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An Accurate and Efficient Two-Stage Channel Estimation Method
Utilizing Training Sequences with Closed Form Expressions

Çag̃atay Candan

Abstract—A novel two-stage frequency domain channel es-
timation method especially suitable for the estimation of long
channels such as ultra wide band channels is proposed. The
proposed method can efficiently use the sequences with closed
form analytical expressions such as the Legendre sequences.
(The suggested method does not require a computationally
intense search for good training sequences which is infeasible
for long training sequences.) The method is shown to present
a minor improvement in the total estimation error variance
when compared with the conventional single stage frequency
domain channel estimation. In addition, the proposed method has
a very efficient time domain implementation requiring at most
2𝑁 multiplications, where 𝑁 is the training sequence length,
in comparison to 𝑂(𝑁 log𝑁) multiplications required for the
conventional method.

Index Terms—Channel estimation, frequency domain channel
estimation, Legendre sequences, ultra wide band channel esti-
mation.

I. INTRODUCTION

AN accurate knowledge of the channel is required to
establish reliable and high rate communication. In the

absence of any a-priori information on the channel coeffi-
cients, the maximum likelihood (ML) method is utilized for
the estimation of coefficients, [1, p. 490]. The design objective
of this approach is to improve the estimation performance, that
is to reduce the total estimation error variance, with a proper
training sequence selection, [2]–[6]. It is well known that the
optimal sequences to this aim (also called perfect codes) have
an impulsive auto-correlation, that is a flat energy spectrum,
under additive white Gaussian noise conditions.

Some well known codes such as the maximum length
sequences (m-sequences) and the Legendre sequences almost
satisfy the requirement for perfect codes. As an example, the
m-sequence of length 𝑁 (𝑁 = 2𝑘 − 1, 𝑘 is an integer) has
the Discrete Fourier Transform (DFT) spectrum of

∣𝐶[𝑘]∣2 =

{
1, 𝑘 = 0
𝑁 + 1, 𝑘 = {1, 2, . . . , 𝑁 − 1}

The equation given above shows that m-sequences spread the
signal energy equally across the AC spectrum (𝑘 > 0) and
distribute the remaining energy (1/𝑁2 of the total energy) to
the DC frequency (𝑘 = 0)1. We can say that the constraint of
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1AC spectrum is a term inherited from electrical engineering literature

and indicates the components of a signal having non-zero frequencies. The
DC component of a sequence refers to its mean value or the zero’th DFT
coefficient.

spectrum flatness is indeed satisfied, when the DC component
is not considered.

The contribution of the present paper is the description
of a method to improve the performance of almost perfect
sequences in the channel estimation problem. To that aim,
we propose a novel two-stage frequency domain channel
estimation method in which the AC components of the channel
are estimated first and then the remaining unknown (DC value
of the channel) is determined. The separation of AC and DC
components of the channel is shown to improve the estimation
performance in comparison to the conventional method. The
method operates in the DFT domain and can be categorized as
a frequency domain channel estimation method. In spite of the
mentioned performance improvement over the conventional
method (frequency domain channel estimation), we consider
the major advantage of the proposed method is the availability
and abundance of the codes with closed form expressions to
achieve the improved performance.

Good training sequences for the conventional single stage
method are found through a computationally intensive search,
[2], [7]. Specifically for the frequency domain channel esti-
mation, Tellambura et al. have proposed a reduced complexity
search technique in [2]. This procedure is based on dividing
the search space into equivalence classes and searching the
select classes in which the optimal code can reside. This proce-
dure, even with the significant reduction of search complexity,
is not feasible to implement for large length training sequences
[2]. A family of efficient binary training sequences with a
closed form expression for the channel estimation problem is
not known for the conventional method.

In this paper, instead of presenting good codes for the
conventional method, we present a novel two-stage method to
improve the estimation performance of almost perfect codes.
The suggested method is specific for almost perfect codes, that
is m-sequences and Legendre sequences, but we emphasize the
utilization of the Legendre sequences due to their abundance in
number. (Legendre sequences are defined for every odd prime
valued lengths.)

The paper is organized as follows: First the procedure for
the estimation of AC part of the channel is described. This
section can also be interpreted as an independent work on the
estimation of AC coupled channels, that is the channels with
a null at DC frequency such as powerline, capacitive coupled
channels. The following section presents the two-stage method
and the Legendre sequences. The paper concludes after the
discussions on the estimation performance, comparisons with
alternative methods and the description of an efficient imple-
mentation specific for the Legendre sequences.
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II. ESTIMATION OF THE AC COMPONENTS

We present a brief review of frequency domain channel
estimation and then proceed with the estimation of the AC
components of the channel. The estimation of AC components
is the first stage of the proposed method. The first stage can
be solely utilized in the estimation of AC coupled channels,
that is the channels having a null at the DC frequency due
to the placed transformers or capacitors in the communication
line.

A training sequence 𝑐[𝑛] with the cyclic prefix is shown
below:

𝑐[𝑁 − 𝑇 ], . . . , 𝑐[𝑁 − 1]︸ ︷︷ ︸
prefix

, 𝑐[0], 𝑐[1], . . . , 𝑐[𝑁 − 1]︸ ︷︷ ︸
training sequence

We assume that 𝑐[𝑛] is of length 𝑁 and binary valued.
The cyclic-prefix, appended to the beginning of the training
sequence, is of length 𝑇 where 𝑇 ≥ 𝐿 − 1 and 𝐿 is the
maximum length of the channel to be estimated.

The signal received after discarding the cyclic prefix can
be represented as r = Ch + w. Here C is the circular
convolution matrix of size 𝑁×𝐿 and h is the unknown 𝐿×1
channel coefficient vector. The first column of C is the training
sequence (code) and it is denoted as [𝑐[0], . . . , 𝑐[𝑁 −1]]. The
vector w is zero-mean circularly symmetric complex Gaussian
vector with covariance matrix 𝜎2

𝑤I. The ML estimate of the
channel coefficients is written as ĥ = (CHC)−1CHr and the
resulting error covariance matrix is 𝜎2

𝑤(C
HC)−1, [1]. The

design of optimal training sequences aims to minimize the
total estimation error variance, that is 𝜎2

𝑤 trace{(CHC)−1},
under the total energy constraint, trace{CHC} ≤ 𝑁𝐿. It is
known that the optimal solution to this problem requires CHC
to be proportional with the identity matrix, that is CHC ∝ I,
[8, p.176]. When the optimality condition is satisfied, the total
error variance, which is the lower bound on the error variance,
is 𝜎2

𝑤𝐿/𝑁 .
The first step of the frequency domain channel estimation

is the application of DFT to both sides of the equation r =
Ch+w. Here h is the zero-padded version of h, that is 𝑁−𝐿
zeros are padded to h. C matrix is a circular convolution
matrix of dimensions 𝑁 × 𝑁 . The 𝑁 × 𝐿 submatrix of C
comprised of its first 𝐿 columns is identical to the C matrix,
i.e. C is embedded in C. With the application of DFT on both
sides of r = Ch+w, we get the following:

Fr︸︷︷︸
rF

= FCF−1︸ ︷︷ ︸
CF

Fh︸︷︷︸
hF

+ Fw︸︷︷︸
wF

(1)

Here F represents 𝑁 × 𝑁 DFT matrix and the subscript
(⋅)F (as in rF) denotes the DFT domain representation of the
vectors and matrices.

The ML estimation of hF from (1) exactly follows from
the discussion given for r = Ch+w, but with an important
interpretation difference due to DFT and time domains. The
estimation goal in the frequency domain is hF which is a
vector of length 𝑁 representing the channel coefficients in
DFT domain. In the time domain, the same channel vector is
represented with a vector of length 𝐿 where 𝐿 is the channel
length and 𝐿 < 𝑁 . The optimality condition for the frequency
domain channel estimation remains the same, that is CH

FCF ∝
I. Once the frequency domain components are estimated, the

time domain representation of the channel can be retrieved by
applying the inverse DFT on ĥF. The resulting mean square
error (MSE) is 𝑁𝜎2

𝑤trace{(F−1
L )(CH

FCF)
−1(F−1

L )H}, where
F−1

L is the first L rows of inverse DFT matrix. The total error
variance for the optimal training sequences (when CH

FCF ∝
I) is 𝜎2

𝑤𝐿/𝑁 which is identical to the lower bound in the time
domain, [2].

The estimation of AC coupled channels or the AC part of
an arbitrary channel can be posed similar to the conventional
channel estimation problem along with an additional constraint
of
∑𝐿−1

𝑘=0 ℎ[𝑘] = 0. To describe the estimation procedure under
the given constraint, we first partition the 𝑁 × 𝑁 DFT and
inverse DFT matrices as follows:

F =

[
1H

UH
N−1

]
; F−1 =

1

𝑁

[
1 UN−1

]
(2)

The row vector 1H appearing above is the vector of all 1’s.
When F and F−1 is substituted in (1), we get the following:[

1H

UH
N−1

]
r =

1

𝑁

[
1HC1 1HCUN−1

UH
N−1C1 UH

N−1CUN−1

]
hF

+wF (3)

Since C is a square circular convolution matrix; 1HC is then
equal to 𝐶[0]1H where 𝐶[0] =

∑𝑁−1
𝑛=0 𝑐[𝑛] and 𝐶[0] is the

DC value of the training sequence 𝑐[𝑛]. We note that 1HC1 =
𝑁𝐶[0] and 1HCUN−1 = 0H where 0H is the row vector of
all zeros. Given these, the equation (3) can be simplified as
follows:

𝑟𝐹 [0] = 𝐶[0]ℎ𝐹 [0] + 𝑤𝐹 [0] (4)

r̃F =
1

𝑁
UH

N−1CUN−1︸ ︷︷ ︸
˜CF

h̃F + w̃F (5)

Here 𝑟𝐹 [0] is the DC value received vector r and r̃F is the
vector of AC components, that is r̃F = UH

N−1r. (The other
vectors with tilde on top should also be interpreted as the
vector of AC components.) Since ℎ𝐹 [0] is known to be zero
for AC coupled channels, the equation (4) is redundant and
can not be utilized further2. It should be noted that 𝐶[0] should
be set to zero under finite energy constraint since the equation
where 𝐶[0] appears does not contain any useful information
for the estimation of AC components.

The AC components of the channel can be estimated from
equation (5). As noted before, the optimal training sequence
for the given structure satisfies the relation (C̃F)

HC̃F ∝ I,
that is

C̃H
F C̃F =

1

𝑁2
UH

N−1(C)HUN−1U
H
N−1CUN−1 ∝ I (6)

Since UN−1U
H
N−1C = 𝑁(C− 𝐶[0]11H) and 𝐶[0] = 0 for

the optimal code, the constraint for optimal codes given in (6)
reduces to the following:

C̃H
F C̃F =

1

𝑁
UH

N−1(C)HCUN−1 ∝ I (7)

Since C is a square circular convolution matrix, the ma-
trix (C)HC is another circular convolution matrix and

2An application for equation (4) can be the estimation of the noise variance,
as noted in [2].
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UH
N−1(C)HCUN−1 is a diagonal matrix, since the columns

of DFT matrix are the eigenvectors of the circulant matrices.
Hence the right hand side of the equality given in (7) is
a diagonal matrix. To satisfy the optimality condition, the
diagonal matrix UH

N−1(C)HCUN−1 should have the same
value along its diagonal.

Since the matrix (C)HC is the circular correlation ma-
trix of the code 𝑐[𝑛], the diagonal entries of the matrix
UH

N−1(C)HCUN−1 are { ∣𝐶[1]∣2, ∣𝐶[2]∣2, . . . , ∣𝐶[𝑁 − 1]∣2 }
where 𝐶[𝑘] is the DFT of 𝑐[𝑛].

By Parseval’s relation, we can write the following equation
for ∣𝐶[𝑘]∣2:

1

𝑁

𝑁−1∑
𝑘=0

∣𝐶[𝑘]∣2 =
𝑁−1∑
𝑛=0

∣𝑐[𝑛]∣2 = 𝐸𝑐 (8)

Since the optimal code is shown to satisfy 𝐶[0] = 0 and
∣𝐶[1]∣ = ∣𝐶[2]∣ = . . . = ∣𝐶[𝑁 − 1]∣, the value for ∣𝐶[𝑘]∣2 can
be expressed as follows:

∣𝐶[𝑘]∣2 =

{
0, 𝑘 = 0

𝑁
𝑁−1𝐸𝑐, 𝑘 ∕= 0

(9)

where 𝐸𝑐 is the total energy of the training sequence and
defined in (8).

The lower bound on the total estimation error variance is
then

Minimum Error Variance : 𝜎2
𝑤

(𝑁 − 1)2

𝑁2𝐸𝑐
𝐿. (10)

A. Legendre Sequences

We briefly describe the Legendre sequences and show that
these sequences exactly satisfy the optimality condition given
in (9).

The Legendre symbol, from which the sequence is derived,
is defined as follows, [9]–[11]:(

𝑎

𝑝

)
=

⎧⎨⎩
1 𝑎 ∈ ℛ
−1 𝑎 /∈ ℛ
0 𝑎 = 0

(11)

Here 𝑝 appearing in
(

𝑎
𝑝

)
is an odd prime number and 𝑎

is defined in modulo 𝑝. The set ℛ indicates the quadratic
residues for modulo 𝑝. A non-zero number 𝑎 is called a
quadratic residue if a solution for the following equation exists
𝑎 ≡ 𝑏2 mod p. One may interpret the quadratic residues as the
numbers whose “square root exits" in modulo p. As an ex-
ample, under modulo 7 we have {02, 12, 22, 32, 42, 52, 62} ≡
{0, 1, 4, 2, 2, 4, 1} mod 7. From this list, we can express the
set of quadratic residues as ℛ = {1, 2, 4} and the set of
quadratic non-residues as {3, 5, 6}. Readers can examine [9]
for more information on quadratic residues which is a topic
intricately connected with many results in the number theory.

The Legendre sequence is defined as follows:

𝑏[𝑛] =

(
𝑛

𝑝

)
, 𝑛 = {0, . . . , 𝑝− 1} (12)

The Legendre sequence can be interpreted as a sequence
of numbers in modulo p indicating their quadratic residue
property. The Legendre sequence for 𝑝 = 7 is then
[0, 1, 1,−1, 1,−1,−1] and its energy is 𝐸𝑐 = 𝑝− 1.

A relatively less known property of the Legendre sequences
is their invariance under DFT operation. Stated differently, the
Legendre sequences are the eigenvectors of the DFT matrix,
[12, p.185]:

DFT{𝑏[𝑛]}= 𝐵[𝑘] =

{ √
𝑝 𝑏[𝑘] 𝑝 ≡ 1 (mod 4)

−𝑖
√
𝑝 𝑏[𝑘] 𝑝 ≡ 3 (mod 4)

(13)

For 𝑝 = 7, the DFT of the Legendre sequence is then
[0,−𝑖

√
7,−𝑖

√
7, 𝑖

√
7,−𝑖

√
7, 𝑖

√
7, 𝑖

√
7]. Comparing with (9),

we can immediately note the optimality of Legendre sequences
for the estimation of AC coupled channels. This result estab-
lishes the foundation of the proposed method.

We would like note that due to the eigen-relation with
DFT, the estimate for AC components can be implemented
very efficiently even without calculating forward and inverse
DFT’s. To estimate the 𝑙th tap, we only need to implement the
circular convolution of 𝑟[𝑛] and 𝑏[(𝑛 − 𝑙)𝑁 ] where (𝑛 − 𝑙)𝑁
denotes a circular shift of 𝑙 units:

ℎ̂𝐴𝐶 [𝑙] =

(−1

𝑁

)
1

𝑁

𝑁−1∑
𝑛=0

𝑟[𝑛] 𝑏[(𝑙 − 𝑛)𝑁 ] (14)

In the last equation, 𝑙 = {0, 1, . . . , 𝐿 − 1} and
(−1

𝑁

)
is the

Legendre symbol of −1 which is equivalent to (−1)
𝑁−1

2 .
Using this relation, the estimate for the AC part of the
channel can be realized with a total of 𝐿𝑁 additions and no
multiplications (apart from a constant scaling of 1

𝑁 which may
not be necessary to implement in many systems).

III. TWO STAGE FREQUENCY DOMAIN CHANNEL

ESTIMATION

The channel coefficient vector h, given in r = Ch + w,
can be written as a combination AC and DC components,
h = hAC + ℎDC1. The vector hAC is the AC part of
h, that is the projection of h onto the sub-space spanned
by the vectors associated with the AC terms of the DFT
matrix (or the mean subtracted version of h) and can be
written as hAC = (I − 1

𝑁 11H)h. The remaining unknown
component is the average value of the channel coefficients,
ℎDC = 1

𝑁 1Hh = 1
𝑁

∑𝐿−1
𝑛=0 ℎ[𝑛].

When h is substituted with h = hAC + ℎDC1 in the
equation r = Ch+w, we get the following equation system:

r = C(hAC + ℎDC1) +w (15)

Estimation of hAC: The estimation of the AC part is identical
to the process given in Section II. The equation (16), given
on the next page, shows the estimator.

In equation (16), the matrix UN−1 is defined in (2), 𝐶[𝑘] is
the DFT of the training sequence. Similar to the conventional

technique, the estimate for ℎ̂AC[𝑛] for 𝑛 ≥ 𝐿 is nulled, that

is ℎ̂AC[𝑛] = 0 for 𝑛 ≥ 𝐿. We denote the estimate after the
nulling as ĥAC. A computationally simpler implementation
valid for the Legendre training sequences using the relation in
(14) is shown in Figure 1.

Estimation of ℎDC: The first stage of the proposed systems
estimates the AC components of the channel. The first stage
meets the lower bound on the estimation error variance, hence
it is the optimal estimator. In the second stage, the optimal
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ĥAC = UN−1(U
H
N−1CC

H
UN−1)

−1(UH
N−1C

H
)UN−1U

H
N−1︸ ︷︷ ︸

I

r

=
1

𝑁
UN−1diag(

1

𝐶[1]
,

1

𝐶[2]
, . . . ,

1

𝐶[𝑁 − 1]
)UH

N−1r (16)

estimate is inserted in (15) and the remaining unknown is
solved to minimize the least square error as shown below:

r−CĥAC︸ ︷︷ ︸
rDC

= (C1L)︸ ︷︷ ︸
vDC

ℎDC +w (17)

Here rDC is the residual of the observation vector once the
contribution of the AC part is subtracted. The least square
(LS) solution of the resultant equation system can be written
as follows:

ℎ̂DC =
vH
DCrDC

vH
DCvDC

(18)

Briefly postponing the discussion of the optimality of the
least squares solution, we note that the final estimate for the
channel coefficients is written as ℎ̂[𝑛] = ℎ̂AC[𝑛] + ℎ̂DC, 𝑛 =
{0, 1, . . . , 𝐿− 1}.

Total Error Variance of the Proposed Method: The esti-
mate ĥAC formed at the end of the first stage is the minimum
variance unbiased estimate of hAC. If we let 𝝐AC = ĥAC −
hAC, then 𝝐AC = F−1

L ΛCF︸ ︷︷ ︸
M

w = Mw where F is 𝑁 × 𝑁

DFT matrix and F−1
L is the first 𝐿 rows of the inverse DFT

matrix and ΛC = diag(0, 1/𝐶[1], 1/𝐶[2], . . . , 1/𝐶[𝑁 − 1]).
The error on the DC term can be expressed as a combination

of two sources. The first contribution is due to w, which is
the white noise on r. The second contribution is due to the
estimation error on ĥAC, which can be written as 𝝐AC =
Mw. Then the error on the residual observation vector rDC,
defined in (17), can be written as w−C𝝐AC = (I−CM)w.

The estimation error for the DC term, 𝜖DC = ℎ̂DC − ℎDC,

can be written as 𝜖DC =
vH
DC

∣∣vDC∣∣2 (I−CM)︸ ︷︷ ︸
kH

w = kHw

where vDC is defined in (17).
Finally, the estimation error vector for the channel coeffi-

cients is 𝝐 = 𝝐AC + 𝜖𝐷𝐶1L = (M + 1Lk
H)w and has the

the total error variance of

𝐸{𝝐H𝝐} = 𝜎2
𝑤

[
trace{MMH}+ 𝐿kHk

+2real(kHMH1L)
]
. (19)

An Efficient Implementation: The proposed method can
be very efficiently implemented in time domain by utilizing
the eigenrelation of the Legendre sequences with DFT. The
filtering diagram in Figure 1 shows the suggested implemen-
tation of the proposed method for the Legendre sequences.
The given implementation has at most 2𝑁 multiplication
requirements. (The matrix C is composed of 1, -1 and 0’s and
therefore does not have any multiplication requirements; 𝑁
multiplications are required for the scaling with 1/𝑁 ; at most
𝑁 multiplications are needed to calculate the inner-product
required for ℎ̂𝐷𝐶 ) Hence the suggested implementation has

Windowing+
+ -

Fig. 1. Suggested implementation for the proposed method with the
Legendre Sequences. r is the input to channel estimation system after the
removal of cyclic prefix. C is 𝑁 × 𝑁 circular convolution matrix with the
Legendre sequence b. Windowing block multiplies the first 𝐿 components
of the input by 1 and others by 0. The vectors rDC, vDC are defined
in (17). As an example, for 𝑁 = 5 and 𝐿 = 3, the vectors shown are
b = [0, 1, −1, −1, 1] and vDC = [0, 2, 0, −1, −1].

the multiplication requirement of 𝑂(𝑁) multipliers instead
of 𝑂(𝑁 log𝑁) multipliers as required for the DFT domain
implementation.

On the optimality of proposed method: It should be noted
that the estimates for hAC and ℎDC are both unbiased and
therefore ĥ = ĥAC + ℎ̂DC1L is also an unbiased estimate of
h. But different from ĥAC, ℎ̂DC is not a minimum variance
unbiased estimate; but only the least squares estimate. The
minimum variance unbiased estimate for ℎ𝐷𝐶 is the weighted
least squares estimate of rDC where the weighting is the
covariance matrix of the error on rDC. We have chosen to use
the simpler least squares estimate, since the resultant coloring
of the noise on rDC is not significant due to good cyclic auto-
correlation of the Legendre sequence [11].

IV. NUMERICAL RESULTS

Results on AC Coupled Channel Estimation: The perfor-
mance of Legendre sequences, Schroeder sequences [12] and
the optimal binary sequences for the conventional frequency
domain channel estimation given in [2] are compared.

The Schroeder sequences of length 𝑁 are defined as 𝑏𝑛 =

1−2
(⌊

𝑛2

2𝑁

⌋
mod 2

)
for 𝑛 = {1, . . . , 𝑁}. Here ⌊⋅⌋ denotes the

rounding of the argument to the largest integer not exceeding
the argument.

The optimal sequences of length 𝑁 = {29, 31, 37, 41}
(which are listed in Table VI of [2]) are compared with the
same length Legendre sequences. We would like to remind that
the optimal sequences listed in [2] are optimal only for the
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estimation arbitrary channels with the conventional method,
not for the estimation of AC coupled channels. We denote the
sequences described in [2] as Tellambura sequences in order
not to cause confusion. It has been shown that the Legendre
sequences are the optimal training sequences for the estimation
of AC coupled channels. Our goal is to examine the loss
incurred for another sequence.

The total estimation error variance for the AC coupled
channels is defined as follows:

𝐸{∣∣h− ĥ∣∣2} = 𝜎2
𝑤

𝐿

𝑁

𝑁−1∑
𝑘=1

1

∣𝐵(𝑘)∣2 (20)

Note that the summation given in (20) starts from 1 for the
AC coupled channel estimation. We use the gain-loss factor
defined by Tellambura et al. in [2] for comparison. The gain-
loss factor is the ratio of the error variance achieved by a
training sequence and the lower bound on the variance. The
gain-loss factor shows the amount of signal energy that should
be increased to compensate the non-optimality of the code.
Combining (20) and the lower bound given in (10), the gain-
loss factor for AC coupled channels can be written as follows:

𝜇 = 10 log10

(
𝐸𝑐𝑁

(𝑁 − 1)2

𝑁−1∑
𝑘=1

1

∣𝐵(𝑘)∣2
)
(dB) (21)

Table I shows the gain-loss factor for Schroeder, Tellambura
and Legendre sequences each having the total energy of 𝐸𝑐 =
𝑁 . It should be noted that the gain-loss factors for Tellambura
sequences given in Table I are higher than the ones reported
in [2]. This is due to the change in the lower bound and the
non-optimality of Tellambura sequences for the AC coupled
channel estimation.

Results on Arbitrary Channel Estimation: The gain-loss
factor of the two-stage method with the Legendre sequences is
compared with the conventional method utilizing the optimal
sequences. The gain-loss factor for arbitrary channel estima-
tion is defined as follows,

𝜇 = 10 log10

(
𝐸{∣∣h− ĥ∣∣2}

𝜎2
𝑤𝐿/𝑁

)
(dB) (22)

For the conventional frequency domain channel estima-
tion method, the gain-loss factor can be expressed as
10 log10

(∑𝑁−1
𝑘=0

1
∣𝐵(𝑘)∣2

)
(dB) and for the proposed scheme

the gain-loss factor is equal to 10 log10

(
𝐸{𝝐H𝝐}
𝜎2
𝑤𝐿/𝑁

)
(dB) where

𝐸{𝝐H𝝐} is defined in (19).
Table II shows the results for the conventional frequency do-

main channel estimation (single stage method) for Schroeder,
Tellambura and the maximum length sequences. The Legendre
sequences are not listed here due to their infinite gain-loss
factor because of the null at the DC frequency. Table II
presents the results for different training sequence lengths (𝑁 )
and the channel lengths (𝐿). Different from the conventional
method, the error of the two-stage method depends on the
channel length. This is due to the windowing stage imple-
mented in between the estimation of AC and DC components
(see Figure 1) and can be further explained with the change
in the vector vDC given in (17) with 𝐿.

TABLE I
GAIN-LOSS FACTOR (𝜇) FOR THE AC COUPLED CHANNEL ESTIMATION

N Schroeder Tellambura Legendre
𝜇 (dB) 𝜇 (dB) 𝜇 (dB)

29 1.81 0.72 0
31 1.75 0.43 0
37 1.7 0.47 0
41 2.42 0.42 0
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Fig. 2. The variation of the gain-loss factor for the conventional and
suggested method. The channel length is 𝐿, the training sequence length
is 𝑁 .

Table II shows that the two-stage method with the Legendre
sequences has a better gain-loss factor than the conventional
method with the optimal sequences. In spite of some improve-
ment in the estimation error variance, we believe that the major
contribution of the proposed method is its ability to efficiently
utilize the Legendre sequences. We would like to remind that
the Legendre sequences have closed form formulas; hence can
be immediately generated for any 𝑁 , however large it is.

Figure 2 shows the gain-loss factor of the two-stage method
with the Legendre, m-sequences and the gain-loss factor of the
conventional method with optimal the Tellambura sequences
for 𝑁 = 31. It can be observed that two-stage method
has a smaller estimation error variance than the conventional
technique when 𝐿 is sufficiently smaller than 𝑁 , which is
the case for the classical channel estimation problem. As
expected, the performance of the two-stage method degrades
as 𝐿 approaches 𝑁 . The m-sequences have a non-zero DC
value, therefore operate at a marginally better overall MSE
than the Legendre sequences. But m-sequences are defined
only for 𝑁 = 2𝑘 − 1, where 𝑘 is a positive integer, therefore
they are quite rare in comparison to the Legendre sequences
and do not have an efficient implementation. Therefore we
suggest the usage of the Legendre sequences instead of m-
sequences with the proposed method.

Figure 3 graphically illustrates the major contribution of
the study. This figure shows the performance of the proposed
method for 𝑁 = {31, 41, 53, 61} for various channel lengths
𝐿. It should be noted that a good training sequence for two-
stage method for 𝑁 = 61 is immediately available from (12);
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TABLE II
GAIN-LOSS FACTOR (𝜇) FOR THE SINGLE STAGE (CONVENTIONAL) AND TWO-STAGE FREQUENCY DOMAIN CHANNEL ESTIMATION METHODS (N:

TRAINING SEQUENCE LENGTH, L: CHANNEL LENGTH)

Single Stage Method Two-Stage Method
N Schroeder Tellambura m-sequences Legendre

Independent of 𝐿 L=5 L=10 L=15 L=20
29 1.57 0.50 - 0.02 0.07 0.15 0.30
31 1.80 0.31 2.87 0.02 0.06 0.12 0.23
37 1.79 0.32 - 0.01 0.04 0.08 0.13
41 2.23 0.29 - 0.01 0.03 0.05 0.10
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Fig. 3. The variation of the gain-loss factor for the two-stage method. As
the training sequence length (𝑁 ) increases, the error reduces monotonically
for all channel lengths (𝐿).

but it is unknown for the conventional method and requires
a search of 261 candidate points. The search complexity,
even with the significant complexity reduction proposed by
Tellambura et al., is infeasible for 𝑁 ≥ 43 as reported in [2].
The availability of long training sequences can be especially
important for the estimation long channels such as ultra wide
band, underwater acoustic channels, etc.

V. CONCLUSIONS

The present work describes a novel two-stage channel
estimation method. Different from the conventional method,
the proposed method estimates AC and DC parts of the
channel in succession. It has been shown that this approach
leads to a reduction in the estimation error variance. The major
advantage of the proposed method is the availability of the
optimal codes with analytical formulas (Legendre sequences)

for the estimation of AC components of the channel. The
conventional frequency domain channel estimation method
requires a search of 2𝑁 binary sequences to find an optimal
training sequence of length 𝑁 which is not feasible for large
𝑁 . The proposed method also has an efficient time-domain
implementation which requires at most 2𝑁 multipliers in
comparison to 𝑂(𝑁 log𝑁) multipliers for the conventional
method. Hence the method enables efficient estimation of long
channels, such as the ultra wide band channels, without a
performance compromise (even with some gain) through a
family of analytically expressible codes.
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