HOMOLOGY OF NON ORIENTABLE REAL ALGEBRAIC VARIETIES

YILDIRAY OZAN

ABSTRACT. Let R be any commutative ring with unity and X a nonsingular compact real algebraic variety with a nonsingular projective complexification $i : X \to X_{\mathbb{C}}$. For a topological component X_0 of X we define $KH_*(X_0, R)$ as the kernel of the induced homomorphism $i_* : H_*(X_0, R) \to H_*(X_{\mathbb{C}}, R)$ and $ImH^*(X_0, R)$ as the image of the homomorphism $i^* : H^*(X_{\mathbb{C}}, R) \to H^*(X_0, R)$. In [6] the author showed that both $KH_*(X_0, R)$ and $ImH^*(X_0, R)$ are independent of the complexification $X \subseteq X_{\mathbb{C}}$ and thus (entire rational) isomorphism invariants of X provided that X_0 is R-orientable. In this note the same result is proved for non R-orientable X_0 under the assumption that $2 \in R$ is a unit. We have also some partial results for $R = \mathbb{Z}$.

1. INTRODUCTION AND THE RESULTS

Let R be any commutative ring with unity. Let X be a nonsingular compact real algebraic variety and $i: X \to X_{\mathbb{C}}$ be the inclusion map into some nonsingular projective complexification. Define $KH_*(X, R)$ as the kernel of the induced map

$$i_*: H_*(X, R) \to H_*(X_{\mathbb{C}}, R)$$

on homology and $ImH^*(X, R)$ as the image of the induced map

$$i^*: H^*(X_{\mathbb{C}}, R) \to H^*(X, R).$$

In [6] it is shown that if X is R-orientable then both $KH_*(X, R)$ and $ImH^*(X, R)$ are independent of the complexification $i: X \to X_{\mathbb{C}}$ and thus are (entire rational) isomorphism invariants of X (see also [3]). Indeed the proof of this result enables us to define $KH_*(X_0, R)$ and $ImH^*(X_0, R)$ for any R-orientable (metric) topological component X_0 of the underlying smooth manifold X. In other words, $KH_*(X_0, R)$ and $ImH^*(X_0, R)$ are independent of the complexification as long as X_0 is R-orientable.

Below is the main result of this note, which extends this result to non R-orientable varieties.

Date: July 2, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14P25, 14F25. Secondary 14E05.

Key words and phrases. Real algebraic varieties, complexification, algebraic homology, entire rational maps.

YILDIRAY OZAN

Theorem 1.1. Let X_0 be a topological component of any compact nonsingular real algebraic variety X and R is a commutative ring with unity. Then, both $KH_*(X_0, R)$ and $ImH^*(X_0, R)$ are independent of the choice of the smooth projective complexification $i : X \to X_{\mathbb{C}}$ provided that either X_0 is R-orientable or R contains 2 as a unit.

Even though this theorem excludes the case $R = \mathbb{Z}$ for nonorientable topological component X_0 , we have some results in this case also. For any positive integer n consider the exact sequence of Abelian groups

$$0 \to \mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \to \mathbb{Z}_n \to 0$$

and the corresponding Bockstein exact sequences for cohomology and homology (cf. see [4])

$$\cdots \to H^{i-1}(X_0, \mathbb{Z}_n) \xrightarrow{\beta} H^i(X_0, \mathbb{Z}) \xrightarrow{\times n} H^i(X_0, \mathbb{Z}) \to H^i(X_0, \mathbb{Z}_n) \xrightarrow{\beta} \cdots$$

and

$$\cdots \to H_{i+1}(X_0, \mathbb{Z}_n) \xrightarrow{\beta} H_i(X_0, \mathbb{Z}) \xrightarrow{\times n} H_i(X_0, \mathbb{Z}) \to H_i(X_0, \mathbb{Z}_n) \xrightarrow{\beta} \cdots$$

Theorem 1.2. Let X_0 be a nonorientable topological component of a compact nonsingular real algebraic variety X. Then, $ImH^i(X_0, \mathbb{Z}) \otimes \mathbb{Q}$ and the image of the Bockstein homomorphism restricted to $ImH^{i-1}(X_0, \mathbb{Z}_n)$, $\beta(ImH^{i-1}(X_0, \mathbb{Z}_n))$, which is a subgroup of n-torsion elements in $H^i(X_0, \mathbb{Z})$, are independent of the complexification $i : X \to X_{\mathbb{C}}$, provided that n = 2 or is a positive odd integer.

Similarly for homology, $KH_i(X_0, \mathbb{Z}) \otimes \mathbb{Q}$ and the image of the Bockstein homomorphism restricted to $KH_{i+1}(X_0, \mathbb{Z}_n)$, $\beta(KH_{i+1}(X_0, \mathbb{Z}_n))$, which is a subgroup of n-torsion elements in $H_i(X_0, \mathbb{Z})$, are independent of the complexification $i: X \to X_{\mathbb{C}}$, provided that n = 2 or is a positive odd integer.

2. Proofs

All real algebraic varieties under consideration in this report are nonsingular. It is well known that real projective varieties are affine (Proposition 2.4.1 of [1] or Theorem 3.4.4 of [2]). Moreover, compact affine real algebraic varieties are projective (Corollary 2.5.14 of [1]) and therefore, we will not distinguish between real compact affine varieties and real projective varieties.

For real algebraic varieties $X \subseteq \mathbb{R}^r$ and $Y \subseteq \mathbb{R}^s$ a map $F: X \to Y$ is said to be entire rational if there exist $f_i, g_i \in \mathbb{R}[x_1, \ldots, x_r], i = 1, \ldots, s$, such that each g_i vanishes nowhere on X and $F = (f_1/g_1, \ldots, f_s/g_s)$. We say X and Y are isomorphic if there are entire rational maps $F: X \to Y$ and $G: Y \to X$ such that $F \circ G = id_Y$ and $G \circ F = id_X$. Isomorphic algebraic varieties will be regarded the same. We refer the reader for the basic definitions and facts about real algebraic geometry to [1, 2].

We will only prove the statements of the above theorems involving cohomology, because proof of the statements about homology are completely analogous. Let X_0 be a nonorientable topological component of a nonsingular real algebraic variety X. Since X_0 is nonorientable so is X. The smooth orientation double cover of X is diffeomorphic to a nonsingular real algebraic variety \tilde{X} , possibly not unique, on which the corresponding \mathbb{Z}_2 deck transformation group acts algebraically and the quotient map $p: \tilde{X} \to X$ is entire rational. This can be seen as follows: The determinant line bundle of X is (strongly) algebraic and is non trivial on X_0 . Hence, the $f: X \to \mathbb{R}P^N$ be an entire rational map classifying this line bundle. Now, $\tilde{X} \to X$ can be taken to be the pull back of the algebraic double covering $S^N \to \mathbb{R}P^N$ (cf. see [7, 8]). Now, we have the following result:

Lemma 2.1. Assume that X is a nonsingular compact real algebraic variety and X_0 a nonorientable topological component of X. Let $i: X \to X_{\mathbb{C}}$ be any smooth projective complexification and $p: \widetilde{X} \to X$ any real algebraic orientation double cover as above. Then if R contains 2 as a unit then $(p^*)^{-1}(ImH^*(\widetilde{X}, R)) = ImH^*(X_0, R)$. Moreover, $ImH^*(X_0, R)$ is independent of the complexification.

One can easily state and prove the above lemma for homology.

Proof. Let $i : X \to X_{\mathbb{C}}$ be any fixed smooth projective complexification. Then the entire rational covering map $p : \widetilde{X} \to X$ will extend to a rational map, and after blowing up some smooth centers away from the real locus, to some smooth projective complexification $p_{\mathbb{C}} : \widetilde{X}_{\mathbb{C}} \to X_{\mathbb{C}}$ (possibly a branched double covering projection) making the diagram below commutative:

$$\begin{array}{ccc} \widetilde{X_0} & \stackrel{j}{\longrightarrow} \widetilde{X_{\mathbb{C}}} \\ p \downarrow & \downarrow p_{\mathbb{C}} \\ X_0 & \stackrel{i}{\longrightarrow} X_{\mathbb{C}} \end{array}$$

where \widetilde{X}_0 is $p^{-1}(X_0)$, clearly a topological component of \widetilde{X} . The \mathbb{Z}_2 action on \widetilde{X} extends to an algebraic action on $\widetilde{X}_{\mathbb{C}}$ so that $p_{\mathbb{C}} : \widetilde{X}_{\mathbb{C}} \to X_{\mathbb{C}}$ is a, possibly branched, double covering, and the vertical maps are equivariant. This diagram yields the following commutative diagram

$$H^{i}(\widetilde{X_{\mathbb{C}}}, R) \xrightarrow{j^{*}} H^{i}(\widetilde{X_{0}}, R)$$
$$p_{\mathbb{C}}^{*} \uparrow \qquad \uparrow p^{*}$$
$$H^{i}(X_{\mathbb{C}}, R) \xrightarrow{i^{*}} H^{i}(X_{0}, R).$$

Since the smooth projective complexification $i: X \to X_{\mathbb{C}}$ is arbitrary the commutativity of the above diagram implies that

$$ImH^{*}(X_{0}, R) \subseteq (p^{*})^{-1}(ImH^{*}(X_{0}, R)).$$

To see the other inclusion, let τ and $\tau_{\mathbb{C}}$ denote the involutions of the \mathbb{Z}_2 actions on \widetilde{X} and $\widetilde{X}_{\mathbb{C}}$, respectively. It is well known that the vertical maps in

YILDIRAY OZAN

the above diagrams are injective with images $H^i(\widetilde{X}_0, R)^{\tau^*}$ and $H^i(\widetilde{X}_{\mathbb{C}}, R)^{\tau^*_{\mathbb{C}}}$, the subgroups of invariant classes (cf. see page 193 of [5]).

Note that to finish the proof of the first assertion we need to prove the following : Let $a \in H^i(X_0, R)$ be such that $p^*(a) \in ImH^i(\widetilde{X_0}, R)$. Then $a \in ImH^i(X_0, R)$. To prove this let $b \in H^i(\widetilde{X_{\mathbb{C}}}, R)$ be such that $j^*(b) = p^*(a)$. By the above paragraph $2p^*(a) = j^*(b + \tau^*_{\mathbb{C}}(b)) = p^*_{\mathbb{C}}(c)$, for some $c \in H^i(X_{\mathbb{C}}, R)$. It follows from the commutativity of the above diagram and the injectivity of p^* that $2a = i^*(c)$. Since 2 is a unit we have $a = i^*(\frac{c}{2}) \subseteq Im(i^*)$.

For the last assertion just note that the complexification $i: X \to X_{\mathbb{C}}$ is arbitrary and independent from the choice of the double covering $p: \widetilde{X} \to X$.

Note that Theorem 1.1 follows from the above Lemma 2.1.

Proof of Theorem 1.2. Consider the exact sequence of Abelian groups

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/Z \to 0$$

and the corresponding Bockstein exact sequences for X_0 and $X_{\mathbb{C}}$

Tensoring the above sequences with \mathbb{Q} and using Theorem 1.1 we get that $ImH^i(X_0, \mathbb{Z}) \otimes \mathbb{Q}$ is independent of the complexification $i: X \to X_{\mathbb{C}}$.

Now let us concentrate on torsion elements in $H^i(X_0, \mathbb{Z})$. Let *n* be a positive odd integer. Then 2 is a unit in \mathbb{Z}_n . Considering a similar diagram as above corresponding to the short exact sequence of Abelian groups

$$0 \to \mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \to \mathbb{Z}_n \to 0$$

and the corresponding Bockstein sequences

$$\cdots \to H^{i-1}(X_0, \mathbb{Z}_n) \xrightarrow{\beta} H^i(X_0, \mathbb{Z}) \xrightarrow{\times n} H^i(X_0, \mathbb{Z}) \to H^i(X_0, \mathbb{Z}_n) \to \cdots$$

$$\uparrow i^* \qquad \uparrow i^* \qquad \uparrow i^* \qquad \uparrow i^* \qquad \uparrow i^* \qquad \cdots$$

$$\cdots \to H^{i-1}(X_{\mathbb{C}}, \mathbb{Z}_n) \xrightarrow{\beta} H^i(X_{\mathbb{C}}, \mathbb{Z}) \xrightarrow{\times n} H^i(X_{\mathbb{C}}, \mathbb{Z}) \to H^i(X_{\mathbb{C}}, \mathbb{Z}_n) \to \cdots$$

we deduce that the image of the Bockstein homomorphism restricted to $ImH^{i-1}(X_0, \mathbb{Z}_n)$, $\beta(ImH^{i-1}(X_0, \mathbb{Z}_n))$, which is a subgroup of *n*-torsion elements in $H^i(X_0, \mathbb{Z})$, is independent of the complexification $i: X \to X_{\mathbb{C}}$ by Theorem 1.1. On the other hand, since \mathbb{Z}_2 is a field $ImH^i(X_0, \mathbb{Z}_2)$ is also independent of the complexification ([6]). Now using the exact sequence

$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}_2 \to 0,$$

4

in a similar fashion, we see that the image of the Bockstein homomorphism restricted to $\beta(ImH^{i-1}(X_0, \mathbb{Z}_2))$, which is a subgroup of 2-torsion elements in $H^i(X_0, \mathbb{Z})$, is also independent of the complexification $i: X \to X_{\mathbb{C}}$. \Box

References

- Akbulut, S., King, H.: Topology of real algebraic sets, M.S.R.I. book series, Springer-Verlag, New York, 1992
- [2] Bochnak, J., Coste, M., Roy, M. F.: Real Algebraic Geometry, Ergebnisse der Math. vol. 36, Springer-Verlag, Berlin, 1998
- [3] Bochnak, J., Kucharz, W.: Complexification of real algebraic varieties and vanishing of homology classes. Bull. London Math. Soc. 33, 32-40 (2001)
- [4] Bredon, G. E.: Topology and Geometry, Springer-Verlag, New York, 1993
- [5] Dieck T. tom : Transformation groups, Walter de Gruyter, Berlin, 1987
- [6] Ozan, Y.: On homology of real algebraic varieties. Proc. Amer. Math. Soc. 129, 3167-3175 (2001)
- [7] —, Quotients of real algebraic sets via finite groups. Turkish J. Math. 21, 493-499 (1997)
- [8] —, Real algebraic principal abelian fibrations, Contemp. Math. 182, 121-133 (1995)

DEPARTMENT OF MATHEMATICS, MIDDLE EAST TECHNICAL UNIVERSITY, 06531 ANKARA, TURKEY

E-mail address: ozan@metu.edu.tr