M E T U Northern Cyprus Campus

	νı	-	
	Differential Ec	quations	
	I. Midter	m	
Code : Math		y:	
Acad.Year: 2007-	2008 Name	: Student	No.:
Semester : Fall	Departmen	nt: Section:	
Date : 4.11.	2007 Signature:		
Time : 14:00	5 Q	5 QUESTIONS ON 5 PAGES	
Duration $: 120 n$	ninutes	TOTAL 100 POINTS	
1 2 3 4	5		

1. (10+10=20 points) Solve

(a)
$$y' = \frac{x - \sin x}{y^4 + 2}$$
.

(b) $(3yx^2)dx + (x^3 + 2y^4)dy = 0, y(0) = 2.$

2. (7+10+3=20 points) A tank initially contains 60ℓ of pure water. A solution containing 1g of salt per liter enters the tank at $2\ell/min$, and the perfectly mixed solution leaves the tank at $3\ell/min$, therefore the tank is empty after 1 hour.

(a) Express the volume of solution in the tank in terms of t, and write a differential equation for the amount of salt in the tank at time t (Hint: the resulting equation will be a first order linear equation, but not a separable equation).

(b) Find the amount of salt in the tank after t minutes.

(c) What is the maximum amount of salt ever in the tank?

- **3.** (10+10=20 points) Solve
- (a) $y'' + 3y' 4y = 2x e^x$.

(b) $y'' + y = 4\sin x$.

4. (20 points) If the functions y_1 and y_2 are linearly independent solutions of y'' + p(t)y' + q(t)y = 0, prove that $y_3 = y_1 + y_2$ and $y_4 = y_1 - y_2$ also form a linearly independent set of solutions.

5. (4+16=20 points) (a) Check that y = x is a solution of $x^2y'' - 2xy' + 2y = 0$

(b) Find all solutions of $x^2y'' - 2xy' + 2y = x^3 \ln x$.