
IET Radar, Sonar & Navigation
Research Article
On the design of staggered moving target
indicator filters
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 205–215
& The Institution of Engineering and Technology 2016
ISSN 1751-8784
Received on 28th October 2014
Revised on 27th May 2015
Accepted on 27th June 2015
doi: 10.1049/iet-rsn.2015.0175
www.ietdl.org
Mehmet Ispir1 ✉, Cagatay Candan2

1ILTAREN, TUBITAK BILGEM, Ankara, Turkey
2Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey

✉ E-mail: mehmet.ispir@tubitak.gov.tr

Abstract: The problem of moving target indicator (MTI) filter design for radar systems with non-uniform (staggered) pulse
repetition intervals is examined. The goal is to realise and then utilise a trade-off in the design of MTI filter between the
conflicting requirements of high suppression of undesired signal (clutter echo) and minimal suppression of desired signal
(target echo). To that aim, three design methodologies, namely, least squares, convex optimisation and min–max error,
are studied. The numerical results indicate that the presented designs yield high-performance MTI filters which are
easily applicable to a variety of operational scenarios. A ready-to-use source code for the design of suggested filters is
also provided.
1 Introduction

Moving target indication (MTI) filters are designed to improve the
detection probability of moving targets by suppressing the
stationary clutter return. The simplest and most well-known MTI
filter is the single line canceller which subtracts the received signal
due to two consecutive pulses in order to cancel the clutter. The
simplicity of MTI filtering and its satisfactory performance in
several applications makes this operation a frequent choice in
many systems. An important disadvantage associated with MTI
filtering is the blind speed problem that results from the usage of
constant pulse repetition interval (PRI). Moving targets with the
Doppler frequencies matching the null frequency, which is an
integer multiple of 1/PRI hertz, are also cancelled along with the
clutter return. The range rates corresponding to these specific
frequencies are called blind speeds [1]. A remedy to the blind
speed problem is the usage of staggered PRIs [2]. With this
solution, the first blind speed of the system is increased and a
wider Doppler frequency range is covered. This paper presents
three different approaches for MTI filter design for the systems
with non-uniform PRI.

A typical frequency response curve for uniform and staggered
MTI operations is given in Fig. 1. Fig. 1 shows that the response
of the staggered system has undesired fluctuations in the passband.
These fluctuations can be of several decibels and may result in a
significant decrease of detection probability at some specific
Doppler frequencies. To improve the detection probability, the
fluctuations in the passband should be minimised, and at the same
time the clutter suppression performance around the DC frequency
should be sufficiently large.

The majority of MTI filter designs in the literature are developed
for the uniform PRI operation [3–5]. The non-uniform case seems to
attract less attention due to its dependency on the application
scenario, that is, the utilised set of PRI values [6, 7]. One of the
first methods for non-uniform operation is developed by Prinsen
[3]. Prinsen suggests to adjust the filter weights to provide
maximally flat stopband characteristics at DC frequency. The
approach of Prinsen relies on the Taylor series expansion of the
frequency response at the zero frequency and can be considered as
the dual of single line canceller systems, that is, H(z) = 1− z−1, for
non-uniform PRI systems. In a later work, Prinsen suggests the
optimisation of the stagger periods with the filter weights [4]. In
[8], Hsiao has suggested the optimisation of the filter weights with
the objective of the flat passband along with the constraint of
maximum stopband attenuation (SA). Jacomini uses the same
constraints of Hsiao, but suggests a change in the cost function to
assist the computation of the filter as described in [9]. Neither the
work of Hsiao nor the work Jacomini does establish a trade-off
between the desired responses in passband and stopband.

In this paper, we apply three widely adopted finite impulse
response (FIR) filter design techniques in the signal processing
literature, namely, the least squares (LSs), convex optimisation and
min–max (MM) filter design; to the design of non-uniform MTI
filters. Our goal is to obtain maximum amount of clutter
suppression concurrently with the least amount desired signal
suppression (flat passband). To assist readers, ready-to-use
MATLAB codes for all three design methodologies are provided
in [10]. The provided codes can be used to generate filters for
different operational settings such as PRI values, stopband
passband specifications etc.

This paper is organised as follows: we first present a brief
information on the staggered MTI operation; then a formulation
for the frequency response calculation for the non-uniformly
sampled signals is given. The filter design methodologies are
described next and some numerical comparisons with the optimal
designs known in the literature are given. The final section
presents a summary of the work and also the conclusions.
2 Preliminaries

MTI filters for non-uniform PRI (staggered PRI) operation are
designed to extend the first blind speed associated with the target
echo. Doppler frequency corresponding to the first blind speed can
be written as fb = l.c.m.(PRF1, PRF2, …, PRFL) [11]. Here
PRF = 1/PRI denotes the pulse repetition frequency and l.c.m.
denotes the lowest common multiple of the arguments. For the
uniform PRI case, PRF1 = PRF2 = … = PRFL = PRF, the first blind
speed coincides with the utilised PRF whose value can be low in
comparison to some target speeds of interest. For example,
weather radars typically utilise low PRF values to avoid target/
clutter folding. For such systems, the low PRF values may reduce
the first blind speed to an unacceptable value unless staggering
option is utilised. A weather radar system utilising staggered PRFs
of 3 and 4 kHz can cover Doppler frequencies up to 12 kHz and
this range can be sufficient to cover many meteorological target
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Fig. 1 Comparison of frequency responses for uniform and non-uniform MTI filters (fbs is the first blind speed of uniform MTI filter)
speeds of interest. In this paper, our focus is not on the selection of
PRF values; however, on the design of a ‘suitable’ MTI filters for a
given set of PRF values.

We would like to briefly discuss the ‘suitability’ of an MTI filter to
an application. An MTI filter can be considered to be suitable if the
clutter strength (typically expressed in clutter-to-noise ratio) and
clutter spectral width matches the stopband specifications of the
filter. In practice, the radar operator/system selects a suitable MTI
filter among the set of pre-designed filters according to the needs
of operational scenario. As an example, if the clutter signal is
weak (in comparison with the noise variance), there may be no
need for the application of an MTI filter and the Doppler
processing can be implemented without MTI filtering. On the
other hand, in the presence of strong clutter, a suitable MTI filter
can significantly improve the target detection performance.

In the present paper, we present a set of methodologies for the
design of MTI filters. The effectiveness of the designs is studied
from two different viewpoints. The first viewpoint treats the
problem as a filter design problem and examines several criterion
on the frequency response of the filter such as SA, passband ripple
etc. The second viewpoint treats the problem as a radar signal
processing problem and examines the MTI improvement factor
(IF) which is the change in signal-to-clutter ratio (SCR) before and
after filtering, that is, IF = (SCR)output/(SCR)input.

We consider the signal model r = s(v)+ c+ n where r is an N × 1
column vector containing the slow-time samples of the return echo
corresponding to a specific range-cell. Here N is the number of
transmitted pulses which can be staggered or not. The vector s(v)
denotes the desired signal which is the return due to target having
the Doppler frequency ω. The vector c denotes the return due to
clutter and the vector n denotes the white noise.

The goal of MTI processing is to linearly combine N samples of
the vector r to reduce the contribution of the clutter at the output.
The N × 1 vector w can be considered as a set of linear
combination coefficients to this aim. With these definitions MTI
output can be written as (MTIoutput) = wHr = wHs(v)+ wHc+
wHn and the input and output SCR values can be expressed as
follows:

(SCR)input =
E{s(v)Hs(v)}

E{cHc}
= s2

s

s2
c
, (1)

(SCR)output =
E{|wHs(v)|2)}
E |wHc)|2{ } = wHRsw

wHRcw
. (2)

Here, the target signal s(v) and clutter signal c are assumed to have
an auto-correlation matrixes Rs and Rc, respectively. Similarly, the
variables s2

s and s2
c are the variances of target and clutter. The

MTI IF for the target with the Doppler frequency ω can then be
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written as

IF(v) = (SCR)output
(SCR)input

= wH(1/s2
s )Rsw

wH(1/s2
c)Rcw

= wHRsnw

wHRcnw
. (3)

In (3), the matrices Rsn = (1/s2
s )Rs and Rcn = (1/s2

c )Rc, with unit
valued diagonals, correspond to the normalised version of signal
and clutter auto-correlation matrices. A legitimate goal in the MTI
filter design is the maximisation of IF(ω).

In the present discussion, the target is assumed to be Swerling-0 or
Swerling-1 type; stated differently, it is assumed that there is no
target fluctuation during the coherent processing interval. Hence,
the slow-time samples due to the target echo can be written as
s(v) = gsu(v). Here, γs is a non-random quantity for Swerling-0
model and Rayleigh distributed for Swerling-1 model. The real
valued γs parameter denotes the amplitude of the slow-time
samples. The vector u, appearing in the relation s(v) = gsu(v), is
formed by the phase of the slow-time samples. With this model,
the normalised auto-correlation matrix for the desired signal is a
rank 1 matrix which can be expressed as Rsn = u(v)u(v)H.

The clutter signal is assumed to have a Gaussian distributed power
spectral density

Pc(f ) =
s2
c������

2ps2
g

√ exp − f 2

2s2
g

( )
. (4)

The parameter σg appearing in this definition is the parameter of the
density associated with the clutter Doppler spread. This parameter
can be interpreted as the standard deviation of the clutter Doppler
spread. The Gaussian distributed power spectral density model is
particularly suitable for the radar systems with rotary antennas,
such as weather radar systems, where the modulation of the clutter
signal is mainly due to the antenna scanning.
3 Non-uniform MTI filter design

The filtering structure for the FIR staggered MTI operation is shown
in Fig. 2. Here, the output signal y(t) is formed by a linear
combination of the non-uniformly sampled input signal.

The frequency response of this system can be expressed as

H(f ) =
∑N
n=0

ane
−j2pf tn (5)
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Fig. 2 Filtering structure for non-uniform MTI processor
where the definition for tn is

tn =
∑n−1

i=0 Ti, n ≥ 1
0, n = 0

{
(6)

Here f denotes the frequency in hertz, αn is the nth filter coefficient
and tn is the nth sampling time instant whose value is given in (6). It
should be noted that Ti’s correspond to the interpulse periods for the
radar signal processing application.

The ideal frequency response for a staggered MTI system is
illustrated in Fig. 3. The high-pass part of the spectrum shown in
Fig. 3 is divided into three frequency regions. Clutter region starts
from DC and goes up to the cut-off frequency and forms the
stopband. The transition region is the second region and identifies
the steepness of the MTI filter. The third region is the velocity
region indicating the Doppler frequency of the interested targets
and it is the passband of the MTI filter.

The goal in MTI filter design is to minimise the passband ripple
(to provide small signal-to-noise ratio loss for the targets in the
velocity region) and to provide sufficiently high clutter attenuation
(to minimise the effect of clutter signal at the output). We note
that both objectives cannot be improved simultaneously and a
practical solution has to operate at a trade-off between these
objectives. The trade-off between these objectives depends on the
optimisation of two sets of parameters: the interpulse time
durations (Ti) and filter coefficients (αi). To evaluate and compare
different trade-off points objectively, some quantitative
performance criterions are needed. The following presents the
performance criterion utilised in this paper [12].
SA at fc: SA is the value of filter magnitude response at the cut-off
frequency fc. Since the frequency values smaller than fc (0≤ f≤ fc)
are typically attenuated more than the value at the cut-off
frequency, this value can be considered to represent the worst-case
clutter attenuation in the stopband. This criterion can be expressed
as SA = |H( fc)|

2.
Fig. 3 Ideal magnitude response for a non-uniformly sampled MTI filter
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Maximum deviation (MD): This criterion indicates the MD from
the ideal flat response in the velocity region. The MD value is
commonly seen around the transition region and referred as
the depth of the first null. This criterion can be expressed as
MD =max |Hd( f )−H( f )|2.
Mean passband error (MPE): This criterion is given to measure
the flatness of the filter response in the velocity region. It is based
on the difference between ideal and designed filter responses in
the passband and given by MPE = � fp

ft
|Hd(f )− H(f )|2 df , where

Hd( f ) and H( f ) are the frequency responses of the ideal and
designed filters, respectively. The limits of the integral are the
lowest and highest frequencies in the velocity region as shown in
Fig. 3.

Fig. 4 illustrates the criterion used in this paper. As a cautionary
remark, we note that the maximum frequency value for the desired
passband (fp in Fig. 4) must be smaller than fmax− fc for a proper
optimisation. This consideration is due to the periodicity of clutter
spectrum. Here, fmax denotes the blind speed of the staggered MTI
system, as discussed in Section 2.

To provide a fair comparison for different filters, a normalisation
on filter coefficients is required. In this paper, we assume that the
designed filters have unity white noise gain, that is, the filter

weights are normalised as an
i = ai/

����������∑N−1
i=0 a2

i

√
. Here an

i is the
normalised version of the weight αi.
4 MTI filter design methodologies

For the generation of different trade-off points between the
conflicting design objectives, three approaches are presented. The
first approach is the LS approach. This approach aims to obtain a
set of filter coefficients that approximate the desired response in
the sense of minimum least-squared error. The second approach is
based on the convex optimisation method (CVX). The third
approach is based on the minimisation of the worst-case error and
it is called as the MM error approach.
Fig. 4 Performance measures of the staggered PRF MTI filter design
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Fig. 5 Frequency response of LSs based MTI filters for different weights
4.1 LSs based design

The cost function for the LS sense design is given as follows:

Jcost =
∫ fd

0
|Hd(f )− Hls(f )|2 df = ||Hd(f )− Hls(f , ai)||2. (7)

Here, Hd( f ) and Hls( f, αi) indicate the frequency responses of the
desired and least-square sense designed filter, respectively. Hd( f )
is the ideal high-pass filter whose frequency domain definition
given as

Hd(f ) =
0, if 0 ≤ f ≤ fc,
1, if ft ≤ f ≤ fp,

.

{
(8)
Table 1 Performance measures of LSdesign-based MTI filters for
different weights

W SA, dB MPE, dB MD, dB

1000 −24.884 −0.659 25.409
10,000 −40.470 −0.699 26.771
1×106 −50.030 −0.691 19.569
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The non-uniform MTI filter design problem can be written as

minimise ||Hd(f )− Hls(f , ai)||2

subject to
∑N−1

i=0

ai = 0, x [ <.
(9)

Here, ||.|| is the norm defined in (7); the constraint of
∑N−1

i=0 ai = 0 is
provided to suppress the DC component. Using Lagrange multipliers
l, we can express the problem as follows:

Jcost(a, l) =
∫ fd

0
Hd(f )−

∑N−1

i=0

aie
−j2pf ti

∣∣∣∣∣
∣∣∣∣∣
2

df + l
∑N−1

i=0

ai

( )
. (10)

By taking the partial derivatives of the cost function with respect to
filter coefficients, we get

∂Jcost
∂ai

=
∫ fd

0
Hd(f )−

∑N−1

n=0

ane
−jpf tn

( )
ej2pf ti df + l. (11)

By equating, the partial derivatives given in (11) to zero for
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 205–215
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Fig. 6 Frequency response of convex optimisation-based MTI filters for different weights
i = {0, 1, …, N}, we end up with a linear equation system

Aa = Hd + ıl1 (12)

Hd is an N × 1 column vector with the kth entry

Hd(k) =
� fd
fc
ej2pf tk df and A is an N × N matrix with the ith row

and jth column entry and A(i, j) = � fd
0 e−j2pf (tj−ti) df and 1 is the

N × 1 column vector composed of all ones 1 = [1 1…1]T. Finally,
the vector a in (12) is the vector of unknowns, that is, filter
coefficients for the staggered system.

To establish a trade-off between the objectives of clutter
attenuation and passband ripple; we introduce a weight W to
Table 2 Performance measures of convex optimisation-based MTI
filters for different weights

W SA, dB MPE, dB MD, dB

10,000 −8.97 −0.617 17.016
100,000 −24.83 −0.667 18.457
1 × 106 −69.27 −0.626 27.632
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control the contribution of the stopband error to the cost function

JWcost = W

∫ fc

0
|Hd(f )− Hls(f )|2 df +

∫ fd

ft

|Hd(f )− Hls(f )|2 df

+ l
∑N−1

i=0

ai

( )
. (13)

The optimisation of the cost function results in the following
equation system:

(W × Astop + Apass)a = Hd + ıl1. (14)

In the last equation, Astop(i, j) =
� fc
0 e−j2pf (tj−ti) df and

Apass(i, j) =
� fp
ft
e−j2pf (tj−ti) df . It should be clear that by increasing

W, the contribution of the stopband error to the cost function is
increased. Therefore, for higher W values the optimised filter
presents more clutter suppression by trading-off the passband
performance.
209



Fig. 7 Frequency response of MM error design-based MTI filters for different weights
By rewriting (14) as a = (W × Astop + Apass)
−1(Hd + ıl1) and

using the constraint 1Ta = 0, the multiplier l explicitly written as

l = 1T(W × Astop + Apass)
−1Hd

1T(W × Astop + Apass)
−11

. (15)

To clarify the effect of weighting factor W, we present an example
utilising the stagger ratios 25:30:27:31 given in [1]. Fig. 5 shows
the results for the chosen stagger ratios. In this figure and
following figures, the region boundaries are marked by bold
vertical lines. From Fig. 5, it can be seen that an increase in the
weight factor W results in a larger SA in the clutter region and
larger MSE in the velocity region, as anticipated. However, the
MD value does not change monotonously with W. This can be
Table 3 Performance measures of MM error design-based MTI filters
for different weights

W SA, dB MPE, dB MD, dB

260 −50.70 −6.28 28.07
790 −60.37 −0.57 17.53
3510 −73.86 −7.22 25.24
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seen from the performance criterion in Table 1. (For W = 103, MD
takes the value of 25.409 dB, whereas it is 19.569 dB when W
equals to 106.) Since the value of MD is important to provide a
good detection performance over the complete Doppler range, it is
recommended to set the W value in accord with the achieved MD
value.
4.2 Convex optimisation-based design

We present a formulation for the staggered MTI filter design problem
in the context of convex optimisation. Design objectives are similar
to the LS sense design which is the minimisation of the passband
error and maximisation of the SA. Similar to the LS design, a
weight W is introduced to establish a trade-off between these
objectives. The convex filter design problem can be written as
follows: (see equation at bottom of the next page)

Here N is the order of the filter and the optimisation variables are the
filter coefficients, αi i = {0, 1, …, N− 1}. The variables ft and fd are
the lower and upper bounds of normalised passband frequency,
respectively, and fc is the upper bound of normalised stopband
frequency as in Fig. 3. Similar to the LS design, an increase in the
weight W increases the maximum tolerable passband ripple to Wδ
and this leads to the improvements in SA.
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 205–215
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Fig. 8 MTI filter frequency response for interpulse periods of [8]
The convex optimisation problem can be expressed in the form
given below which is compatible with the syntax of the
off-the-shelf convex optimisation tool CVX [13] (see (16))

Different from the LS design, there is no closed-form solution for the
convex optimisation problem. The optimisation has to be done
numerically. The numerical implementation of the optimisation
minimise d

subject to |H(f , ai)| ≤ d, f [ [0, fc], ai [

|H(f , ai)− 1| ≤ Wd, f [ [ ft , f

∑N−1

i=0

ai = 0, a [ R

minimise d

subject to |Astopa| ≤ d, f [ [0, fc], ai [

|Apassa− 1| ≤ Wd, f [ [ ft , fd

∑N−1

i=0

ai = 0, a [ R

IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 205–215
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problem requires the discretisation of frequency band into a dense
set of frequency points. Hence, the constraints given in (16) are
not evaluated for a continuum of points; however, for a finitely
many number of points. In the present paper, 8192 points are
utilised in the discretisation of the frequency interval and the
convergence to the global optima is rapid with the convex solver
CVX available at [13].
R, i [ {0, 1, 2, . . . , N − 1}

d], ai [ R, i [ {0, 1, 2, . . . , N − 1}

R, i [ {0, 1, 2, . . . , N − 1}

], ai [ R, i [ {0, 1, 2, . . . , N − 1} (16)
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Fig. 9 MTI filter frequency response for interpulse periods of [9]
Fig. 6 indicates the frequency response of the designed non-
uniform MTI filter for different W values and Table 2 gives the
related performance criteria of the design. In this figure, the stagger
ratios of 11:16:13:17 (taken from [1]) are utilised. As seen from
Fig. 6, the effect of W on the SA is similar to the LSs based design.
An increase inW improves the SA at the expense of passband deviations.

The weight factor of the convex optimisation-based design can be
selected as in the LSs based design, that is, the weightW is increased
so that the SA condition is satisfied and then, among the weight
values satisfying the SA condition, the one with a smaller MD
value can be selected.

4.3 MM error-based design

The MM error-based design aims to select the filter coefficients to
minimise the MD from the desired response in the passband. This
minimise d

subject to |Hmm(f , ai)| ≤ d, f [ [0, fc], ai

1− |Hmm(f , ai)|
∣∣ ∣∣ ≤ Wd, f [ [ ft ,

∑N−1

n=0

an = 0, a [ R
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method exhibits an important difference when compared with
earlier methods. The earlier designs yield a single global optima
for every weight factor, while this MM error-based design exhibits
several local maximas. Therefore, this method requires a good set
of initial filter coefficients for a proper operation. Typically, we
use the binomial filter coefficients, as explained below, as the
initial filter coefficients. Some other initialisation choices are also
discussed after the method description.

The problem of MM error-based filter can be written as follows:
(see (17))

Here Hmm( f, αi) is the frequency response of the MM filter and the
variable δ shows the MD from the desired characteristics for W = 1.
The goal in this design is to minimise the MD from the desired
high-pass characteristic. The first and second constraints enforce
the magnitude deviation to be smaller than δ (for W = 1) in the
[ R, i [ {0, 1, 2, . . . , N − 1}

fp], ai [ R, i [ {0, 1, 2, . . . , N − 1} (17)

IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 205–215
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Fig. 10 MTI filter frequency response for interpulse periods of [15]
designated bands. The third constraint guarantees that the MM
design has a null at DC frequency. Again a weight factor W is
introduced to establish a trade-off between SA and passband ripple
objectives. The presented figures are generated by using the
binomial coefficients as the initial filter coefficients. (The binomial
filter coefficients are the coefficients of the polynomial (1− x)N.)
The stagger ratios for this figure are 12:16:13:18 (taken from [14]).

Fig. 7 indicates the obtained frequency response for different
weight factors and Table 3 gives the related performance measures
of the design. We note that MM design requires more computation
compared with the previous LS and convex design methods. The
MM design of non-uniform MTI filter requires two phases. First,
the weight factor is determined according to the required SA by
using the binomial coefficients as the initial filter coefficients.
After the weight factor selection, MM optimisation should be
initiated with different initial conditions and the one with the
minimum deviation in the passband should be selected as the final
filter. With this approach, it is possible to obtain desired SA with a
better passband characteristics.

Previously, it has been suggested to use the binomial filter
coefficients as the initial weights for the optimisation procedure. In
addition to this choice, it is possible to use randomly selected
weights or randomly selected weights with the constraint that the
sum of the weights (DC gain of the filter) is equal to zero can also
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 205–215
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be utilised. Depending on the application scenario (i.e. stagger
ratio and filter specifications) one initialisation method may yield a
better solution over another one.
5 Numerical comparisons

In this section, we present some numerical comparisons of the
suggested designs with the available optimised MTI filters in the
literature. We take the optimised filters of Hsiao, Jacomini and
Zuyin’s as reference designs from the literature [8, 9, 15]. It
should be noted that stagger periods given in the reference works
are different from each other. We individually compare the
proposed filters with the optimised filters of Hsiao, Jacomini and
Zuyin in three sets of experiments whose results are shown in
Figs. 8–10 and then present a comparison on the IF of the filters
in Fig. 11.
5.1 Frequency response comparisons

The results of first experiment are given in Fig. 8 and Table 4. It can
be noted that the MM design presents 5.22 dB better attenuation
(SA) than Hsiao’s design and has almost the same passband
213



Fig. 11 MTI IF comparison

Table 4 Performance comparison (interpulse periods are from [8])

SA, dB MPE, dB MD, dB

LS −30.66 −0.6012 22.32
convex −27.75 −0.5432 17.59
MM −36.55 −0.5696 17.95
Hsiao and Kretschmer [8] −31.33 −0.5704 21.37
binomial −14.57 −0.5133 20.23
performance. Fig. 9 shows the results of second experiment. Here,
the suggested designs are compared with the one given in [9]. In
this comparison, the staggering periods [279, 204, 150, 175,
230] appearing in the title of Fig. 9 are the utilised values by
Jacomini in [9] and represent the interpulse periods in
milliseconds. (The corresponding sampling times tk for this
scenario becomes [0.0, 0.279, 0.483, 0.633, 0.808, 1.047] s.)
When the responses in Fig. 9 and Table 5 are compared, we can
say that LS design yields a similar performance to the design
given in [9]. This is expected due to similarity in the cost
Table 5 Performance comparison (interpulse periods are from [9])

SA, dB MPE, dB MD, dB

LS −39.61 −0.0262 10.41
convex −61.13 −0.2525 13.84
MM −47.91 −0.2512 12.64
Jacomini [9] −38.25 −0.0139 10.88
binomial −24 −0.2436 53.72
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functions and objectives of both methods. Compared with the LS
design, convex optimisation based and MM error-based designs
achieve significantly better responses for SA and MPE criterions.

The last frequency response comparison is given in Fig. 10 and
Table 6. Here Zuyin’s design given in [15] is compared with the
suggested designs. It can be noted that MM design presents a
significant gain in SA and yields a better performance in passband
in comparison with the other designs. It can be seen from Table 6
that MD and SA values are improved by 2–11 dB compared with
the Zuyin’s. The numerical values for filters designed according to
the described methodologies can be found in [12, Appendix A].
5.2 IF comparisons

As discussed in Section 2, the IF is the ratio of SCR values at the
input and output of the MTI filter. It should be underlined that
MTI filters are designed to suppress the clutter signal, but their
application also leads to a suppression of desired signal to some
degree. The IF is a measure indicating the effectiveness of the
clutter removal at the expense of desired signal attenuation.
Table 6 Performance comparison (interpulse periods are from [15])

SA, dB MPE, dB MD, dB

LS −56.71 −1.108 38.05
convex −55.75 −1.152 39.04
MM −62.05 −1.175 46.62
Zuyin [15] −51.43 −1.154 37.36
binomial −26.17 −1.19 41.37
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Table 7 MTI IF comparison (interpulse periods are from [15])

Optimum MM LS CVX Zuyin Binomial

IF, dB 56.887 54.298 49.525 50.375 48.701 48.701
Fig. 11 shows the IF curves for the suggested filter designs. Here,
the clutter is assumed to have a Gaussian distributed power spectral
density, as in (4). Since the clutter power spectral density is not
bandlimited, the clutter signal has a negative impact over the
complete Doppler spectrum. Our goal in the presented IF
comparison is to show the effectiveness of MTI filtering, that is,
the increase in SCR via MTI operation, for different target
Doppler frequencies.

It should be noted that the optimum filter maximising output SCR
for a specific target Doppler frequency (the linear combiner
maximising IF at a particular Doppler frequency) can be
analytically expressed as wopt = R−1

cn s(v) [11, Sec. 5.2.5]. Here,
Rcn is the normalised auto-correlation matrix of the clutter and
s(v) is the desired signal vector, containing the slow-time samples
(non-uniformly sampled) of target echo, as discussed in Section
2. Fig. 11 includes the IF curves of the optimal system. The IF
curve for the optimal combiner is given as a benchmark or as an
upper bound for performance improvement. In practice, the
performance of the optimal system is not achievable, since the
clutter power is not exactly Gaussian distributed and even if it is
Gaussian distributed, its parameters cannot be exactly estimated.
Yet, the upper bound on MTI IF can be useful to assess the
‘suitability’ of an MTI filter to a specific application scenario.

The filters designed by proposed methods are adjusted to have a
cut-off frequency which is two times the Doppler spread of clutter,
that is, fc = 2σg, where σg is the parameter in (4) associated with
the clutter Doppler spread. It can be noted from Fig. 11 that the
MM filter presents an IF value which is quite close to the
performance upper bound at almost all Doppler frequencies. The
average MTI IF values for different designs are provided in
Table 7. The average values of the IF curves can be interpreted as
the MTI gain for a target with a random Doppler frequency which
is known to be uniformly distributed in the Doppler range of
interest. The results in Table 7 show that there can be a significant
gain on the application of a suitable MTI filter with respect to this
metric.
6 Conclusions

The present paper examines the problem of MTI filter design for the
systems utilising staggered PRIs. Three well-known filter design
methods, the LSs design, convex optimisation-based design and
MM error-based design, have been considered. The results indicate
that with a proper selection of a weight parameter, a good
compromise between clutter attenuation and flat passband response
can be attained for different scenarios.
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We note that the MM design (or its relaxed version convex
optimisation-based design) can yield a similar or a better
performance than highly optimised filters available in the literature
with a proper selection of weight factor. This is indeed an
important result since the utilisation of the generic optimisation
routines can significantly shorten and simplify the filter design
cycles. Interested readers can also examine [12] for additional
simulation results and further details on the design procedures.

It should be underlined that the filter designs suggested in the
present paper are specific to a given set of stagger periods. Yet,
the presented design methods can be used to jointly optimise the
stagger periods, MTI filter order and its coefficients. That is,
among a set of possible stagger sequences covering the same
unambiguous Doppler range, the one whose optimised MTI
response is closest to the desired response can be selected in an
automated way. Such an operation may result in a dynamic
procedure for the MTI filter selection according to existing clutter
conditions. The joint optimisation of stagger periods, filter order
and its coefficients can be pointed as a venue for further research
complementing the present paper.

As a final remark, we note that a ready-to-use MATLAB code for
the suggested designs is provided in [10].
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