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CHAPTER 6 
 
 

HAZARD ASSESSMENT 
 

 

 

In this chapter various methods are considered to analyze the presented data in 

Chapters 4 and 5, in order to assess the landslide hazard using Geographical 

Information Systems. 

 

6.1. Thematic Landslide Attribute spatial distribution analysis (TLASDA) 
 

This is the simplest type of analysis that only reflects the current situation as 

where the landslides have occurred in a selected period. Such a map only shows the 

outlines of the individual landslides not the general scheme of landslide hazard in the 

area. However, such thematic maps are useful for gathering the information about the 

frequency, type, and depth. No direct information is present for the possible causes of 

the landslides, as the map does not contain parameter information. Nevertheless, this 

type of analysis provides a visual input showing the severity of the hazard with regard to 

the attribute of the landslides.  

19 combinations of attribute maps are available for the cumulative of 4 periods, 

however only the maps of the last period (1994) are presented here in this chapter. All 

of the maps used in the analysis are converted to binary vector maps using their 

attributes in order to give more visual perception. The “Massinfo” attribute has two 

available items as “scarp & body” and “scarp & path”. Although the map shows no clear 

preferences, the map reveals that the larger the landslides, they possess “scarp & body” 

attribute (Figure 6.1). 

The “Type” attribute has two available items as “flow” and “slide”. The flow type 

shows close relation with the E-5 highway as most of the flow dominated landslides 

occur in the Bolu mountain pass of the E-5 highway (Figure 6.2). 

The “Depth” and “Style” attributes show similar spatial preferences. The “Style” 

attribute has two available items as “single” and “multiple” and the “Depth” attribute has 

two available items as “shallow” and “deep”. The single type landslides are generally 

smaller landslides (Figure 6.3 and Figure 6.4). 



 133

 
Figure 6.1. The Thematic Landslide Attribute spatial distribution of massinfo attribute of 
1994 photo characteristics database, where black areas show Scarp & Body and grey 
areas show Scarp & Path attributes. 
 

 
Figure 6.2. The Thematic Landslide Attribute spatial distribution of type attribute of 1994 
photo characteristics database, where black areas show Flow and grey areas show 
Slide attributes. 
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Figure 6.3. The Thematic Landslide Attribute spatial distribution of style attribute of 
1994 photo characteristics database, where black areas show Single and grey areas 
show Multiple attributes. 

 
Figure 6.4. The Thematic Landslide Attribute spatial distribution of depth attribute of 
1994 photo characteristics database, where black areas show Shallow and grey areas 
show Deep attributes. 
 

The “Distribution of Activity” attribute has two available items as “Scarp related 

activities” and “mass related activities”. Although not significant, the landslides near to 

E-5 highway resembles more activity than the rest of the landslides (Figure 6.5). 
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Figure 6.5. The Thematic Landslide Attribute spatial distribution of activity attribute of 
1994 photo characteristics database, where black areas show Scarp, grey areas show 
Mass attributes, white polygons with black border show stable attribute. Polygons which 
do not have any attribute in this field are not shown. 
 

Due to the low level of this analysis, only some general statements regarding 

the whole area could be generated. This analysis was first developed for regional 

analysis, even for national scale analyses. Based on the very coarse resolution of the 

analysis, the statements are very general and their validity is suspicious. After the 

investigation of the above maps the severity of the landslide hazard is found to be 

dominant in the southern slopes of the Asarsuyu catchment, in the northern slopes 

hardly any landslide occurs. The eastern part which constitutes the higher parts of the 

catchment is also landslide free. Landslides are generally occurring near to the E-5 

highway and near to the greater landslides. Although these distribution maps could be 

overlaid with other available maps, this was not done, as parameter versus attribute 

information will be used in other analyses. 

 
6.2. Landslide activity analysis (LACTA) 
 

The TLASDA and the analyzed data in the previous chapter do not yield any 

information about the trend of activity changes. They do not provide any information 

regarding the individual landslides. This analysis is consisted of a two-dimensional 

matrix resulted from non-graphical querying of the constructed GIS database. The 

“Distribution of Activity” column of the photocharacteristics database is used in 

constructing this matrix. First the value fields in the “Distribution of Activity” column is 

reclassified in to 5 new value items, in coherence with section 5.2.5. Two new value 
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items are introduced to the matrix as “present” and “absent”, in order to consider the 

total number of the landslides. The details and probable meaning of the crossed items 

are presented in Table 6.1. 

 
Table 6.1. The two dimensional matrix of LACTA 
 

Activity in older photo set 

 Scarp Body Present Absent Dormant 

Scarp 
No change, still 
activity confined 

in scarp area 

The activity 
migrates from 
body to scarp 

area 

Reactivation 
in scarp area New landslide New landslide 

Body 

The activity 
migrates from 
scarp to body 

area 

No change, still 
activity confined 

in body area 

Reactivation 
in body area 

New landslide, 
development 
stage is not 

recorded 

New landslide, 
development 
stage is not 

recorded 

Present 

No activity can 
be classified but 
still landslide is 

present 

No activity can 
be classified but 
still landslide is 

present 

No change 

New landslide, 
development 
stage is not 

recorded 

New landslide, 
development 
stage is not 

recorded 

Absent 
Landslide 
becomes 
invisible 

Landslide 
becomes 
invisible 

Landslide 
becomes 
invisible 

No change 
Landslide 
becomes 
invisible 

A
ct
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ity

 in
 y
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ng

er
 p

ho
to

 s
et

 

Dormant Stabilization Stabilization Stabilization 

New landslide, 
development 
stage is not 

recorded 

No change 

 

Although the row named “absent” in the “activity in younger photo set” could be 

attributed to some errors of photo interpretation. Once there occurs a slide there should 

be its relicts. It should be noted that either the land cover or some human activities had 

viped out the relict features of the landslide. 

In the matrix of 1952 and 1972 (Table 6.2) all of the value items are clustered 

around “present” and “absent” as 1952 period is the first photo set, hence no activity 

information before 1952 could be found. The increase in number of landslides is 

reflected in the matrix in “absent – present” pair, as 13 new landslides. 14 slides are 

reactivated showing activation in the body area, 14 landslides are still present but no 

signs of activity could be seen. 4 landslides possess activity in the scarp area, and only 

one slide is vanished.  

In 1972-1984 matrix the striking result is the “body-body” pair, it constitutes 10 

out of 47 slides (Table 6.3). This could be attributed to the reactivation in the slided 

mass area of older slides in the study area. Two new slides are recorded in 1984 period 

and 8 landslides are vanished. 
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Table 6.2. Two-dimensional matrix of 1952 and 1972 periods. 
 

Activity in 1952 photo set 

 Scarp Body Present Absent Dormant Σ 

Scarp - - 
4 

(8.7%) 
- - 4 

Body - - 
14 

(30.43%) 
- - 14 

Present - - 
14 

(30.43%) 

13 
(28.26%) 

- 27 

Absent - - 
1 

(2.17%) 
1 - 2 

Dormant - - - - - - 

A
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2 
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Σ - - 33 14 -  

 
Table 6.3. Two-dimensional matrix of 1972 and 1984 periods. 
 

Activity in 1972 photo set 

 Scarp Body Present Absent Dormant Σ 

Scarp 
3 

(6.38%) 

1 
(2.13%) 

4 
(8.51%) 

1 
(2.13%) 

- 9 

Body 
1 

(2.13%) 

10 
(21.28%) 

5 
(10.64%) 

- - 16 

Present - - 
12 

(25.53%) 

1 
(2.13%) 

- 13 

Absent - 
3 

(6.38%) 

5 
(10.64%) 

- - 8 

Dormant - - 
1 

(2.13%) 
- - 1 

A
ct

iv
ity

 in
 1

98
4 

ph
ot

o 
se

t 

Σ 4 14 27 2 -  

 
In 1994 period two more landslides are vanished, The main activity is continuing 

in body areas (“body-body” pair) (Table 6.4). On the other hand, 10 landslides are 

observed as present reflecting that no significant activity could be recorded. 

 
Table 6.4. Two-dimensional matrix of 1984 and 1994 periods. 
 

Activity in 1984 photo set 

 Scarp Body Present Absent Dormant Σ 

Scarp 
5 

(12.82%) 

1 
(2.56%) 

2 
(5.13%) 

- - 7 

Body 
3 

(7.69%) 

14 
(35.9%) 

- - - 17 

Present - - 
10 

(25.64%) 
- - 10 

Absent 
1 

(2.56%) 

1 
(2.56%) 

- 8 - 10 

Dormant - - 
1 

(2.56%) 
- 

1 
(2.56%) 

2 

A
ct
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ity

 in
 1

99
4 

ph
ot

o 
se

t 

Σ 9 16 13 8 1  
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When all of the matrices are explored together, it is evident that the main activity 

is confined to body related activities, probably some forms of flow type. However, it 

could not be denied that the scarp activities are also in an up trend, probably notifying 

that the area is becoming geomorphologically mature, so the landslides. As a de-

forestation re-forestation cycle has been observed in the area, probably the area is 

reshaping itself due to the changing geomorphological constraints. In the deforested 

period new landslides and intense surface processes (soil creep, erosion, etc.) took 

place changing the kinematical dynamics, yielding in the creation of new down gradient 

forces of nature. Although the number of landslides decreases through 1972 to 1994, 

the activity states even become more instable, not generating new slides but activating 

the older ones. 

 

6.3. Landslide Isopleth analysis (LIA) 
 

 This analysis is the most basic quantitative analysis that could be applied to 

landslide hazard evaluation, and is extensively used in any kind of spatial and attribute 

dependent data. The backbone of this analysis is that it consists of a counting circle. 

The circle is moved through the map with a constant offset and at each location the 

points falling into the counting circle is counted and recorded in the center of the 

counting circle. Generally a counting circle of 1 km2 area is used as a convention to call 

the density at each point as per km2. The offset amount is generally selected as the half 

radius of the counting circle. In this case to achieve the 1 km2 area a radius of 564 meter 

is used and the offset is taken as 250 meters (Figure 6.6). 

The resulting text file is then linearly interpolated and a continuous density 

surface is formed using ordinary kriging. This raster file is then converted into vector via 

contouring using cubical convolution algorithm. The isopleth intervals in contouring are 

selected as 20 percent (Figure 6.7). 

The quality and resolution of the isopleth map is strongly dependent on the 

circle size and the offset distance. The larger the size of the search circles the lower the 

resolution is and the greater the generalization. However, small circle sizes are creating 

redundant information as when size gets smaller and smaller the resultant map gets 

similar to the original landslide inventory map. On the other hand, the offset size of the 

circles also affects the final product. When offset distance exceeds the radius of the 

counting circle the reason for doing an isopleth map vanishes as the data turns into 

discrete rather than continuous data. 
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Figure 6.6. The mechanism of the isopleth analysis 
 

The resultant isopleth map of Asarsuyu catchment with 564 meter radius and 

250 meter offset reveals information quite conformable with the non-spatial results of the 

previous chapter. In order not to create duplication the overlay of every parameter map 

is not shown here, only significant results are listed below.  

 
1. The E-5 road has cut through the maximum density areas of the 

isopleth  

2. Few settlements are located in the 80-100% interval of the isopleth, but 

other intervals have a dispersed layout. 

3. The geological units show significant preferences, as the greenschist 

facies of Yedigöller formation has no landslides, and the flysch 

sequence has the most landslides. 

4. Strong relationship with the fault density is seen especially in the lower 

density intervals 
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Figure 6.7. The isopleth map of the Asarsuyu catchment, each contour level represents 
20 % landslide density. 
 

6.4. Statistical analyses 
 

Two types of statistical analyses are planned to be carried out in the Asarsuyu 

catchment for the estimation of future landslide hazards. The aim to use statistical 

methods is to increase the objectivity of the assessment, and to let the data derive its 

own decision rules. 

To achieve this goal, as explained in earlier chapters, the nodes of seed cells 

are used as decision rule generator or training samples. 4430 seed cells are introduced 

to a database containing all of the available variables in the system.  

However, a major impediment is compromised in the nature of the data as all of 

the bi-variate methods used are designated for some form of categorical data not for 

continuous data sets. This arouses from the fact that the all-available bi-variate methods 

base themselves to the landslide density or abundance in certain parameter classes. If 

the continuous data is used as it is, the densities will be calculated for the whole map 

and not even a single natural preference in the area will be utilized for hazard 

assessment. Consequently, a continuous to discrete categorical conversion seems to be 

indispensable. Some efforts have been carried out to categorize some continuous data 

in the literature in the last century, unfortunately any single example in landslide hazard 

assessment or in geosciences are affirmed. Some authors of mathematical, medical and 

statistical experience have proposed methods of conversion. Generally these methods 

depend on the optimum bin width classification of the histograms of various parameters, 

and further they do not have a spatial dimension. The earliest published rule for 

selecting the bin width appears to be that of Sturges (1926). This proposal is more of a 
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number-of-bins rule rather than a bin width rule itself, but essentially amounts to 

choosing the bin width. 
 

nlog1
DataofRangeĥ

2+
=   

where n is the sample size 
 

However, Scott (1979, 1992) showed that this bin width leads to an over 

smoothed histogram, especially for large samples and proposed an unbiased estimation 

of a probability density function, which is achieved when: 
 

3/1N49.3W −σ=  

 
Where W is the width of the histogram bin, σ is the standard deviation of the 

distribution and N is the available samples. This estimator worked well for Gaussian 

distributions, where it led to overlay large bin widths and hence over smoothing. 

Friedman and Diaconis (1981) suggested a more simple method: 
 

3/1N)IQR(2W −=  

 
Where W is the width of the histogram bin, IQR is the inter quartile range (the 

75th percentile minus the 25th percentile) and N is the sample size. Numerical 

comparisons by Emerson and Hoaglin (1983) of the Scott and Freedman-Diaconis (FD) 

rules showed the FD rule led to narrower bin widths, although in practical applications 

the two rules will often lead to the same choice of interval width (Izenman, 1991). 
 

All of the methods cited above has a number of disadvantages which are listed below: 
 

• Over smoothed class divisions 

• Distribution dependent 

• Valid for only one parameter map 

• Cannot be applied to multi-modal distributions (multi-modality overrides the 

assumptions) 
 

Due to the cited disadvantages of former methods a new method is proposed to 

classify the continuous data sets into categories, which could be called as “percentile 

method” (Figure 6.8). The core of this method is dependent on equal frequencies. The 

frequency domain is quite free of distribution parameters and could easily be implemented in 

bimodal or multi-modal distributions. The stages of this method is as follows. First the 

percentiles  of  each  variable  of  seed  cells  are  found  and  recorded;  secondly the whole  
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Figure 6.8. The snapshot of methodology of percentile method and reclassified 
parameter map production. The areas with a star are the nature’s own decision rule and 
not taken into calculations as there is no landslide in these area. 
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parameter map is classified accordingly to the seed cells percentile limits (Figure 6.8.). The 

resultant classes of the parameter map have same landslide density but the areas of the 

percentile classes on the whole parameter map are not equal to each other. This constitutes 

the natural weighting of each parameter class. Furthermore, the minimum and maximum 

values of the parameter map are dependent of the seed cells data base, such as if the 

whole area has elevations of the magnitude as 200 meters as the minimum and the 

minimum of the seed cells are 300 meter, the area lying in between 200-300 meters are not 

taken into consideration as the nature itself creates her first decision rule as not having any 

landslides in that range. 

All of the 13 parameters are analyzed and out of 13 excluding the 2 categorical 

ones (geological map and the land cover map) the remaining 11 parameters are re-

classified according to the seed cell percentile values. All of the percentile maps are 

shown in Figures 6.9, 6.10 and in 6.11 with their frequency and cumulative histograms 

overlaid with percentile ranges. 

 
Table 6.5. The percentiles of seed cells within each variable. 

4430 4430 4430 4430 4430 4430 4430 4430 4430 4430 4430

0 0 0 0 0 0 0 0 0 0 0

168,37 22,41 661,84 118,30 1217,83 699,45 235,56 408,52 113,88 176,22 160,68

180,00 22,00 680,00 108,00 1206,00 459,00 209,00 306,00 96,00 145,00 157,00

45 22 750 25 1 153 0 114 13 9 150

126,25 9,12 179,21 76,99 899,59 651,25 161,03 339,66 82,12 142,29 37,01

15939,83 83,13 32116,12 5927,73 809255,17 424130,59 25930,03 115368,76 6743,79 20245,18 1369,43

359 50 830 397 3112 2625 705 1517 360 683 232

-1 1 300 0 0 4 0 0 4 0 55
358 51 1130 397 3112 2629 705 1517 364 683 287

9 11 420 25 75 105 12 73 14 17 119
27 15 474 49 211 167 110 127 39 41 136
45 17 530 68 391 230 157 180 52 70 144
83 20 620 87 834 322 189 239 75 107 150

180 22 680 108 1206 459 209 306 96 145 157
225 25 730 130 1607 609 242 386 122 189 165
284 28 770 155 1857 804 286 478 152 241 174
315 30 820 183 2114 1397 357 675 191 302 187
333 34 880 221 2427 1825 481 977 238 382 208

Valid
Missing

N

Mean
Median
Mode
Std. Deviation
Variance
Range
Minimum
Maximum

10
20
30
40
50
60
70
80
90

Percentiles

ASPECT SLOPE ELEV D_DRAIN D_E5 D_SETTLEDENS_FAULT D_FAY D_RIDGE D_PRO DENSDR
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Figure 6.9. The percentile maps of morphology of  Asarsuyu catchment, with frequency 
and cumulative histograms, a) Aspect, b) Slope, c) Elevation 



 145

1342

1216

1145

1068

989
903

827
760

682
598

535
474

415
356

297
237

178
119

600

C
u
m
u
l
a
t
i
v
e
 
P
e
r
c
e
n
t

100

90

80

70

60

50

40

30

20

10

0

 

1500

1400

1300

1200

1100

1000

900
800

700
600

500
400

300
200

100
0

F
r
e
q
u
e
n
c
y

500

400

300

200

100

0

a 

662

611

576

539

504

470

437

400

366

333

300

267

234

201

168

135

102

67

34

0

C
u
m
u
l
a
t
i
v
e
 
P
e
r
c
e
n
t

100

90

80

70

60

50

40

30

20

10

0

 

700
650

600
550

500
450

400
350

300
250

200
150

100
500

F
r
e
q
u
e
n
c
y

600

500

400

300

200

100

0

b 

357

328

308

290

271

252

234

216

198

180

162

144

126

108

90

72

54

36

18

0

C
u
m
u
l
a
t
i
v
e
 
P
e
r
c
e
n
t

100

90

80

70

60

50

40

30

20

10

0

 

400

360

320

280

240

200

160

120

80

40

0

F
r
e
q
u
e
n
c
y

500

400

300

200

100

0

c 

277

261

248

236

224

212

200

188

176

164

152

140

128

116

104

92

80

68

55

C
u
m
u
l
a
t
i
v
e
 
P
e
r
c
e
n
t

100

90

80

70

60

50

40

30

20

10

0

 

280
260

240
220

200
180

160
140

120
100

8060

F
R
E
Q
U
E
N
C
Y

800

600

400

200

0

d 
Figure 6.10. The percentile maps of lineament and density patterns of Asarsuyu 
catchment, with frequency and cumulative histograms, a) Distance to fault , b) Fault 
density, c) Distance to Drainage d) Drainage density 
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Figure 6.11. The percentile maps of infrastructure and distance to ridge of Asarsuyu 
catchment, with frequency and cumulative histograms, a) Distance to ridge , b) Distance 
to Settlement, c) Distance to Power and road network d) Distance to E-5 Highway. 
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6.4.1. Bi-variate analyses 
 

In bi-variate analyses, as explained in Chapter 2, the core of the analysis is to 

get the densities of landslide occurrences in each parameter map and in each 

parameter map’s classes, and to get some data driven weights based on the class 

density and the landslide density. 

Two of the previously mentioned methods have been utilized in this study as: 

landslide susceptibility and information value method. In the landslide susceptibility 

method as the nodes of seed cells are representing 25x25 meter area in the map, the 

area density method is used. A brief recapitulation of the methods is given in Table 6.6. 

 

Table 6.6. Methodological snapshot of used two methods 

 

LANDSLIDE SUSCEPTIBILTY INFORMATION VALUE 

 
D

Npix SX
Npix Xarea

i

i
= 1000

( )
( )

 

 
in which Darea = Areal density per millage 

Npix SXi( )  = number of pixels with mass 
movements within variable class Xi. 

Npix Xi( )  = number of pixels within variable class 
Xi. 
 
To evaluate the influence of each variable, weighting factors 
should have to be introduced, which compare the calculated 
density with the overall density in the area. The formula for the 
density-based area is: 

 

W
Npix SX
Npix X

Npix SX
Npix Xarea

i

i

i

i

= −
∑
∑1000 1000

( )
( )

( )
( )

 

 

 

I
S N
S Ni
i i= log  

 
 In which  
 Si: the number of land units or 
pixels with mass movements and the 
presence of variable Xi, 
 Ni: The number of land units or 
pixels with variable Xi 
 S:  The total number of land 
units or pixels with mass movements 
 N: The total number of land units 
or pixels. 
 
The degree of a hazard for a land unit or 
pixel j is calculated by the total information 
value Ij 
 

I X Ij ij j
i

m

=
=
∑

0
 

 
in which 
 m = number of variables, 
 Xij  = 0 if the variable Xi is 
not present in the land unit or pixel j and 1 
if the variable is present. 
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Simply, each area of class in the reclassified parameter maps (Figures 6.9, 

6.10, 6.11) is divided by the landslide density in this class. As previously noted, the 

landslide densities are bound by the percentile method as approximately to %10 in each 

class. Hence the natural weights of each parameter class is solely dependent on its 

aerial coverage in the parameter map. Furthermore, it can be called as a weight 

standardization module as it is clear that weights of any arbitrary parameter classes are 

equal in concept but of course different in their values due to the areas of classes. 

However, they are still not comparable. In order to achieve the standardization of both 

the parameter classes in its parameter map and the natural weights of the parameter 

classes with respect to other classes, from each single parameter value the value of the 

sums of all of the weights of parameter classes in each map is subtracted. Hereforth, 

the weight of sixth percentile of slope class has a comparable weight with the weight of 

the third percentile of elevation as an example. On the other hand, a minor step to 

reduce the computational difficulties are made as the weight values of each class are 

normalized using the minimum weight in its parameter class. The example of this 

procedure is given in Figure 6.12 for both landslide susceptibility analysis and for 

information value method. 

The steps shown in Figure 6.12 are carried out for all parameter maps of 

Asarsuyu catchment. The values of all parameter classes are shown in Table 6.7, which 

are then used to construct the hazard map. 

The exploration of the weights yielded in expected values as well as some 

surprising weights, such as; in the fault density parameter the weights are decreasing 

when the density of fault lines decrease, of which it is expected that the rock units would 

stay intact enough in the absence of landslides. However, distance to fault has a 

surprising result as the first percentile (0 to 73 meter distance) gets 0 weight, which is 

probably due to the fact that some other factors in combination control the activity in 

those areas. Also the first percentile of distance to E-5 highway (0 to 75 meter distance) 

gets the maximum weight, which overrides some physical factors in the area. Another 

surprising fact was seen in the categorical parameters as the DSA class gets higher 

weight value than the flyschoidal sequence, which is due to the fact that they have the 

same amount of landslide but DSA is outcropping in a very restricted area. 

Merely the same steps are encountered with the information value, however, 

after the analysis of the resultant weights, it was decided not to use as the method is 

based on log differences which do compress the mean values and speculating the 

extreme or outlier values. Although the weight values are different and more sensitive to 

the extremes, the signs of the values were similar to that of landslide susceptibility 

analyses, which is an affirmative condition for the validity of the method used. 
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Figure 6.12 The steps through landslide susceptibility analysis 
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Table 6.7.Weight values of the all available parameter classes 

 

Parameter Classes 
Parameter map 10 20 30 40 50 60 70 80 90 100 
fault density 0,26 0,00 9,65 23,87 37,26 32,81 26,93 41,21 33,73 34,72 

elevation 3,88 27,74 18,68 5,11 17,34 25,69 34,35 19,67 16,97 0,00 

d to ridge 0,00 2,37 3,42 4,79 4,82 7,52 7,67 9,14 11,06 22,16 

d to settle 0,00 19,38 27,19 19,18 14,61 21,92 23,68 4,20 18,66 6,30 

d to pr 5,53 3,65 2,10 2,54 6,90 9,19 11,70 14,30 15,55 0,00 

d to fault 0,00 9,67 15,76 17,16 17,02 16,11 17,62 3,89 4,79 4,76 

d to e5 99,56 46,53 31,07 2,82 8,25 7,11 22,66 22,09 15,82 -0,01 

d to drain 0,00 0,35 4,44 7,67 8,72 9,50 11,46 16,00 19,30 19,83 

drainage dens -0,01 5,89 20,14 26,17 22,53 22,06 18,18 12,04 10,15 1,59 

slope 0,00 8,28 18,15 24,11 29,40 29,92 30,04 32,92 28,57 30,51 

aspect 23,33 32,02 26,71 18,51 -0,01 3,68 3,52 11,20 15,72 22,84 

 

 quat BGY DSA tkbf talus bolugran Eocay sok tkb pliomen asarsuyu gypsum 

geology 0,67 2,08 58,04 35,95 3,69 28,73 22,68 19,60 0,00 0,00 0,00 0,00 

 

 dense forest forest soil moisture mixed settlement road 
landcover 4,69 29,03 0,00 14,43 0,16 124,04 

 

After calculation of the weights, the weigh values are assigned to the initial 

parameter maps. Following this all of the 13 parameters maps are added up to create 

the hazard map. No extra weighting procedure for the parameter maps are used in the 

summation process as the classes have been normalized and they received their 

natural weightings from the data itself. 

The resultant hazard map is then reclassified into 4 hazard zones (very low, low, 

high, very high) using the hazard maps distribution parameters. The mean value of the 

hazard map is taken as the pivot point and classes are assigned to the + and - one 

standard deviations of the distribution. The resultant map and the landslide amounts in 

these hazard classes are given in Figure 6.13. It is seen that 48 % of the total area is 

classified as high and high hazard class and within these classes 93.3 % of seed cells 

are encountered. It should also be noted that the two giant landslide bodies (Bakacak 

and Bülbülderesi slides) are not taken into consideration at this stage, in order to show 

the real distribution of the hazard classes and to see if any information could be 

obtained from form the analyses within these landslide bodies. On the other hand 52% 

of the study area is classified as low and very low hazard, which in turn hosts only 6.7 % 

of total seed cells in the area. This distribution also validates that the classification is 

quite reasonable. 

 



 151

 
 

 

DN Value Hazard class % area covered % landslide 

0-93 Very low 14,45 0,5 

93-146 low 37,56 6,2 

146-199 High 31,20 26,7 

199-481 Very High 16,79 66,6 

 

Figure 6.13. The hazard map and the amounts of landslides in each class as a result of 
bivariate analysis. (red is very high hazard, orange is high hazard, green is low hazard 
and blue is very low hazard). The grey polygon in the figure is the huge landslide body. 
 

6.4.2. Multivariate analyses 
 

The multivariate statistical analyses of the important causal factors for landslide 

occurrence may indicate the relative contribution of each of these factors to the degree 

of hazard within a defined land unit. The analyses are based on the presence or 

absence of stability phenomena within these units (van Westen, 1993). Two major 

trends are recorded in the literature as the standard multiple regression and discriminant 

analyses. However, many of the authors who use these methods do override the 

necessity of the data to be normally distributed. It could have been said of an 

assumption, though this assumption is a vital one controlling the applicability of these 

methods. Instead of the common literature two other multivariate techniques are utilized 

in this study as factor analysis to understand better the interrelations of the parameter 

maps, and the logical regression analysis to figure out a multivariate dominated hazard 

map. 
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6.4.2.1. Factor analysis 
 

Factor analysis is similar to principal components analysis in that it is a 

technique for examining the interrelationships among a set of variables (Afifi and Clark, 

1998). Both of these techniques differ form multiple regression analyses, as there does 

not need to be a dependent and a series of independent variables. The factors obtained 

in a factor analysis are selected mainly to explain the interrelationships among the 

original variables. The major emphasis is placed on obtaining easily understandable 

factors that convey the essential information contained in the original set of variables. 

In the initial stage all of the 13 parameters of the seed cells are included in the 

factor analysis, and principal axis factoring method with varimax rotation is selected as 

the factor analysis method. A number of tests should have to be performed for the 

validity of factor analysis with the given variables so a KMO-Bartlett test is conducted 

(Table 6.8). The Kaiser-Meyer-Olkin Measure of Sampling Adequacy is a statistic which 

indicates the proportion of variance in the variables which is common variance, i.e. 

which might be caused by underlying factors. High values (close to 1.0) generally 

indicate that a factor analysis may be useful with the available data. If the value is less 

than 0.50, the results of the factor analysis probably won’t be very useful. In this case it 

is nearly just over the limit as the value is 0.593. Bartlett’s test of sphericity indicates 

whether the correlation matrix is an identity matrix, which would indicate that the 

variables are unrelated. The significance level gives the result of the test. Very small 

values (less than .05) indicate that there are probably significant relationships among 

the variables. A value higher than about .10 or so may indicate that the data are not 

suitable for factor analysis. Based on these critical values, factor analysis seems not to 

yield a very successful result. 

 

Table 6.8. KMO and Bartlett’s test with initial 13 variables. 

 

KMO and Bartlett's Test

,593

13926,75
78

,000

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.

Approx. Chi-Square
df
Sig.

Bartlett's Test of Sphericity

 
 

The next step in the analyses is to figure out which variables are not fitting to the 

model, which is done by exploring the anti-image matrices. The anti-image matrices 

contain the negative partial covariances and correlations. They can give an indication of 

correlations that aren’t due to the common factors. Small values indicate that the 
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variables are relatively free of unexplained correlations. Most or all values off the 

diagonal should be small (close to zero). Each value on the diagonal of the anti-image 

correlation matrix shows the Measure of Sampling Adequacy (MSA) for the respective 

item. Values less than 0.5 may indicate variables that do not seem to fit with the 

structure of the other variables. The anti image matrix of the initial 13 variables are 

presented in Table 6.9, and it is seen that distance to drainage and distance to ridge are 

the two variables that do not fit into the structure of the remaining variables. As this is 

the first iterative pass of the system it was decided to include these parameters in order 

to see the effects of these variables after and before their removal. 

 

Table 6.9. The Anti-Image matrices of initial 13 variables. 

Anti-image Matrices

,914 -4,622E-02 4,994E-02 -9,060E-02 -8,535E-02 -7,857E-02 -7,283E-03 2,491E-02 3,996E-02 5,290E-02 3,701E-02 9,134E-02 -7,265E-04

-4,622E-02 ,819 2,417E-02 1,966E-02 -1,785E-02 2,930E-02 -7,419E-04 -2,450E-02 7,915E-02 -,247 -5,592E-02 -3,079E-02 -,127

4,994E-02 2,417E-02 ,713 1,565E-02 -,117 ,140 -,236 2,330E-02 7,471E-03 -6,583E-02 1,806E-02 -2,870E-02 -3,853E-02

-9,060E-02 1,966E-02 1,565E-02 ,632 -3,500E-02 ,124 ,108 -2,170E-02 2,745E-02 -3,650E-02 ,153 1,891E-02 -5,119E-02

-8,535E-02 -1,785E-02 -,117 -3,500E-02 ,788 -3,453E-02 8,459E-02 -4,981E-02 3,904E-02 ,158 -7,490E-02 ,263 -5,707E-02

-7,857E-02 2,930E-02 ,140 ,124 -3,453E-02 ,423 -,226 9,600E-02 -4,663E-02 1,803E-02 -4,477E-03 2,776E-02 -5,863E-02

-7,283E-03 -7,419E-04 -,236 ,108 8,459E-02 -,226 ,372 -,100 6,159E-02 7,264E-03 -3,253E-02 7,537E-02 -3,981E-02

2,491E-02 -2,450E-02 2,330E-02 -2,170E-02 -4,981E-02 9,600E-02 -,100 ,411 ,237 8,426E-02 -5,751E-02 1,746E-02 ,146

3,996E-02 7,915E-02 7,471E-03 2,745E-02 3,904E-02 -4,663E-02 6,159E-02 ,237 ,393 4,922E-02 -,128 ,152 3,576E-02

5,290E-02 -,247 -6,58E-02 -3,650E-02 ,158 1,803E-02 7,264E-03 8,426E-02 4,922E-02 ,829 3,522E-02 8,372E-02 3,546E-03

3,701E-02 -5,592E-02 1,806E-02 ,153 -7,490E-02 -4,477E-03 -3,253E-02 -5,751E-02 -,128 3,522E-02 ,819 -1,981E-02 -6,681E-02

9,134E-02 -3,079E-02 -2,87E-02 1,891E-02 ,263 2,776E-02 7,537E-02 1,746E-02 ,152 8,372E-02 -1,981E-02 ,707 -9,759E-02

-7,265E-04 -,127 -3,85E-02 -5,119E-02 -5,707E-02 -5,863E-02 -3,981E-02 ,146 3,576E-02 3,546E-03 -6,681E-02 -9,759E-02 ,847

,545
a

-5,340E-02 6,184E-02 -,119 -,101 -,126 -1,249E-02 4,064E-02 6,669E-02 6,075E-02 4,275E-02 ,114 -8,254E-04

-5,340E-02 ,611
a

3,163E-02 2,733E-02 -2,222E-02 4,980E-02 -1,345E-03 -4,224E-02 ,140 -,300 -6,825E-02 -4,047E-02 -,153

6,184E-02 3,163E-02 ,485
a

2,332E-02 -,156 ,255 -,459 4,305E-02 1,412E-02 -8,561E-02 2,362E-02 -4,043E-02 -4,957E-02

-,119 2,733E-02 2,332E-02 ,786
a

-4,961E-02 ,240 ,222 -4,260E-02 5,511E-02 -5,043E-02 ,213 2,829E-02 -6,997E-02

-,101 -2,222E-02 -,156 -4,961E-02 ,433
a

-5,984E-02 ,156 -8,757E-02 7,020E-02 ,196 -9,323E-02 ,352 -6,987E-02

-,126 4,980E-02 ,255 ,240 -5,984E-02 ,630
a

-,570 ,230 -,114 3,047E-02 -7,609E-03 5,080E-02 -9,800E-02

-1,249E-02 -1,345E-03 -,459 ,222 ,156 -,570 ,540
a

-,256 ,161 1,309E-02 -5,895E-02 ,147 -7,096E-02

4,064E-02 -4,224E-02 4,305E-02 -4,260E-02 -8,757E-02 ,230 -,256 ,579
a

,590 ,144 -9,913E-02 3,241E-02 ,247

6,669E-02 ,140 1,412E-02 5,511E-02 7,020E-02 -,114 ,161 ,590 ,618
a

8,626E-02 -,225 ,289 6,201E-02

6,075E-02 -,300 -8,56E-02 -5,043E-02 ,196 3,047E-02 1,309E-02 ,144 8,626E-02 ,480
a

4,273E-02 ,109 4,231E-03

4,275E-02 -6,825E-02 2,362E-02 ,213 -9,323E-02 -7,609E-03 -5,895E-02 -9,913E-02 -,225 4,273E-02 ,696
a

-2,604E-02 -8,019E-02

,114 -4,047E-02 -4,04E-02 2,829E-02 ,352 5,080E-02 ,147 3,241E-02 ,289 ,109 -2,604E-02 ,589
a

-,126

-8,254E-04 -,153 -4,96E-02 -6,997E-02 -6,987E-02 -9,800E-02 -7,096E-02 ,247 6,201E-02 4,231E-03 -8,019E-02 -,126 ,546
a

ASPECT

SLOPE

ELEV

landcover

D_DRAIN

DISTE5

DSETTLE

DENS_FAULT

D_FAULT

D_RIDGE

D_PRO

DENS_DRAIN

Geocode

ASPECT

SLOPE

ELEV

landcover

D_DRAIN

DISTE5

DSETTLE

DENS_FAULT

D_FAULT

D_RIDGE

D_PRO

DENS_DRAIN

Geocode

Anti-image
Covariance

Anti-image
Correlation

ASPECT SLOPE ELEV landcover D_DRAIN DISTE5 DSETTLE DEN_FAU D_FAY D_RIDGE D_PRO DEN_DR Geocode

Measures of Sampling Adequacy(MSA)a. 
 

 

The amount of the total variance explained with the initial 13 variables are 

shown in Table 6.10. This table gives the amount of cumulative variance explained with 

the initial solution and initial rotation of the factor analyses. As in the first steps of factor 

analyses the decision rule for acceptance of the new factors are defined as “if a new 

factor is to be created it should have an effect of at least equal to that of an initial 

variable”. Dependent on this rule eigenvalues of smaller than 1 are not included in the 

factor analysis, as a result, with the initial 13 variables only the first 4 factors are taken 

into consideration and they could only explain the 57% of the total variance observed 

(Figure 6.14). 
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Figure 6.14. Eigenvalues of the factors. 

 
Table 6.10. The amount of total variance explained via factors 
 

Total Variance Explained

2,616 20,121 20,121 2,176 16,738 16,738 1,985 15,269 15,269
2,035 15,652 35,774 1,713 13,175 29,913 1,806 13,892 29,161
1,518 11,679 47,453 ,895 6,883 36,797 ,850 6,536 35,697
1,247 9,590 57,043 ,563 4,334 41,130 ,706 5,433 41,130

,992 7,633 64,676
,987 7,590 72,266
,918 7,060 79,326
,694 5,337 84,663
,576 4,432 89,095
,523 4,025 93,119
,439 3,378 96,497
,242 1,863 98,360
,213 1,640 100,000

1
2
3
4
5
6
7
8
9
10
11
12
13

Factor

Total
% of

Variance
Cumulative

% Total
% of

Variance
Cumulative

% Total
% of

Variance
Cumulative

%

Initial Eigenvalues
Extraction Sums of Squared

Loadings otation Sums of Squared Loading

Extraction Method: Principal Axis Factoring.
 

 
The next step is to figure out what variables are responsible for the selected 4 

factors, this is done by analyzing the factor matrix after varimax rotation. The Table 6.11 

reports the factor loadings for each variable on the components or factors after rotation. 
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Each number represents the partial correlation between the item and the rotated factor. 

The bold numbers represent the maximum correlations within these factors. Based on 

these maximum correlations, it could be concluded that the first factor is composed of 

human activities (Distance to settlement, Distance to E-5 highway, Distance to power 

lines and road network and the land cover), the second one is attributed to primarily to 

lineament pattern and minor to settlement and elevation, the third factors constituents 

are the drainage system and its resultant morphodynamic attributes (distance to 

drainage, drainage density and aspect), and the last factor the fourth one is attributed to 

the material properties and drainage dependent morphodynamic items (Slope, Distance 

to ridge and geology). 

Upon the completion of this initial iterative pass, a step by step variable removal 

scheme is applied based on the rules of Anti-Image Matrices. The best solution is found 

after the second pass with the removal of distance to drainage and distance to ridge 

parameters. After the removal of these two variables the Kaiser-Meyer-Olkin Measure of 

Sampling Adequacy is increased from 0.0593 to 0,618, which is seen in Table 6.12. 

 
Table 6.11. The rotated factor matrix and the variable loadings 

Rotated Factor Matrix a

,863 ,387 4,536E-02 5,018E-02

,726 -,220 ,130 -2,1E-02

-,635 7,658E-02 5,137E-02 6,173E-02

,322 -,143 8,227E-02 -3,8E-02
-,123 ,834 -1,0E-02 -,114
,182 -,825 ,126 -,140
,274 ,302 4,949E-02 9,436E-02

-3,7E-02 9,862E-02 ,676 -,114
-,190 ,203 -,505 9,406E-02

1,652E-02 -1,0E-02 ,273 1,308E-02
-6,8E-02 ,199 -4,5E-03 ,579
-7,0E-02 -2,0E-02 -,125 ,481

,187 -,150 1,867E-02 ,262

D_SETTLE
D_E5
landcover
D_PRO
DENS_FAULT
D_FAY
ELEV
D_DRAIN
DENS_DRAIN
ASPECT
SLOPE
D_RIDGE
Geocode

1 2 3 4
Factor

Extraction Method: Principal Axis Factoring.  
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 
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Table 6.12. KMO and Bartlett’s test after removal of two variables. 

KMO and Bartlett's Test

,618

12215,87
55

,000

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.

Approx. Chi-Square
df
Sig.

Bartlett's Test of Sphericity

 
 

Furthermore, the amount of the total variance explained with the variables are 

also increased from 57 % to 63 %, of which is shown in Table 6.13. Although 63% is still 

very low for such kind of analyses, further removal of the variables would probably yield 

in the degradation of the model success, hence the removal scheme is ended up with 

11 variables. 

 
Table 6.13. The amount of total variance explained via factors, after removal of two 
variables. 
 

Total Variance Explained

2,590 23,543 23,543 2,180 19,817 19,817 1,926 17,509 17,509
2,033 18,485 42,028 1,711 15,557 35,374 1,865 16,953 34,462
1,212 11,014 53,043 ,638 5,800 41,174 ,657 5,977 40,439
1,125 10,225 63,267 ,424 3,857 45,031 ,505 4,592 45,031
,921 8,373 71,640
,831 7,551 79,190
,740 6,727 85,918
,630 5,729 91,647
,449 4,080 95,727
,249 2,263 97,990
,221 2,010 100,000

1
2
3
4
5
6
7
8
9
10
11

Factor

Total
% of

Variance
Cumulative

% Total
% of

Variance
Cumulative

% Total
% of

Variance
Cumulative

%

Initial Eigenvalues
Extraction Sums of Squared

Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Axis Factoring.  
 

The final factor loadings are seen in Table 6.14. Due to the different variables 

encountered into the analyses, the rotation scheme and the factor loading scheme is 

slightly changed, resulting in a more stable model. The stability of the model is also 

seen in the generic differentiation of the factors and their responsible variables. Such as 

the elevation parameter has promoted to the first factor which is more meaningful, as 

the second factor is solely remained for the effects of lineaments. It is obvious that the 

presence of lineaments are not controlled by elevation, on the other hand the presence 

of settlement, position of the highway, land cover and the power lines and the road 

network are dependent of elevation. Consequently, the first factor is dominated by 

human activities. As noted above the second factor is solely dependent on lineament 

pattern and density in the area. In the third factor geological units and slope is promoted 
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from 4th factor and drainage components and aspect fall into 4th factor, which in turn 

more logical as the author believes that the material properties control the slope and 

also the presence of landslides; hence third factor is attributed to material properties. 

The remaining two variables aspect and the density of drainage is responsible from the 

fourth factor and could be considered as the morphodynamical factor of the Asarsuyu 

catchment. 

 
Table 6.14. The rotated factor matrix and the variable loadings, after removal of two 
variables 

Rotated Factor Matrix a

,870 ,322 2,762E-02 ,198

,669 -,272 ,103 ,293

-,658 ,146 1,409E-02 9,911E-02

,338 -,200 3,538E-02 -9,5E-02

,316 ,274 3,784E-02 -4,1E-02
,121 -,909 -4,9E-02 3,709E-02

-2,0E-02 ,758 -,218 -6,0E-02
-5,4E-02 ,249 ,225 -3,9E-02

,140 -,112 ,714 2,305E-02
-4,3E-02 -2,7E-03 3,079E-02 ,500

-,187 ,274 ,177 -,321

D_SETTLE
D_E5
landcover
D_PRO
ELEV
D_FAY
DENS_FAULT
SLOPE
Geocode
ASPECT
DENS_DRAIN

1 2 3 4
Factor

Extraction Method: Principal Axis Factoring.  
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 6 iterations.a. 
 

 
6.4.2.2. Logical Regression 
 

Logical regression allows forming a multivariate regression relation between a 

dependent variable and several independent variables which might affect the probability 

of the searched situation. If the searched variable is a dichotomous outcome the best 

method with free of predictor variable type is seem to be logistic regression (Afifi and 

Clark, 1998; Atkinson and Massari, 1998; Dai et al. 2001; Lee and Min, 2001).  

Binomial (or binary) logistic regression is a form of regression which is used 

when the dependent is a dichotomy and the independents are continuous variables, 

categorical variables, or both. Multinomial logistic regression exists to handle the case of 

dependents with more classes. Logistic regression applies maximum likelihood 

estimation after transforming the dependent into a logit variable (the natural log of the 

odds of the dependent occurring or not). In this way, logistic regression estimates the 

probability of a certain event occurring. Note that logistic regression calculates changes 
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in the log odds of the dependent, not changes in the dependent itself as Ordinary Least 

Squares (OLS) regression does. 

The logistic model can be written in its simplest form as: 

 

ze
P −+
=

1
1

 

 

where P is the probability of an event occurring. P is the estimated probability of 

landslide occurrence. As z varies from -∞ to +∞, the probability varies from 0 to 1 on an 

s shaped curve. And where z is defined as: 

 

Z=B0+B1X1+B2X2+B3X3+…………….+BnXn 

 

Where B0 is the intercept of the model, n is the number of independent variables, …Bi 

(I=1,2,3,…..,n) is the slope coefficient of the model and Xi(I=1,2,3,…..,n) is the 

independent variable.  

 

In an extended form the equation of logistic regression could be written as: 

 

Probability of belonging to population I (logit) = BnXn.B3X3B2X2B1X1B01
1

+……………+++++ e
 

 

The advantage of the logistic regression over simple multiple regression is that, 

through the addition of an appropriate link function to the usual linear regression model, 

the variables may be either continuous or categorical, or any combination of both types. 

In general the advantage of logistic regression modeling over the other multivariate 

statistical techniques, including multiple regression analysis and discriminant analyses, 

is that the dependent variable can have only two values – a dichotomous outcome -, 

and that predicted values can be interpreted as probability because they are constrained 

to fall into an interval between 0 and 1 (Kleinbaum, 1991). Logistic regression has many 

analogies to Ordinary Least Squares (OLS) regression: logit coefficients correspond to 

B coefficients in the logistic regression equation, the standardized logit coefficients 

correspond to beta weights, and a pseudo R2 statistic is available to summarize the 

strength of the relationship. Unlike OLS regression, however, logistic regression does 

not assume linearity of relationship between the independent variables and the 

dependent, does not require normally distributed variables, does not assume 

homoscedasticity, and in general has less stringent requirements. The success of the 

logistic regression can be assessed by looking at the classification table, showing 
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correct and incorrect classifications of the dichotomous, ordinal, or polytomous 

dependent. (Afifi and Clark, 1998; Wrigley, 1984)  

However, in a strict sense, it is not a probability because the extrinsic 

parameters triggering the landslides such as the rainfall and earthquake vibration are 

not accounted for. It might be appropriate to term it as landslide susceptibility based on 

the intrinsic physical parameters.  

In order to carry out the logical regression the total number of seed cells (4430) 

are used. Moreover, 4430 random sample nodes are selected from the landslide free 

areas of Asarsuyu catchment, that are presented in Figure 6.15. Upon the selection of 

these random nodes, the values of the parameter maps are then transferred to the 

database of the random data set. Following the creation of the random data set 

database, the seed cells and the random set database is merged and a new column of a 

binary variable indicating the presence and absence of the landslides are added. This 

stage is repeated 4 times in order to have 4 different sets of random points, which in 

turn would let the user to see if there is any convergence in the success of logistic 

regression analyses. 

 
 
Figure 6.15. The positions of selected 4430 random landslide free nodes. 
 

The initial assumption of the variables by the logistic regression is shown in 

Table 6.15. 

 
The system test reveals that the variables and the system constructed are valid. 

A Hosmer-Lemeshow test and Cox & Snell R square and Nagelkerke R square values 

are obtained and the statistical package supports that the system is still valid with these 

variables. 
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Table 6.15. The initial assumption of the variables. 
 

Classification Table a,b

0 4430 ,0
0 4430 100,0

50,0

0
1

LANDBIN

Overall Percentage
ObservedStep 0

0 1
LANDBIN Percentage

Correct

Predicted

Constant is included in the model.a. 

The cut value is ,500b. 
 

 
After the validation of the system, logistic regression is applied to the data set 

and the resultant classification table is presented in Table 6.16. The system in overall 

has a success of classifying 77.3% of the pixels correctly, which is quite acceptable. The 

77.3% is the highest classification success among the 4 different random sets, though 

the remaining three were oscillating around 75% with plus minus 1 %. 

 

Table 6.16. The final classification of logistic regression 

 

Classification Table a

3387 1019 76,9
985 3445 77,8

77,3

0
1

LANDBIN

Overall Percentage
ObservedStep 1

0 1
LANDBIN Percentage

Correct

Predicted

The cut value is ,500a. 
 

 
The loadings of the variables after logistic regression is presented in Table 6.17. 

Based on these values the logistic regression equation is compiled as follows: 

 

Z= 0,773046364 + (0,130082590 * GEOCODE) – (0,004154044 * DRAINAGE 

DENSITY) – (0,000897442 * DISTANCE TO POWERLINES AND 

ROAD NETWORK) – (0,004813297 * DISTANCE TO RIDGE) + 

0,000212306 * DISTANCE TO FAULT) – (0,000525944 * DENSITY 

OF FAULT) – (0,00114028 + DISTANCE TO SETTLEMENT) – 

(0,001257937 * DISTANCE TO E-5 HIGHWAY) + (0,001047155 * 

DISTANCE TO DRAINAGE) – (0,120726833 * LANDCOVER) + 

(0,002760724 * ELEVATION) + (0,52982916 * SLOPE) – 

(0,00296956 * ASPECT) 



 161

Table 6.17. The variables and their loadings after logistic regression 
Variables in the Equation

-,000296956 ,000 1,540 1 ,215 1,000 ,999 1,000
,052982916 ,003 318,496 1 ,000 1,054 1,048 1,061
,002760724 ,000 232,298 1 ,000 1,003 1,002 1,003
-,120726833 ,024 25,276 1 ,000 ,886 ,846 ,929
,001047155 ,000 6,883 1 ,009 1,001 1,000 1,002
-,001257937 ,000 932,863 1 ,000 ,999 ,999 ,999
-,000114028 ,000 4,944 1 ,026 1,000 1,000 1,000
-,000525944 ,000 5,854 1 ,016 ,999 ,999 1,000
,000212306 ,000 7,705 1 ,006 1,000 1,000 1,000
-,004813297 ,000 210,251 1 ,000 ,995 ,995 ,996
-,000897442 ,000 33,496 1 ,000 ,999 ,999 ,999
-,004154044 ,001 31,743 1 ,000 ,996 ,994 ,997
,130082590 ,017 59,496 1 ,000 1,139 1,102 1,177
,773046364 ,229 11,390 1 ,001 2,166

ASPECT
SLOPE
ELEVATION
LANDCOVER
D_DRAIN
D_E5
D_SETTLE
DENS_FAULT
D_FAY
D_RIDGE
D_PRO
DENS_DRAIN
GEOCODE
Constant

Step 1
a

B S.E. Wald df Sig. Exp(B) Lower Upper
95,0% C.I.for EXP(B)

Variable(s) entered on step 1: ASPECT, SLOPE, ELEV, LANDCOVE, DISTDERE, DISTE5, DSETTLE, FAYDENS, DFAY,
DTEPE, DPRO, DENSDR, JEOCODE.

a. 

 
The observed groups and the predicted probabilities of these groups are 

presented in Figure 6.16. It is clearly seen that in the values larger than the cutoff value, 

are under dominance of binary variable 1 which is landsliding, the opposite of this 

argument is valid also for the values lower than cut off value as safe pixels. In the cut off 

value it is seen that both probabilities are nearly same, with a little emphasis on 

landslides side. Furthermore, the values smaller than 0.25 still have some landslide 

pixels which support the hazard classification scheme as very low to low hazard classes 

in lower values than cut off value. 

 

Figure 6.16. Observed groups and predicted probabilities 
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The logit of this z function is calculated for all of the pixels of Asarsuyu 

Catchment. The end members of the classification scheme is fixed as 0 being the no 

hazard class and 1 as the total hazard class. The foundation of the classification is 

based on these end members, hence the class boundaries are as follows: 0-0.25 very 

low hazard, 0.25-0.5 low hazard, 0.5-0.75 high hazard and 0.75-1 very high hazard. This 

re-classification of the hazard map is shown as the landslide hazard map of Asarsuyu 

catchment (Figure 6.17.)  

The hazard map produced from logical regression results in more homogenous 

zones than that of bivariate analyses (Figure 6.13), especially in the end members of the 

zonations; in very low and very high hazard classes. The low and very low hazard 

classes constitute 72.31% of the area with corresponding 22.23% of the total landslide 

seed cells. On the other hand, the rest of the area is classified as high and very high 

hazard that yield in 27.68% of the area with corresponding 77.77% of the total landslide 

seed cells. Based on these numbers, the multivariate analysis results gives out a more 

comprehensive hazard classification in which the details of the comparisons of the 

produced two hazard maps will be further investigated in the next section. 

It should also be noted that the grey polygons in the both produced hazard 

maps do belong to the two large landslide bodies. As previously mentioned, the 

boundaries of landslide polygons are digitized from the aerial photographs of 4 different 

periods. The union of these 4 polygons represents the final landslide polygon. The 

hazard class of this huge polygon is assigned as very high hazard based on field 

information and the aerial photographical interpretation. It was obvious from the 

photographs that these giant landslide polygons are formed by the aggradations of 

smaller landslides. The evidence was a relict landslide scarp at which the slided body of 

this relict scarp is acting as the host of newer landslides. Also the current slope 

morphology of these polygons suggests that there should be 4 or 5 different landslide 

associations. Furthermore, the work carried out by Işın (1999) in the Bolu mountain 

proved the slope movement by insitu monitoring. Based on these conditions it is 

concluded that these landslide polygons will behave in residual shear strength 

conditions, rather than peak conditions as that of the seed cells, consequently they will 

be put in to very high hazard class in the final hazard map. 
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DN Values Hazard class % area covered % landslide 

0-0,25 Very low 46,86 3,97 

0,25-0,5 low 25,45 18,26 

0,5-0,75 High 15,58 29,48 

0,75-1 Very High 12,10 48,28 

 

Figure 6.17. The hazard map and the amounts of landslides in each class as a result of 
multivariate analysis. (red is very high hazard, orange is high hazard, green is low 
hazard and blue is very low hazard). The grey polygon in the figure is the giant landslide 
body 
 
6.4.3. Comparison of two produced hazard maps 
 

Two hazard maps are produced from bivariate analysis and logical regression 

analyses. Both of them produced acceptable results, as both of them classify the 

majority of the seed cells in high or very high hazard classes. However, they have to be 

analyzed in order to reveal which method is more successful and which method is more 

accurate. Therefore, two comparison schemes are developed and presented in the 

following sections. 

 
6.4.3.1. The comparison of methods via their areas and corresponding landslide 
seed cells. 
 

It has been shown that both methods classify less than half of the study area as 

high or very high hazard in conjunction more than two thirds of the seed cells in these 

areas, which could be said of a success. However, when the class areas are normalized 

with the landslide seed cell counts some important issues have aroused. In order to 

normalize the areas, the area percent values are divided with the landslide seed cell 

percent values, that is called as the seed cell area index (SCAI) density of landslides 

among the classes, which is presented in Table 6.18. 
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Table 6.18 The densities of landslides among hazard classes of both methods. 
 

  Area % Seed % SCAI 

Very Low 14,45 0,5 28,8945 

Low 37,56 6,4 5,8684 

High 31,20 26,8 1,1642 

Bivariate 

Very High 16,79 66,8 0,2514 

     

Very Low 46,86 3,97 11,79 

Low 25,45 18,26 1,3939 

High 15,58 29,48 0,5284 

Logical 

Very High 12,10 48,28 0,2506 

 

The logic behind SCAI lies in correct classification of seed cells within very 

conservative areal extent. As a result, it is desired that the high and very high hazard 

classes should have very small SCAI values and low and very low hazard classes to 

have higher SCAI values. 

When the SCAI values of the two methods are compared it is found that the 

hazard map (LHM) produced from logical regression analyses has lower SCAI values 

than that of bivariate version. Only in very low hazard class bivariate hazard map (BHM) 

has a better result. In low and high hazard classes LHM has a clear superiority, however 

in very high hazard class they are quite close to each other but the logical one has a 

slight advantage as less area are classified as very high hazard and also its SCAI is 

slightly lower. Although the BHP has a high SCAI value which is desirable for the very 

low hazard class, the area classified is only 14.45 % of the total area which is very low 

for settlement planning purposes. The system should be a little more flexible rather than 

a mechanical rigid system, as considering the acceptable risk of the dwellers in the 

area. The 3.44% increase of landslide seed cells in the very low hazard class in the 

LHM ended up in 34.28 % of extra area with minimal hazard, which could be accepted. 

 
6.4.3.2. The comparison of two methods in the spatial domain 
 

The SCAI in the previous section does not reveal any information about the 

change of hazard score within a pixel. In order to achieve the pixel basis changes or 

mismatches both of the hazard maps are first re-classified into known numerical values. 

The bivariate hazard map is classified as 1,2,3,4 starting from very low hazard and 

ending up with very high hazard, correspondingly. The logical regression hazard map is 

classified by the 10 times multiplication of new class numbers of the bivariate hazard 

map, accordingly the class values are 10,20,30,40. After this re-coding process the two 

maps are added up. The available outcomes are presented in Table 6.19. 
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Table 6.19. The available combinations of re-coding process and their meanings 

 
 

As can be seen in Table 6.19, some combinations result in misclassified pixels. 

These are dominated by the absence of hazard score in both or in one of the hazard 

maps. The amount of these pixels compared to the whole classified area is merely 1.12 

%, which is negligible, and shown in Figure 6.18 as the summation of 0,1,2,3,4,10,20,30 

and 40 class id’s. Although it is negligible, the spatial locations of these error prone 

pixels should be investigated (Figure 6.19). Generally they fall into the borders of the 

hazard map, which indicate a small acceptable resampling error.  
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Figure 6.18. The areal distributions of classified pixels. 
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Figure 6.19. The locations of the misclassified pixels  
 

If the two hazard maps converge in the same hazard classes after summation, 

such as they possess 11, 22,33 and 44 hazard ID’s they are called as correctly 

classified pixels. The areal extent of these pixels are constituting 36,67 km2 and 34.16 % 

of the total area (Figure 6.18). The locations of the correctly classified pixels are shown 

in Figure 6.20.  

 
 

Figure 6.20. The locations of the correctly classified pixels (the numbers in the legend 
indicate the pixel counts). 
 

Another pixel association is called the acceptable classification when the hazard 

classes in both of the hazard maps are differing from each other by one rank in the 

hazard classification scheme. Such as a change from very low hazard to low hazard, or 

change from high hazard to very high hazard is acceptable. This association is indicated 

in the summation map by the following id’s 12,21,23,32,34 and 43. The area covered 
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with this association is 48,69 km2 corresponding to 45.36 % of the total area. The 

locations of acceptable pixels are shown in Figure 6.21. 

 
 
Figure 6.21. The locations of the acceptable pixels (the numbers in the legend indicate 
the pixel counts). 
 

The not acceptable pixels are defined as the difference of hazard ranks should 

be more than one rank. Such as changing from very low hazard to very high hazard is 

not acceptable. These pixels re-represented in the summation as 13, 14, 24, 31, 41 and 

42. The area covered by these not acceptable pixels are 20.79 km2 with corresponding 

19.6 % of the area. The locations of these pixels are shown in Figure 6.22. 

Upon the investigation of the not accepted pixels of the two methods, it is seen 

that the bivariate hazard map is overestimating the hazard classes relative to the logical 

hazard map. As shown in the legend of Figure 6.22, six pixel values are present and the 

first three of them has greater occurrences than the remaining three. The first three was 

13, 14 and 24, indicating that they belong to high and very high hazard class in bivariate 

map and low to very low hazard class in logistic regression map. Although this is a 

relative comparison, it can be said that LHM is underestimating the hazard, however, 

the classification scheme fits well in the remaining three pixel values. If LHM was 

underestimating the hazard the remaining three pixel counts should be more that of the 

observed values. A further investigation is made in order to find the reasons why BHM 

overestimates the hazard with the aid of initial parameter maps, percentile maps and the 

hazard maps. It is found that most of the errors are dependent on the percentile division 

of the parameter maps. Such as the first percentile of distance from E-5 has the most 

weight among the other all percentiles, which is the result of the faint E-5 highway trace 

in the western part of Figure 6.22. Also the fault density and distance to fault percentile 

maps are responsible to the mismatch of the two hazard maps in the areas shown with 
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arrows in Figure 6.22. On the other hand, the good correlation in the high and very high 

hazard classes of both methods should not be underestimated. 

 
 
Figure 6.22. The locations of the not acceptable pixels (the numbers in the legend 
indicate the pixel counts). 
 

In order to see where both hazard methods have the same or acceptable 

classifications, the acceptable pixels and the correct pixels are added up, which 

represents an acceptable classification of nearly %80 of the area. This result is 

presented in Figure 6.23. 

 
 
Figure 6.23. The locations of the correctly classified and the acceptable pixels united 
(the numbers in the legend indicate the pixel counts). 
 

After a comparison of Figure 6.23 with other hazard and error maps, and taking 

into consideration about the reasons of erroneous pixels the hazard map produced from 

logical regression analysis is decided to be used for further analyses. The final hazard 

map with the infra structure overlaid is shown in Figure 6.24. 
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Figure 6.24. The final hazard map and the infrastructure of Asarsuyu catchment. 


