	Calculus and Analytical Geometry	
		II. Midterm
	: Math 119	Last Name:
Acad.Year	r: 2007-2008	Name : Student No.:
Semester	: Fall	Department: Section:
Date	: 9.12.2007	Signature:
Time	: 10:00	6 QUESTIONS ON 6 PAGES
Duration	: 120 minutes	TOTAL 100 POINTS
1 2	3 4 5 6	

1.
$$(5+5+5+5=20 \text{ points})$$
 Let $f(x) = \frac{x^2+4}{x^2-4}$

(a) Find the domain of f and its asymptotes, if any.

(b) Find the critical points of f, if any.

(c) Determine the intervals where f is concave up/down.

(d) Sketch the graph of f.

2. (10 points) Find the area of the largest rectangle that can be inscribed in a right triangle with perpendicular sides of length 3cm and 4cm, if the two sides of the rectangle lie along these sides of the triangle.

3. (5+5+5=15 points) Evaluate each of the following integrals.

(a)
$$\int \frac{x^3}{(2x^4+7)^2} dx$$

(b)
$$\int_{0}^{2\pi} \sqrt{|\sin\theta|^{119} + |\sin\theta| + 1} \cos\theta d\theta$$

(c)
$$\int_{1}^{2} (x + \frac{1}{x})^2 dx$$

4. (a) (10 points) If f(x) is differentiable, and $\int_{0}^{x} f(t)dt = f(x)^{2}$ for all x, find f(x).

(b) (10 points) Find
$$F'(x)$$
 if $F(x) = \int_{x}^{2x} \frac{tdt}{t^3 + 1} dt$

5. (5+10=15 points)

(a) Sketch the region enclosed by y = |x| and $y = x^2 - 1$.

(b) Find the area of the region.

6. (a) (10 points) Find the volume of the solid obtained by rotating the area bounded by $y = \sec x, y = 0, x = 0$ and $x = \pi/3$ around the x-axis.

(b) (10 points) Find the volume of the solid obtained by rotating the area bounded by $y = \frac{1}{(1+x^2)^2}$, y = 0, x = 1 and x = 2 around the *y*-axis.