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ABSTRACT 

We propose and consolidate a definition of the discrete fractional 
Fourier transform which generalizes the discrete Fourier transform 
(DFT) in the same sense that the continuous fractional Fourier 
transform (FRT) generalizes the continuous ordinary Fourier Trans- 
form. This definition is based on a particular set of eigenvectors 
of the DFT which constitutes the discrete counterpart of the set of 
Hermite-Gaussian functions. The fact that this definition satisfies 
all the desirable properties expected of the discrete FRT, supports 
our confidence that it will be accepted as the definitive definition 
of this transform. 

1. INTRODUCTION 

In recent years, the fractional Fourier transform (FRT) has attracted 
a considerable amount of attention, resulting in many applications 
in the areas of optics and signal processing. However, a satisfac- 
tory definition of the discrete FRT, consistent with the continuous 
transform, has been lacking. In this paper, our aim is to propose 
(following Pei and Yeh [I ] )  and consolidate a definition which has 
the same relation with the continuous FRT, as the DFT has with 
the ordinary continuous Fourier transform. This definition has the 
following properties, which may be posed as requirements to be 
satisfied by a legitimate discrete-input/discrete-output FRT 

1. Unitarity. 

2. Index additivity. 

3. Reduction to the DFT when the order is equal to unity. 

4. Approximation of the continuous FRT. 

A comprehensive introduction to the FRT and historical ref- 
erences may be found in [2]. The transform has become popu- 
lar in the optics and signal processing communities following the 
works of Ozaktas and Mendlovic [3,4], Lohmann [5] and Almeida 
[6] .  Some of the applications explored include optimal filtering in 
fractional Fourier domains [7], cost-efficient linear system synthe- 
sis and filtering [S, 91 and time-frequency analysis [6, 21. Further 
references may be found in [2]. 

A fast O(N log N) algorithm for digitally computing the con- 
tinuous fractional Fourier transform integral has been given in [ IO]. 
This method maps the N samples of the original function to the N 
samples of the transform. Whereas this mapping is very satisfac- 
tory in terms of accuracy, the N x N matrix underlying this map- 
ping is not exacrly unitary and does not r.\-act/v satisfy the index 
additivity property. This makes it unsuitable for a self-consistent a 
priori definition of the discrete transform. 

Several publications proposing a definition for the discrete FRT 
have appeared, but none of these papers satisfies all of the above re- 
quirements [IO, I I ,  12, 13, 141. Thedefinition proposed in this pa- 
per was first suggested by Pei and Yeh [I].  They suggest defining 
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the discrete FRT in terms of a particular set of eigenvectors (previ- 
ously discussed in 1141) which they claim to be the discrete analogs 
of the Hermite-Gaussian functions. They justify their claims by 
numerical observations and simulations. In the present paper we 
provide an analytical development of Pei's claims with the aim of 
consolidating the definition of the discrete FRT. 

2. PRELIMINARIES 

2.1. Continuous Fractional Fourier Transform 

The continuous FRT can be defined through its integral kernel: 
00 

{F" f l  (ta) = J_, Ka(ta,t) f( t)dt  (1 )  

where Ka(ta, t )  = I t m e J n ( t 2 n C O t ~ - 2 t " t c s c m + t 2 c o t m )  and 4 
a?. The kernel is known to have the following spectral expan- 
sion [ IS]: 

W 

K,(t,, t )  = Q k ( t a )  e-J qka Qk(t) (2) 
k =O 

where + k ( t )  denotes the lcth Hermite-Gaussian function and t ,  
denotes the variable in the a th  order frucfionul Fourier domain 
[4]. Here exp(-- jnka/2)  is the ath power of the eigenvalue Xk = 
exp( --j7rk/2) of the ordinary Fourier transform. When a = 1, the 
FRT reduces to the ordinary Fourier transform. As a approaches 
zero or integer multiples of f 2 ,  the kernel approaches 6(ta-t) and 
6(ta + t )  respectively 161. The most important properties of the 
FRT are 1. Unitnrity, 2. Index additivity: Fa1Fa2 = Fa2Fa1 = 
3a1+az, 3. Reduction to the ordinary Fourier transform when a = 
1. 

We will define the discrete FRT through a discrete analog of 
(2). Therefore, we will first discuss the Hermite-Gaussian func- 
tions in some detail. 

2.2. The Hermite-Gaussian functions 

The kth order Hermite-Gaussian function is defined as ( k  = 0,1,. . .) 

where Hk is the kth Hermite polynomial having k real zeros. The 
Hermite-Caussians form a complete and orthonormal set in &. 
The Hermite-Gaussian functions are well known to be the eigen- 
functions of the Fourier transform, as will also be seen below. 

We begin with the defining differential equation of the Hermite- 
Caussians : 

(4) 
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It can be shown that the Hermite-Gaussian functions are the unique 
finite energy eigensolutions of (4) [17]. We can express the left 
hand side of (4) in operator notation as 

(232 + m 2 3 - 1 )  f(t) = A f ( t )  ( 5 )  

where V = $ and F denote differentiation and the ordinary 
Fourier transformation respectively. The operator (V2+3 V 2  3-' ) 
is the Hamiltonian associated with the harmonic oscillator [ 181. 
Here we will denote this operator by S and thus write ( 5 )  as S f ( t )  = 
Xf (t) .  

A theorem of commuting operators will be used to show that 
the Hermite-Gaussian functions, which are eigenfunctions of S, 
are also eigenfunctions of 3 [19, page 521. 

Theorem 1 IfA and B commute (i.e. AB = BA), there exists a 
common eigenvector set between A and B. 
We can see that Fand S commute as follows: 

FS = 3v2 + 32 v2 3-1 = PV2 + F2 v2 3-2 F 
= F V 2 + V 2 3 = S 3  (6) 

where we used 32V2F-2 = D2 which follows from F2 = 
T-2 = R, Rf(t)  = f(-t). Using theorem 1 and the fact that 
Hermite-Gaussian functions are the unique eigenfunctions of S, 
we conclude that they are also the eigenfunctions of 3. 

3. THE DISCRETE FRACTIONAL FOURIER 
TRANSFORM 

We will first show that the first three requirements are automat- 
ically satisfied when we define the transform through a spectral 
expansion analogous to (2). Assuming pk[n]  to be an arbitrary or- 
thonormal eigenvector set of the N x N DFT matrix and Xk the 
associated eigenvalues, the discrete analog of (2) is 

N-1 

Fa [m, n] = Pk [m] ( X k  1" Pk [n] (7) 
k-0 

The matrix Fa is unitary since the eigenvalues Xk have unit mag- 
nitude (since the DFT matrix is unitary). Reduction to the DFT 
when a = 1 follows trivially, since when a = 1 (7) reduces to the 
spectral expansion of the ordinary DFT matrix. Index additivity 
can likewise be easily demonstrated by multiplying the matrices 
Fa' and Fa2 and using the orthonormality of thepk[n]. 

Before we continue, we note that there are two ambiguities 
which must be resolved in (7). The first concerns the eigenstruc- 
ture of the DFT. Since the DFT matrix has only 4 distinct eigen- 
values ( x k  E (1, -1,j, -j}) [20], the eigenvalues are degener- 
ate so that the eigenvector set is not unique. In the continuous 
case, this ambiguity is resolved by choosing the common eigen- 
function set of the commuting operators S and 3 which are the 
Herniite-Gaussian functions. Analogously in discrete case, we will 
resolve this ambiguity by choosing the common eigenvector set of 
the DlT matrix and the discrete matrix analog of S. These eigen- 
vectors may be considered to be the discrete counterparts of the 
Hermite-Gaussian functions. They will be derived in the next sec- 
tion. 

The second ambiguity is associated with the fractional power 
appearing in (7), since the fractional power operation is not single 
valued. This ambiguity will again be resolved by analogy with the 
continuous case given in (2), i.e. we take A% = cxp(-i?rka/2). 

s =  

3.1. Discrete Hermite-Gaussians 

We will define the discrete Hermite-Gaussians as eigensolutions 
of a difference equation which is analogous to the defining differ- 
ential equation (4) of the continuous Hermite-Gaussian functions. 
First we detine the second difference operator -02 

CO 1 0 . . .  1 
I CI 1 . . .  0 
0 1 c2 . . .  0 

1 0 0 . . .  CN-1 

(14) . . . .  . . . .  . . .  

(8) 
5 2  - f ( t )  = f ( t  + h) - 2 f ( t )  + f ( t  - h.) 

h2 112 

52 serves as an approximation to d ' /d t2 .  5' can be related to V 2  
as 

2h2 
h2 112 4! 
5 2  ehV - 2 + ,-hV _ -  2)' + -v4 + . . . (9) - 

O ( h Z )  

where we we have ex ressed the shift operator in hyperdifferential 
form: f ( t  + I L )  = eh f ( t )  [18.21]. 

Now, we consider the factor 35'3-l appearing in S which 
can be evaluated as 

% 

2 (cos(27rht) - 1) 
T523-1 = = -4x2t2 + O(iL') h2 (10) 

where we used the fact that 3e iZv3- '  = e J Z x h t ,  which is noth- 
ing but a statement of the shift property of the ordinary Fourier 
transform. 

to obtain an approxima- 
tion of S, which we refer to as 3: 

5 2  
Now, we replace V' in ( 5 )  with 

5 2  52 i j 2  2 (cos(27rht) - 1) s=-++-F- '  = -+  
h2 h2 112 11 2 

= v' - 4Kt' + O(h') ( I  1) 

If we explicitly write the difference equation S f ( t )  = A f ( t ) ,  we 
obtain 

(12) 

We convert this equation to a finite difference equation by setting 
t = nh [21] with h = 1: 0 

f ( t  + h) + f ( t  - h) + 2 (cos(2nht) - 2 )  f(t)=h"Af(t)  

(13) 

where fn = f ( n h ) .  One should note that the coefficients of (13) 
are periodic with N ,  implying the existence of periodic vectors as 
eigensolutions of this difference equation [22]. Concentrating on 
the period defined by 0 5 n 5 N - 1, we obtain ii system of 
equations of the form Sf = Xf. 

where C, = 2(cos( sn) - 2 ) .  This symmetric matrix commutes 
with the DFT matrix ensuring the existence of common eigenvec- 
tors. Furthermore this common set can be shown to be uriiqiie and 
ortliogonal [22]. These facts will be substantiated below. It is this 
eigenvector set ilk which will be taken as the discrete counterpart 
of continuous Hermite-Gaussians. 
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Theorem 2 The rnatrix S arid the DFTriiatrix- (F) coiiiniute. 

Pro08 S can be written as S = A + B, where A is 
the circulant matrix corresponding to the system whose impulse 
response is h[n] = 6[n + 11 - 26[n] + 6 [ n  - 11, and B is 
the diagonal matrix defined as B = FAF-'. It can also be 
shown that A = FBF-' since h[n] is an even function. Then 

We will now show that the common eigenvector set is unique. 
First recall that eigenvectors of the DFT matrix are either even 
or odd sequences [20]. Thus the common eigenvector set should 
also consist of even or odd vectors. We will introduce a matrix 
P which decomposes an arbitrary vector f[n] into its even and 
odd components. This matrix maps the even part of f[n] to the 
first L(N/2 7 1)J components and the odd part to the remaining 
components. For example, matrix P for N = 5 is 

FSF-' = F(A + B)F-' = B + A  = S. 

d o 0 0  0 

4 0 0 1 - 1  0 
p = -  ' 1 ;  h !  ! h ]  (15) 

and satisfies P = PT = P-l. The similarity transformation 
PSP-' can be written as 

PSP-' = [ ;dl 
where the Ev and Od matrices are syznierr.ic tri-diagonal ma- 

trices with the dimensions L(N/2 + l)] and L(N - 1)/2)1 re- 
spectively. Since tri-diagonal matrices have distinct eigenvalues 
[19], the Ev and Od matrices have a unique set of eigenvec- 
tors. When the eigenvectors of Ev and Od are zero-padded and 
multiplied with P, we get the unique even-odd orthogonal eigen- 
vector set of S. That is, an even eigenvector of S is obtained as 
P [ e k  I 0 .  . . 01' where e k  is an eigenvector of Ev. Similarly, 
an odd eigenvector set is obtained from the eigenvectors of Od 
as P [ 0 . .  . 0 I Ok Thus we have shown how to obtain the 
unique common eigenvector set. 

We will now show how to order this vector set in a manner 
consistent with the ordering of the continuous Hermite-Gaussians. 
The kth Hermite-Gaussian has k zeros (3). Analogously, we will 
order the eigenvectors of S in terms of the number of their zero- 
crossings.' In counting the number of zero-crossings of the peri- 
odic sequence f[n] (with period N ) ,  we count the number of zeros 
in the period n = (0, . . . , N -  l}, also including the zero-crossing 
at the boundary, i.e. f[N - l]f[N] = f [ N  - l]f[O] < 0 [22]. 

Since directly counting the number of zero-crossings of each 
vector is numerically problematic (due to the very small magni- 
tude of certain components), we will employ the following indi- 
rect method: As discussed before, the common eigenvectors of S 
and the D I T  can be derived from eigenvectors of the tri-diagonal 
Ev and Od matrices. An explicit expression for the eigenvectors 
of tri-diagonal matrices are given in [19, page 3161. Combining 
this expression with the Sturm sequence theorem [ 19, page 3001, 
one can show that the eigenvectors of the Ev or Od matrices with 
the highest eigenvalue has no zero-crossings, the eigenvector with 
the second highest eigenvalue has one zero-crossing, and so on. 

-2 -1 0 1 2 

-2 -1 0 1 2 -2 -1 0 1 2 

Figure I :  Comparison ofthe {0,2,4,6}th Hermite-Gaussian func- 
tions with the corresponding eigenvectors of 16 x 16 the S matrix. 

Therefore one can show that the Ev and Od matrices have eigen- 
vectors whose numbers of zero-crossings range from 0 to [NIP] 
and to [ ( N  - 3)/2J respectively. 

Since the even and odd eigenvectors of S are derived from the 
zero padded eigenvectors of the Ev and Od matrices, one can 
show that after zero padding and multiplication with P, the eigen- 
vector of Ev with k zero-crossings yields the even eigenvector of 
S with 2k (0 5 k 5 LN/2]) zero-crossings and the eigenvector 
of Od with k zero-crossings yields the odd eigenvector of S with 
2k + 1 (0 5 k 5 [ ( N  - 3)/2]) zero-crossings. This procedure 
not only enables us to accurately determine the number of zero- 
crossings, but also demonstrates that each of the eigenvectors of 
S has a different number of zero-crossings so that the ordering in 
terms of zero-crossings is unambiguous. 

In Fig. 1, eigenvectors of S are compared with the correspond- 
ing Hermite-Gaussian functions. 

3.2. Discrete Fractional Fourier Transform 

The definition of the discrete FRT can now be given as 

N 

Fa[m,n] = 'Uk[m]e-"qkaak[n] (17) 
k=O.k#(N-l+(N)Z) 

where uk[n] is the eigenvector of S with k zero-crossings and 
( N ) ?  E N mod 2. The peculiar range of summation is due to 
the fact that there does not exist an eigenvector with N - 1 or N 
zero-crossings when A' is even or odd respectively. The overall 
procedure is summarized in Table I .  

Lastly, we present ii numerical comparison of the discrete and 
continuous transforms lor a sample input function in Fig. 2. 

4. CONCLUSIONS 

1.J is the greatest integer less than or equal to the argument. 
2The vector f[n] has a zero-crossing at n if f[n]f[n + I] < 0. 

We have presented a definition of the discrete FRT which exactly 
satisfies the essential operational properties of the continuous frac- 
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Table 1 .  Generation of Matrix F” 
1 Generate matrices S and P. 
2 
3 
4 

Generate the Ev and Od matrices from ( 16). 
Find the eigenvectors/eigenvalues of Ev and Od. 
Sort the eigenvectors of Ev (Od) in the descending 
order of eigenvalues of Ev (Od) and denote the 
sorted eigenvectors as e k  (ok). 

5 k t U 2 k [ n ] = P [ e k T  10 . . .  O I T .  
k tU2k+l[n]  =]P[o  . . .  0 I O k T I T .  

tional Fourier transform. This definition sets the stage for a self- 
consistent discrete theory of the fractional Fourier transformation 
and rnakes possible a priori discrete formulations in applications. 

As a by-product, we obtained the discrete counterparts of the 
Hermite-Gaussian functions. We believe that the discrete counter- 
parts of the multitude of operational properties for the Hermite- 
Gaussian functions, such as recurrence relations, differentiation 
properties, etc. can be derived by methods similar to those in Sec- 
tion 3. 

We already mentioned that the O ( N  log N) algorithm pre- 
sented in [ 101 can be utilized for fast computation in most appli- 
cations. However, it would be preferable to have a fast algorithm 
which exactly computes the product of the fractional Fourier trans- 
form matrix defined here, with an arbitrary vector. 

N-32 and a s  25 N=32 and a=o 75 
1-41 I 2 ,  I 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
- 4 - 2 0 2 4  

N.64 and a=O 25 N.64 and a=O 75 
1.41 2.51 I 

- 4 - 2 0 2 4  - 4 - 2 0 2 4  

Figure 2: Magnitude of the continuous (solid curve) and discrete 
(circles) FRT of the function z ( t )  = 1 if It1 < 1,0  otherwise. 
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