M E T U Northern Cyprus Campus

	Calculus and Analytical Geometry					
	I. Midterm					
	: Math 11.		Last Na	me:		
Acad.Year	<u>r</u> : 2007-200	08	Name	:	Student N	No.:
Semester	: Fall		Departn	nent:	Section:	
Date	: 2.11.200	7	Signatur	e:		
Time	: 17:40		6 QUESTIONS ON 6 PAGES			
Duration	:120 min	utes		TOTA	L 101 POINTS	
1 2	3 4	5 6				

1. (4+4+4+4=16 points) Evaluate each of the following limits if it exists, or else show why it doesn't exist. (Do not use L'Hospital's rule.)

(a) $\lim_{x \to 6} \frac{\sin(x-6)}{x^2 - 36}$

(b)
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 - 3x + 2}$$

(c)
$$\lim_{x \to 0} (x|x| + \frac{x}{|x|})$$

(d)
$$\lim_{x \to +\infty} (\sqrt{x^6 + 5x^3} - x^3)$$

2. (a) (10 points) Using the $\epsilon-\delta$ definition of limit, prove that

$$\lim_{x \to 3} (4x - 10) = 2$$

(b) (10 points) Let
$$f(x) = \begin{cases} \frac{1}{x} + mx, \ x > 1\\ x^2 + 3x + k, \ x \le 1 \end{cases}$$

Determine the values of the constants k and m so that the function f(x) is differentiable at x = 1.

3. (5+5+5=15 points) Evaluate each of the following derivatives. Do not simplify the final expression.

(a)
$$(\sqrt{x} + \frac{1}{\sqrt{x}} + x - \frac{1}{x})'$$

(b) $((x^3 + 1)\cos x)'$

(c)
$$\left(\frac{\cos(\sqrt{x-1})}{\sin(\sqrt{x+1})}\right)'$$

- **4.** (a) (10 points) Say $f(x) = \frac{x^2 1}{x^2 + 1}g(x), f(0) = -2, f'(0) = 1.$
- (i) Find g(0).
- (ii) Find g'(0).
- (iii) Find $(f(x)g(x))'|_{x=0}$.
- (iv) Find $(\frac{f(x)}{g(x)})'|_{x=0}$.

(b) (10 points) Consider the curve $x^{\frac{3}{4}} + y^{\frac{3}{4}} + xy = 25$.

Find an equation for the tangent line to the curve at (1, 16).

5. (a) (10 points) Estimate $\sqrt[5]{99999}$.

(b) (10 points) The height of a container of right circular cylindrical shape is increasing at a constant rate of 1cm/s, and the radius of its base is decreasing at a rate of 0.3cm/s. Find the rate at which its volume is changing when the height of the container is 10cm and its base radius is 2cm.

6. (10 points) If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, what is the minimum possible value of f(4)? Prove your result.