{y}_{\mathrm{i}+\boldsymbol{1}}$ using Cramer's rule (ME 210)
$x_{i+1}=x_{i}-\frac{u_{i} \frac{\partial v_{i}}{\partial y}-v_{i} \frac{\partial u_{i}}{\partial y}}{\frac{\partial u_{i}}{\partial x} \frac{\partial v_{i}}{\partial y}-\frac{\partial u_{i}}{\partial y} \frac{\partial v_{i}}{\partial x}} \quad, \quad y_{i+1}=y_{i}-\frac{v_{i} \frac{\partial u_{i}}{\partial x}-u_{i} \frac{\partial v_{i}}{\partial x}}{\frac{\partial u_{i}}{\partial x} \frac{\partial v_{i}}{\partial y}-\frac{\partial u_{i}}{\partial y} \frac{\partial v_{i}}{\partial x}}$

The denominator is the determinant of the Jacobian matrix $|\mathrm{J}|$.

Example 11: Solve the same system of equations

$$
\begin{aligned}
& u=x^{2}+y^{2}-4=0 \\
& v=e^{x}+y-1=0
\end{aligned} \quad \text { stating with } x_{0}=1, y_{0}=1
$$

$$
\frac{\partial u}{\partial x}=2 x, \frac{\partial u}{\partial y}=2 y, \frac{\partial v}{\partial x}=e^{x}, \frac{\partial v}{\partial y}=1 \rightarrow|J|=2 x-2 y e^{x}
$$

$$
x_{i+1}=x_{i}-\frac{u_{i}-2 y_{i} v_{i}}{|J|}, y_{i+1}=y_{i}-\frac{2 x v_{i}-e^{x_{i}} u_{i}}{|J|}
$$

$i=0$,	$x_{\mathbf{0}}=1$	$y_{\mathbf{0}}=1$	$u_{\mathbf{0}}=-2$	$v_{\mathbf{0}}=2.718282$	$\left\|J_{\mathbf{0}}\right\|=-3.436564$
$i=1$,	$x_{\mathbf{1}}=-1.163953$	$y_{\mathbf{1}}=3.335387$	$u_{\mathbf{1}}=8.479595$	$v_{\mathbf{1}}=2.647636$	$\left\|J_{\mathbf{1}}\right\|=-4.410851$
$i=2$,	$x_{\mathbf{2}}=-3.245681$	$y_{\mathbf{2}}=1.337769$	$u_{\mathbf{2}}=8.324069$	$v_{\mathbf{2}}=0.376711$	$\left\|J_{\mathbf{2}}\right\|=-6.595552$
$i=3$,	$x_{\mathbf{3}}=-2.136423$	$y_{\mathbf{3}}=0.959110$	$u_{\mathbf{3}}=1.484197$	$v_{\mathbf{3}}=0.077187$	$\left\|J_{3}\right\|=-4.499343$

Looks like it is converging to the root in the $2^{\text {nd }}$ quadrant $x \approx-1.8, y \approx 0.8$.
Exercise 12: Can you start with $\mathrm{x}_{\mathbf{0}}=0$ and $\mathrm{y}_{\mathbf{0}}=0$?
Exercise 13: Try to find starting points that will converge to the solution in the $4^{\text {th }}$ quadrant.

