ME 310 Numerical Methods

Finding Roots of Nonlinear Equations

These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

They can not be used without the permission of the author

Part 2. Finding Roots of Equations

f(x) is given

$$f(x_r) = 0 \rightarrow x_r = ?$$

- Bracketing Methods (Need two initial estimates that will bracket the root. Always converge.)
 - Bisection Method
 - False-Position Method
- Open Methods (Need one or two initial estimates. May diverge.)
 - Simple One-Point Iteration
 - Newton-Raphson Method (Needs the derivative of the function.)
 - Secant Method

Ch 5. General Idea of Bracketing Methods

X U

Х

Rule 1: If $f(x_L)*f(x_U) < 0$ than there are odd number of roots

Rule 2: If f(x_L)*f(x_U) > 0 than ther are

even number of roots
no roots

Violations:

i) multiple rootsii) discontinuities

Bisection Method

- Start with two initial guesses, x_{LOWER} and x_{UPPER} .
- They should bracket the root, i.e. $f(x_L) * f(x_U) < 0$

- Estimate the root as the midpoint of this interval. $x = (x_L + x_U)/2$
- Determine the interval which contains the root if f(x_L) * f(x) < 0 root is between x_L and x else root is between x and x_U
- Estimate a new root in this new interval
- Iterate like this and compute the error after each iteration.
- Stop when the specified tolerance is reached.

Bisection Method (cont'd)

- It always converge to the true root (but be careful about the following)
- $f(x_L) * f(x_U) < 0$ is true if the interval has odd number of roots, not necessarily one root.

Example 6: Find the square root of 11.

 $x^2 = 11 \rightarrow f(x) = x^2 - 11$ (note that the exact solution is 3.31662479)

Select initial guesses: $3^2=9 < 11$, $4^2=16 > 11$ \rightarrow $x_L = 3$, $x_U = 4$

Iteration no.	Х	f(x)	ε _t %	ε _a %
1	3.5	1.25	5.53	
2	3.25	-0.4375	2.01	7.69
3	3.375	0.390625	1.76	3.70
4	3.3125	-0.02734375	0.12	1.89
5	3.34375	0.180664062	0.82	0.93
6	3.328125	0.076416015	0.35	0.47

- Errors do not drop monotonically but oscillate.
- $\varepsilon_a > \varepsilon_t$ at each step, which is good. It means using ε_a is conservative.
- ε_a can also be estimated as $\varepsilon_a = (x_U x_L)/(x_U + x_L)$. This can be used for the 1st iteration too.

False-Position Method

- Start with two initial guesses, x_{LOWER} and x_{UPPER} .
- They should bracket the root, i.e. $f(x_L) * f(x_U) < 0$
- Estimate the root using similar triangles.

$$x = x_U - \frac{f(x_U)(x_L - x_U)}{f(x_L) - f(x_U)}$$

- Determine the interval which contains the root if f(x_L) * f(x) < 0 root is between x_L and x else root is between x and x_U
- Estimate a new root in this new interval
- Iterate like this and compute the error after each iteration.
- Stop when the specified tolerance is reached.

False-Position Method (cont'd)

- It always converge to the true root.
- $f(x_L) * f(x_U) < 0$ is true if the interval has odd number of roots, not necessarily one root.
- Generally converges faster than the bisection method (See page 127 for an exception).

Example 7: Repeat the previous example (Find the square root of 11).

Iteration no.	Х	f(x)	ε _t %	ε _a %
1	3.28571429	-0.1040816	0.932	
2	3.31372549	-0.0192234	0.087	0.845
3	3.31635389	-0.0017969	0.0082	0.079
4	3.31659949	-0.0001678	0.00076	0.0074
5	3.31662243	-0.0000157	0.00007	0.00069
6	3.31662457	-0.0000015	0.00001	0.00006

- Errors drop monotonically. Converges faster than the bisection method.
- $\varepsilon_a > \varepsilon_t$ at each step, which is good. It means ε_a is conservative.

About bracketing methods

- A plot of the function is always helpful.
 - to determine the number of all roots, if there are any.
 - to determine whether the roots are multiple or not.
 - to determine whether to method converges to the desired root.
 - to determine the initial guesses.
- Incremental search technique can be used to determine the initial guesses.
 - Start from one end of the region of interest.
 - Evaluate the function at specified intervals.
 - If the sign of the function changes, than there is a root in that interval.
 - Select your intervals small, otherwise you may miss some of the roots. But if they are too small, incremental search might become too costly.
 - Incremental search, just by itself, can be used as a root finding technique with very small intervals (not efficient).

Fortran Code for Bisection Method

PROGRAM BISECTION ! Calculates the root of a function

INTEGER :: iter, maxiter REAL(8) :: xL, xU, x, fxL, fxU, fx, tol, error READ(*,*) xL, xU, tol, maxiter

DO iter = 1, maxiter x = (xL + xU) / 2 ! Only this line changes for the False-Position Method ! Call a subroutine to calculate the function. fx = FUNC(x)error = (xU - xL) / (xU + xL)*100 ! See page 121 WRITE(*,*) iter, x, fx, error IF (error < tol) STOP fxL = FUNC(xL)fxU = FUNC(xU)IF(fxL * fx < 0) THEN $\mathbf{x} \mathbf{U} = \mathbf{x}$ ELSE $\mathbf{x}\mathbf{L} = \mathbf{x}$ ENDIF addition to ε_{a} . **ENDDO**

END PROGRAM BISECTION

Exercise 5: Write a C program for the Bisection method and implement the following improvements

- Check if the initial guesses bracket the root or not.
- Read the true value if it is known and calculate ϵ_{t} in addition to $\epsilon_{a}.$
- Check for the cases of $f(x_L)=0$ or $f(x_U)=0$

Ch 6. Open Methods

- (a) Bracketing methods always converge.
- (b) Open methods may diverge
- (c) or converge very rapidly.

Simple One-Point Iteration

- Put the original formulation of f(x) = 0 into a form of x=g(x).
- Many possibilities are possible
 - $\ln(x) 3x + 5 = 0 \rightarrow x = [\ln(x) + 5] / 3 \text{ or } x = e^{3x-5}$
 - $\cos(x) = 0 \rightarrow x = x + \cos(x)$
- \bullet Start with an initial guess $x_{\bm{0}}$
- Calculate a new estimate for the root using $x_1 = g(x_0)$
- Iterate like this. General formula is $x_{i+1} = g(x_i)$

• Converges if |g'(x)| < 1 in the region of interest (Easier to see graphically in the coming slides).

Simple One-Point Iteration (cont'd)

Example 8: Repeat the previous example (Find the square root of 11). Start with $x_0 = 3$.

(a) $x^2-11 = 0 \rightarrow x = x + x^2-11$

i	x _i	$x_{i+1} = g(x_i)$	ε _t %
0	3	1	70
1	1	-9	371
2	-9	61	1739
3	61	3771	113600
Diverges			

(b) $11-x^2 = 0 \rightarrow x = (4x+11-x^2)/4$

i	Х _і	$x_{i+1} = g(x_i)$	ε _t %
0	3	3.5	5.53
1	3.5	3.1875	3.89
2	3.1875	3.39746094	2.44
3	3.39746094	3.26177573	1.65
4	3.26177573	3.35198050	1.07
5	3.35198050	3.29303718	0.71
Converges			

• Selection of g(x) is important. Note that we did not use the trivial one, $x = \sqrt{11}$.

• If the method converges, convergence is linear. That is the relative error at each iteration is roughly proportional to the half of the previous error. This is easier to see for ϵ_t .

Exercise 6: Show that (a) violates the convergence criteria |g'(x)| < 1.

Simple One-Point Iteration (cont'd)

• We can use the two-curve graphical method to check convergence |g'(x)| < 1.

Newton-Raphson Method

 \bullet Start with an initial guess $x_{\bm 0}~~\text{and}~~\text{calculate}~x_{\bm 1}~\text{as}$

$$f'(x_0) = \frac{f(x_0) - 0}{x_1 - x_0} \longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

• Continue like this until you reach the specified tolerance or maximum number of iterations.

$$\mathbf{x_{i+1}} = \mathbf{x_i} - \frac{\mathbf{f}(\mathbf{x_i})}{\mathbf{f}'(\mathbf{x_i})}$$

Newton-Raphson Method (cont'd)

Example 9: Repeat the previous example (Find the square root of 11). Start with $x_0 = 3$.

$$f(x) = x^2 - 11 = 0$$
, $f'(x) = 2x \rightarrow x_{i+1} = x_i - (x^2 - 11)/2x$

iter	х	f(x)	ε _t %
0	3	-2	9.55
1	3.33333333	0.1111111	0.50
2	3.31666667	0.0002778	0.00126
3	3.31662479	0.0000000	0.00000

Selection of the initial guess affects the convergence a lot.

Exercise 7: NR method is quite sensitive to the starting point. Try to find the first positive root of sin(x) (which is 1.570796) starting with a) $x_0 = 1.5$, b) $x_0 = 1.7$, c) $x_0 = 1.8$, d) $x_0 = 1.9$ (They all converge to different roots).

Derivation of NR Method from Taylor Series

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(\xi)}{2!}(x_{i+1} - x_i)^2$$

Use first order approximation \rightarrow $f(x_{i+1}) \approx f(x_i) + f'(x_i)(x_{i+1} - x_i)$

To find the root, $f(x_{i+1})$ should be zero $\rightarrow 0 \approx f(x_i) + f'(x_i)(x_{i+1} - x_i)$

Solve for
$$x_{i+1} \rightarrow x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Error Analysis

If we use the complete Taylor Series the result would be exact.

$$f(x_e) = 0 = f(x_i) + f'(x_i)(x_e - x_i) + \frac{f''(\xi)}{2!}(x_e - x_i)^2$$
 x_e is the exact root

Subtract this from the 3rd equation $\rightarrow 0 = f'(\mathbf{x}_i)(\mathbf{x}_e - \mathbf{x}_{i+1}) + \frac{f''(\xi)}{2}(\mathbf{x}_e - \mathbf{x}_i)^2$ Note that $E_{t,i} = (\mathbf{x}_e - \mathbf{x}_i)$ and $E_{t,i+1} = (\mathbf{x}_e - \mathbf{x}_{i+1}) \rightarrow 0 = f'(\mathbf{x}_i)E_{t,i+1} + \frac{f''(\xi)}{2}E_{t,i}^2$ For convergence both \mathbf{x}_i and ξ should approach to $\mathbf{x}_e \rightarrow E_{t,i+1} \approx \frac{f''(\mathbf{x}_e)}{2f'(\mathbf{x}_e)}E_{t,i}^2$

This is quadratic convergence. That is the error at each iteration is roughly proportional to the square of the previous error. (See page 141 for a nice example).

Exercise 8: We showed that the NR can be derived from a 1st order Taylor series expansion. Derive a new method using 2nd order Taylor series expansion. Compare the convergence of this method with NR. Comment on the practicality of this new method.

Exercise 9: NR method can be seen as Simple One-Point Iteration method with $g(x) = x_i - f(x_i) / f'(x_i)$. Using the convergence criteria of the Simple One-Point Iteration Method, derive a convergence criteria for the NR Method.

Difficulties with the NR Method (page 144)

- Need to know the derivative of the function.
- May diverge around inflection points.
- May give oscillations around local minimums or maximums.
- Zero or near zero slope is a problem, because f' is at the denominator.
- Convergence may be slow if the initial guess is poor.

Exercise 9.1: Use the NR method to locate one of the roots of f(x) = x(x-5)(x-6)+3 starting with $x_0 = 3.5$ (NR will oscillate around the local minimum).

Secant Method

• Start with two initial guess x₋₁ and x₀.

$$f'(x_0) \approx \frac{f(x_{-1}) - f(x_0)}{x_{-1} - x_0}$$

Use this in the equation of NR method.

$$x_1 = x_0 - \frac{f(x_0)(x_{-1} - x_0)}{f(x_{-1}) - f(x_0)}$$

• Continue like this until you reach the specified tolerance or maximum number of iterations.

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Secant Method (cont'd)

Example 10: Repeat the same example (Find the square root of 11).

Start with $x_{-1} = 2, x_0 = 3$

$$f(x) = x^2 - 11 = 0$$

iter	Х	f(x)	ε _t %
-1	2	-7	-311
0	3	-2	-160
1	3.4	0.56	2.51
2	3.3125	-0.0273438	0.12
3	3.31657356	-0.0003398	0.0015
4	3.31662482	0.0000002	0.0000

Selection of the initial guess affects the convergence a lot.

Exercise 10: There is no guarantee for the secant method to converge. Try to calculate the root of $\ln(x)$ starting with (a) $x_{-1} = 0.5$ and $x_0 = 4$, (b) $x_{-1} = 0.5$ and $x_0 = 5$. Part (a) converges, but not part (b)

Secant vs. False Position

Secant:
$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

False-Position:
$$\mathbf{x} = \mathbf{x}_{U} - \frac{\mathbf{f}(\mathbf{x}_{U})(\mathbf{x}_{L} - \mathbf{x}_{U})}{\mathbf{f}(\mathbf{x}_{L}) - \mathbf{f}(\mathbf{x}_{U})}$$

First iterations of both methods are the same.

Second iterations are different in terms of how the previous estimates are replaced with the newly calculated root.

- False-position Method drops one of previous estimates so that the reamining ones bracket the root.
- Secant Method always drops the oldest estimate.

Special Treatment of Multiple Roots

- At even multiple roots, bracketing methods can not be used at all.
- Open methods still work but
 - f '(x) also goes to zero at a multiple root. Possibility of division by zero for Secant and NR. f(x) will reach zero faster than f '(x), therefore use a zero-check for f(x) and stop properly.
 - they converge slowly (linear instead of quadratic convergence).
- Some modifications can be made for speed up.
 - i) If you know the multiplicity of the root NR can be modified as

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \mathbf{m} \frac{\mathbf{f}(\mathbf{x}_i)}{\mathbf{f}'(\mathbf{x}_i)}$$
 m=2 for a double root, m=3 for a triple root, etc.

ii) Another alternative is to define a new function u(x)=f(x)/f'(x) and use it in the formulation of NR Method

$$x_{i+1} = x_i - \frac{u(x_i)}{u'(x_i)} = \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$$
 You need to know f "(x)

(Similar modifications can be made for the Secant Method. See the book for details.)

Solving System of Nonlinear Equations

Using Simple One-Point Iteration Method

Solve the following system of equations

$$x^{2} + y^{2} = 4$$

 $e^{x} + y = 1$

Put the functions into the form $x=g_1(x,y)$, $y=g_2(x,y)$ $x = g_1(y) = ln(1 - y)$ $y = g_2(x) = -\sqrt{4 - x^2}$

Select a starting values for x and y, such as $x_0=0.0$ and $y_0=0.0$. They don't need to satisfy the equations. Use these values in g functions to calculate new values.

$x_1 = g_1(y_0) = 0$	$y_1 = g_2(x_1) = -2$
$x_2 = g_1(y_1) = 1.098612289$	$y_2 = g_2(x_2) = -1.67124236$
$x_3 = g_1(y_2) = 0.982543669$	$y_3 = g_2(x_3) = -1.74201261$
$x_4 = g_1(y_3) = 1.00869218$	$y_4 = g_2(x_4) = -1.72700321$

The solution is converging to the exact solution of x=1.004169, y=-1.729637

Exercise 11: Solve the same system but rearrange the equations as $x=\ln(1-y)$ $y = (4-x^2)/y$ and start from $x_0=1$ $y_0=-1.7$. Remember that this method may diverge.

Solving System of Nonlinear Equations

Using Newton-Raphson Method

Consider the following general form of a two equation system u(x,y) = 0v(x,y) = 0

Write 1st order TSE for these equations

$$u_{i+1} = u_i + \frac{\partial u_i}{\partial x} (x_{i+1} - x_i) + \frac{\partial u_i}{\partial y} (y_{i+1} - y_i)$$
$$v_{i+1} = v_i + \frac{\partial v_i}{\partial x} (x_{i+1} - x_i) + \frac{\partial v_i}{\partial y} (y_{i+1} - y_i)$$

To find the solution set $u_{i+1} = 0$ and $v_{i+1} = 0$. Rearrange

$$\frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}} \mathbf{x}_{i+1} + \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{y}} \mathbf{y}_{i+1} = -\mathbf{u}_{i} + \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}} \mathbf{x}_{i} + \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{y}} \mathbf{y}_{i}$$
$$\frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \mathbf{x}_{i+1} + \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} \mathbf{y}_{i+1} = -\mathbf{v}_{i} + \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \mathbf{x}_{i} + \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} \mathbf{y}_{i}$$

$$\begin{bmatrix} \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}} & \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} & \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{i+1} \\ \mathbf{y}_{i+1} \end{bmatrix} = \begin{cases} -\mathbf{u}_{i} + \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}} \mathbf{x}_{i} + \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{y}} \mathbf{y}_{i} \\ -\mathbf{v}_{i} + \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \mathbf{x}_{i} + \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} \mathbf{y}_{i} \end{bmatrix}$$

The first matrix is called the Jacobian matrix.

Solve for x_{i+1} , y_{i+1} and iterate.

Can be generalized for n simultaneous equations

Solving System of Eqns Using NR Method (cont'd)

Solve for x_{i+1} and y_{i+1} using Cramer's rule (ME 210)

$$\mathbf{x}_{i+1} = \mathbf{x}_{i} - \frac{\mathbf{u}_{i} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} - \mathbf{v}_{i} \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{y}}}{\frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} - \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{y}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}}}{\frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}}}{\frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}}}{\frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} - \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{y}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{y}} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}_{$$

Looks like it is converging to the root in the 2nd quadrant $x \approx -1.8$, $y \approx 0.8$.

Exercise 12: Can you start with $x_0=0$ and $y_0=0$?

Exercise 13: Try to find starting points that will converge to the solution in the 4th quadrant.