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Abstract: An implementation for the post-Doppler adaptive target detectors enabling an efficient change of the subspace
dimension is described. The proposed implementation uses the order recursive structure of the conjugate directions method
and does not present any additional computational burden on the processor. The implementation can be particularly useful for
the adaptive detectors with an indeterminate number of auxiliary vectors for the clutter covariance matrix estimation. Through
the proposed method, the subspace dimension can be easily increased or decreased according to the multiplicity of the
auxiliary vectors at no loss of computational efficiency.
1 Introduction

A radar system is to reliably detect targets under the
interference of noise, clutter and jamming. The detection
problem becomes further challenging when the strength of
the interfering signal and its statistical properties are not
known a priori. For such problems, the interference has to
be estimated during the operation and the detector has to
operate with the imperfect characterisation of the interfering
signal. Such target detectors are called adaptive target
detectors [1, 2].

Following the seminal work of Kelly [2], a number
of adaptive radar detection techniques have been proposed
[3–6]. Especially for the applications with non-stationary
clutter, as in the airborne radar applications, the usage of
adaptive detectors havs found much success [7, 8].
Different from the conventional detection techniques,
adaptive detectors estimate the parameters of the interfering
signal using a set of auxiliary data. The auxiliary data are
assumed to have the same statistical properties with
the cell under test and are generated by probing the cells
in the neighbourhood of the cell of interest. The auxiliary
data are processed to estimate the covariance matrix of
the interference signal and the goal is to utilise the
estimated matrix to cancel the clutter in the cell of
interest [9–11].

In this paper we present an adaptive target detector
implementation for the post-Doppler operation. The
suggested implementation does not have any additional
computational burden over the conventional technique, but
it allows an easy and cost-efficient order update mechanism.
In other words, the proposed implementation allows the
change of subspace dimension, that is the number of
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Doppler bins utilised in the post-Doppler detector, at no
loss of computational efficiency.

The presented implementation is based on the conjugate
directions method which is a well-known iterative method
for the solution of system of linear equations [12]. A
number of related methods, especially for the solution of
reduced-rank Wiener filtering problems, have been
proposed in the literature. In [13], the multi-stage Wiener
filtering leveraging the computational complexity of
the filter with its performance is proposed and these filters
have found applications in many different areas burdened
with heavy computational requirements, such as code
division multiple access (CDMA) multiuser communications
and space–time processing [6, 14–16].

Recently, some methods utilising the conjugate gradients
for the reduced-rank filtering have been proposed [17, 18].
The methods based on the conjugate gradients are known to
produce a solution in the Krylov subspace generated by the
clutter and noise covariance matrix (Rcn matrix) and the
steering vector. Different from these techniques, we utilise
the ‘conjugate directions’ to solve for the optimal
coefficients in the reduced dimensional space. In contrast to
the conjugate gradient-based methods, such as [17], the
‘conjugate directions’ based methods present a solution in a
desired subspace which is not necessarily a Krylov space.
Recently, the constant false alarm property of the conjugate
gradient filters along with some other properties, such as
their optimality in the residing Krylov space, have been
shown in [17]. The equivalence of the conjugate gradient
filters (with a proper initialisation) and the multi-stage
Wiener filters has also been shown in [19].

It should be noted that the suggested implementation via
conjugate directions is, in principle, equivalent to the
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Gram–Schmidt orthogonalisation of the data. Therefore the
application of the conjugate directions does not bring any
computational advantage in the solution of a system of
linear equations; but we show that the process can be
indeed advantageous for the order update of the filter used
in the post-Doppler detectors. The advantage stems from
the connection of the Doppler steering vectors of the post-
Doppler detectors with the fast Fourier transformation. That
is, for the specific target detection problem the subspace of
interest is spanned by the vectors that can be written in the
form [1 ejf ej2f . . . ej(N21)f]. We show that for this specific
subspace, the computational complexity of the suggested
order recursive implementation is not more than the
conventional implementation and the order recursion
feature, which is not available in the conventional
implementation, is achieved at no additional computational
cost. We believe that such a feature can be very useful in
practical applications where the number of available
auxiliary vectors can significantly change from cell to cell
because of the clutter heterogeneities [20–22].

As noted by Rabideau and Steinhardt [23] the auxiliary
vectors that do not have the same statistical characteristics
with the cell under test should be discarded in order not to
compromise the covariance matrix estimate. Since the
number of eliminated auxiliary vectors can change from cell
to cell, the order of clutter suppression filter (the subspace
dimension) can be altered to match the multiplicity of
available auxiliary vectors. An application scenario
illustrating the described operation is given in the numerical
results section of this paper.

The paper is organised as follows. The next section
describes the problem of post-Doppler target detection. The
following section presents a conjugate directions based
solution to the problem and the computational load of the
proposed solution and the conventional solution is
compared. In the following section, an application scenario
is presented to show the utility of the suggested
implementation. The paper concludes with a brief summary
and comments.

We briefly summarise the notation adopted in this paper.
The superscripts (.)T and (.)H denote the transpose and
hermitian operators. The vectors are represented with small
case letters with bold italic fonts and assumed to be column
vectors, unless otherwise is noted. The matrices are shown
with capital bold italic letters. The norm ‖.‖A refers to
weighted L2 norm of the argument where A is a positive
definite weighting matrix.

2 Problem statement

The detection of known signals with unknown complex
coefficients observed under Gaussian noise is the classical
radar target detection problem [24]. The problem can be
written as follows

H0:r = n

H1:r = asv + n

Here n is N × 1 column vector representing the noise. The
entries of n are jointly complex Gaussian distributed with
zero mean and covariance matrix Rcn. We would like to
note that the clutter signal is absorbed in n, therefore Rcn

should be interpreted as the covariance matrix of the clutter
and noise. The parameter a represents a complex Gaussian
distributed scalar (independent from n) with zero mean and
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variance s2
a. The vector sv is a known vector of dimensions

N × 1 representing the signal to be detected

sv = [1 ejv ej2v . . . ej(N−1)v]T (1)

The complex exponential vector, given above, represents the
Doppler steering vector of a moving target with the Doppler
phase shift of v radians per slow-time sample [25].

The optimal detector, under a fixed false alarm probability,
is a linear combiner followed by a magnitude comparator, that
is |wHr| _ t [25]. It is possible to express the linear combiner
as the solution of the following equation system

Rcnw = sv (2)

The optimal combiner is known to maximise the post-
combination signal-to-noise-ratio (SNR). From (2), it is
clear that the calculation of the optimal detector requires the
exact knowledge of Rcn; but in many applications, Rcn may
not be available. In these applications, the Rcn matrix is
estimated using a set of auxiliary vectors

R̂cn = 1

L

∑L

k=1

tk tH
k (3)

Here we assume that a total of L snapshots of the random
vector n are available to the processor as the auxiliary data.
Each snapshot is denoted with tk for k ¼ {1, . . ., L}. The
auxiliary vectors, that is training vectors, are assumed to
collected in the target-free region around the cell of interest.
Once an estimate for Rcn is available, the linear
combination weights can be calculated by replacing Rcn

with its estimate. Owing to the erroneous estimate for the
covariance matrix, the weights calculated would not be
identical to the optimal weights and hence there will be
some loss in the output SNR because of the covariance
matrix estimation.

In the work of Reed et al. [26], known as the RMB paper,
the loss of SNR owing to the covariance matrix estimation
errors is examined and its probability density function is
presented. The conclusion is that the linear combiner may
not be as much effective if the number of snapshots L (the
number of auxiliary vectors) is smaller than N (the number
of pulses to be combined). More specifically, it has been
shown that for the Gaussian distributed snapshot vectors,
the SNR loss owing to the estimation of Rcn is on the
average 210 log10[1 2 (N 2 1)/(L + 1)] dB [26] (19). So at
least L ¼ 2N 2 3 snapshots are required to have a SNR loss
of 3 dB on the average. Unfortunately, in some
applications, it is indeed difficult to find sufficient number
of auxiliary vectors to guarantee the good performance,
especially when N is large.

When the number of auxiliary vectors is not sufficient, one
may prefer to reduce N (in effect) to a level that can
accommodate the available auxiliary vectors. Such detectors
are called the subspace detectors [1, 2]. The subspace
detectors reduce the dimensionality of the detection
problem. To this purpose, a K × N matrix (K , N ) U H is
applied on the received vector r, as shown below

UHr︸︷︷︸
r̃

= a UHsv︸	︷︷	︸
s̃

+ UHn︸	︷︷	︸
ñ

(4)

The application of matrix U H on the vector x generates the
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expansion coefficients of x in the subspace spanned by the
columns of U matrix. We may consider the vectors with
tilde on top as the coefficient vector for the K-dimensional
projection of the original vector.

Under these conditions, the observation vector is
represented as r̃ = ãs + ñ in the subspace and the optimal
combiner for the reduced dimensional problem is the
solution of the following equation, R̃cnc = s̃. Here c is a
K × 1 vector representing the linear combiner. Since

R̃cn = UHRcnU and s̃ = UHsv, the equation system can be
written as follows

UHRcnUc = UHsw (5)

The operation with the linear combiner can then be expressed
as

cHr̃ = cHUHr = (Uc)H︸	︷︷	︸
ŵH

r (6)

Here ŵ = Uc is a N × 1 vector representing the optimal linear
combination restricted to the given subspace. It should be
noted that the subspace in the mentioned problem is
spanned by the columns of the matrix U and the optimal
combiner belongs to this subspace.

If Rcn matrix is not available, then its estimate R̂cn is
inserted in (5). The estimation of R̂cn and its substitution for
Rcn in (5) and the solution of the resultant equation system
constitute the conventional method. If the number of
auxiliary vectors L is greater than 2K (K being the subspace
dimension) then the SNR loss owing to imperfection in
covariance matrix estimation is limited to 3 dB on the
average. Hence by reducing the dimensionality of the
problem to a level compatible with the multiplicity of
the auxiliary vectors, it can be possible to attain a
performance close to the optimal subspace detector utilising
the exact Rcn, not its estimate.

In the post-Doppler adaptive target detectors, the subspace
to be utilised is formed by the Doppler steering vectors. The
detection takes place after the application of the discrete
Fourier transform (DFT), as the name implies. The
subspace for post-Doppler detection can be considered as
the span of {sv1

, sv2
, . . . , svK

}, where svk
is as defined in (1).

It should be noted as the subspace dimension increases
to N, that is as K � N, the solution in the subspace
approaches to the true solution of the equation given in (2),
that is ŵK � w. It is known that if the signal of interest
and the clutter signal are both sufficiently narrowband, the
solution in a proper subspace has almost no loss of
performance in comparison with the full-dimensional
system [9]. In Section 5, we experiment with one-, three-
and five-dimensional subspaces for the target detection and
show that three- and five-dimensional subspace detectors
yield an almost identical performance to the full-
dimensional detector (16-dimensional detector). Further
details and different types of subspace detectors is given in
[9].

We conclude this section with a brief summary. By using
the subspace spanned by the columns of U matrix, it is
possible to reduce the dimensionality of the detection
problem and make an efficient usage of the auxiliary data.
A proper subspace for the radar target detection problem is
the space spanned by the columns of the N × N DFT
matrix (post-Doppler detection). This subspace captures a
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significant of amount of total signal energy and retains
sufficient degrees of freedom to suppress the clutter. In this
paper, we present a conjugate directions based method for
the solution of optimal combiner restricted to this subspace.
The suggested implementation, different from the
conventional one, is order recursive and has a simple
mechanism enabling the change of the subspace dimension
at no additional computational cost.

3 Conjugate directions based solution

First, we introduce the motivation for the conjugate
directions. Our goal is to reproduce the equation system
given in (2) as the solution of an optimisation problem. To
that purpose, we impose ŵ = Uc as a constraint to the
following optimisation problem

min J (c) = min||w − Uc︸︷︷︸
ŵ

||2R̂cn
such that R̂cnw = sv (7)

Here U is a N × K matrix and c is a K × 1 vector. The cost
can be interpreted as the reduction of the residual w − ŵ in
the sense of R̂cn-weighted Euclidean norm, that is

||w − Uc||2R̂cn
= (w − Uc)HR̂cn(w − Uc) where w is the

optimal linear combiner for the full-dimensional detector.
By taking the gradient of J(c) given in (7) and making use

of the constraint relation R̂cnw = sv, we can show that the

optimal c satisfies U HRcnUc ¼ U Hsw which is identical to
the equation system given in (5).

The conjugate directions method generates a set of
R̂cn-orthogonal vectors. Two vectors x and y are said to be

R̂cn-orthogonal if xHR̂cn y = 0. As shown below, once

R̂cn-orthogonal vectors are generated, the solution top the
optimisation problem can be easily generated and the order
recursion is immediate.

To show the order recursion, we assume that Uk be a N × k
matrix whose columns span the k-dimensional space of
{sv1

sv2
. . . svk

}. At this point, we assume that the
coefficients of the optimal filter in the k-dimensional
subspace is available to us, that is the solution of the
following equation system is given

UH
k R̂cnU kck = UH

k sw (8)

Now we desire to have an order update from k dimensions to
(k + 1) dimensions. The equation system in (k + 1)
dimension system can be written as UH

k+1R̂cn
U k+1ck+1 = UH

k+1sw, where Uk+1 ¼ [Uk uk+1]. Here uk+1 is
the column vector concatenated to Uk matrix to increase the
subspace dimension to (k + 1). The coefficients of the
updated filter satisfies the following relation

UH
k

uH
k+1

[ ]
R̂cn U k uk+1

[ ]
ck+1 = UH

k

uH
k+1

[ ]
sv

UH
k R̂cnU k UH

k R̂cnuk+1

uH
k+1R̂cnU k uH

k+1R̂cnuk+1

[ ]
ck+1 = UH

k sv
uH

k+1sv

[ ] (9)

The central observation is that uk vectors have conjugate
directions, that is uH

k+1R̂cnul = 0 ∀l ¼ {1, 2, . . . , k}. The
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equation system reduces to the following one

UH
k R̂cnU k 0K×1

01×K uH
k+1R̂cnuk+1

[ ]
ck+1 = UH

k sv
uH

k+1sv

[ ]
(10)

From the last equation system, the solution can be
immediately written as follows

ck+1 =
ck

uH
k+1sv

uH
k+1R̂cnuk+1

⎡⎢⎣
⎤⎥⎦ (11)

To summarise if the subspace of interest can be

R̂cn-orthogonalised (or preferably R̂cn-orthonormalised), the

optimal linear combiner is found almost effortlessly and the

order recursion is evident from the scheme.
If we denote the R̂cn-orthonormal basis vectors for the
subspace of {sv1

, sv2
, . . . , svk

} with {v1, v2, . . . , vk} and
replace Uk in (8) with Vk (Vk ¼ [v1 v2 . . . vk]); the equation
system given in (8) reduces to

V H
k R̂cnV k︸				︷︷				︸

I

ck = V H
k sv (12)

and the optimal linear combiner in this subspace becomes
ŵ = V kV H

k sv. This relation can also be written as

ŵk+1 = ŵk + vk+1vH
k+1sv (13)

explicitly showing the order recursion.
Another order-recursive property of the conjugate

directions based solution is that one can reduce the
dimensionality of the filter at no cost. Once the
R-orthonormal basis vectors are generated, one can easily
utilise some subset of available vectors. However, for the
conventional method [sample matrix inversion (SMI)], the
dimensionality reduction is achieved after rebuilding
the matrix for the linear system and its inversion.

The process of finding an R̂cn-orthonormal basis, that is
vk vectors, is closely related to the Gram–Schmidt
orthogonalisation [12]. Unfortunately, the computational
load of this method is equivalent to the matrix inversion,
thus there is no computational gain with the
R̂cn-orthonormalisation in general. Readers can compare the
steps of procedure presented in Table 1 with the Gram–
Schmidt orthogonalisation.

The subspace of interest can be explicitly written as
span{sv1

, sv2
, . . . , svK

}. Furthermore, the space is assumed

Table 1 Conjugate directions method solution of Ax ¼ b system

{u1,u2, . . ., uK}: a set of linearly independent vectors

A: Hermitian N × N matrix

b: N × 1 vector

1: initialise, k ¼ 1, v̂1 = u1, v1 = v̂1/v̂H
1 Av̂1

2: do

3: k ⇐ k + 1

4: v̂k = uk − S
k−1
i=1 v i

vH
i Auk

vH
i Av i

: A-orthogonal vec.

5: vk = v̂k/v̂H
k Av̂k : A-orthonormal vec.

6: while k ≤ K

7: V ¼ [v1 v2 . . . vK]

8: x̂ = VV Hb
580
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to be spanned by the columns of DFT matrix. In other
words, it is assumed that vk 2 vl is an integer multiple of
(2p/N ). Then the subspace of interest is spanned by a
subset of K columns of N × N DFT matrix. For this
specific subspace and for R̂cn given in (3), the conjugate
directions has no additional load as shown in the next section.

4 Computational load comparison of
conventional and conjugate directions based
subspace filtering

The total computational cost of evaluating the optimal linear
combiner w in the k-dimensional subspace of DFT vectors
using both the conventional SMI and conjugate directions
approach is given. Moreover, the cost of updating the
solution by increasing the subspace dimension by one is
also discussed.

The cost calculation is divided into two steps. In the
construction step, the cost of the constructing the matrix
from the training vectors is given. In the order update step,
the cost of order update is given. Some comparisons are
provided at the conclusion of this section.

4.1 Construction cost

4.1.1 Conventional method: The linear combiner in the
k-dimensional subspace Uk can be expressed as ŵk = U kck .
The optimal ck that minimises the aforementioned cost
function is the solution of the linear system

UH
k R̂cnU kc = UH

k sw. One should note that U k = [sw1
. . . swk

]
is a N × k matrix, columns of which are DFT vectors. To

solve this system one should first evaluate UH
k R̂cnU k and

UH
k sw and then should solve the linear system for c.

Furthermore, let us assume that DFT{ti} = UH
N ti = T i has

been precomputed for {ti}
L
i=1 at the cost of L(N/2)log2 N

and UH
N sv = DFT{sv} has been precomputed at the cost of

(N/2)log2 N. Evaluation of UH
k R̂cnU k is as follows

UH
k R̂cnU k = UH

k

1

L

∑L

i=1

tit
H
i U k

= 1

L

∑L

i=1

(UH
k ti)(t

H
i U k )

= 1

L

∑L

i=1

T i[w1, . . . , wk]︸								︷︷								︸
k×1

T i[w1, . . . , wk ]H (14)

Each vector–vector multiplication inside the summation

requires k2 operations, hence the evaluation of UH
k R̂cnU k

requires k2L multiplications. The matrix–vector product
UH

k sw has been computed at the FFT stage so it comes at
no cost. The solution of the linear system for ck requires k3

multiplications. The linear combiner ŵk = U kck can
be computed with additional Nk multiplications. Therefore
the total cost of this method is (L + 1)(N/2)log2 N + k3 +
k2L + kN.

4.1.2 Conjugate directions method: The main
computational complexity of the proposed method is due to the
R̂cn-orthonormalisation of the basis vectors {sv1

, . . . , svk
}.

The computational cost of this orthonormalisation can
be proved inductively. One important thing to notice in order
to understand the proposed solution is that the R̂cn-orthonormal
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 7, pp. 577–586
doi: 10.1049/iet-rsn.2011.0396



www.ietdl.org
set {vi}
k
i=1 spans the same subspace that is spanned by

{sv1
, . . . , svk

}. Therefore one can express the vi’s as

vi =
∑k

n=1

an
i svn

(15)

Let us assume that the DFTs of {ti}
L
i=1 and sv have been

precomputed at the cost of (L + 1)(N/2)log2 N. The Gram–
Schmidt process is as follows:

† Step 1:

v1 =
sv1

‖sv1
‖R̂cn

, where sv1

∥∥∥ ∥∥∥2

R̂cn

= sH
v1

R̂cnsv1

= 1

L

∑L

i=1

|T i[v1]|2︸							︷︷							︸
L multiplications

(16)

Therefore v1 = a1
1sv1

, where a1
1 is as above and is computed

at cost of L multiplications.
† Step 2:

v2 = sv2
− (sH

v2
R̂cnv1)v1

= sv2
− (a1

1)2(sH
v2

R̂cnsv1
)sv1

= sv2
+b1

1sv1
, where b1

1 =− 1

L
(a1

1)2
∑L

i=1

T i[v2]T i[v1]∗︸																︷︷																︸
L multiplications

(17)

† Step 3:

v2 = v2

‖v2‖R̂cn

, where

v2

∥∥ ∥∥2

R̂cn
= (sv2

+ b1
1sv1

)HR̂cn(sv2
+ b1

1sv1
) (18)
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(see (19))
Therefore v2 = a2

2sv2
+ a1

2sv1
.

† Step 4: Repeat the Gram–Schmidt orthonormalisation
using the same bookkeeping methodology.

One can show by induction that evaluation of the kth
R̂cn-orthonormal vector requires additional kL
multiplications assuming that {vk}k−1

i=1 exists. The main
rationale is that kth step of Gram–Schmidt requires the
inner products {, svi

, svj
.R̂cn

}i, j[{1,...,k} and the inner
products {, svi

, svj
.̂

Rcn

}i,;j[{1,...,k−1} exists from the earlier

steps of the process. Hence, the only inner products to be
computed at the kth step is the inner products
{, svk

, svj
.̂

Rcn

}j[{1,...,k}, which requires kL multiplications.

The Gram–Schmidt procedure returns the coefficients

{an
k} for the R̂cn-orthonormalised set {vi}

k
i=1 at the cost of

[k(k + 1)/2]L. Given these coefficients, one can evaluate the
k-dimensional approximation of the linear combiner as (see
equation at the bottom of the page)

The last part of the multiplication above has been computed
at the FFT stage, hence it comes at no cost. Moreover, since
the coefficient matrices are lower and upper triangular, each
matrix–vector multiplication costs [k(k + 1)/2].
Multiplication of sv1

sv2
. . . svk

[ ]
with the k × 1

resultant vector leads to Nk multiplications. Therefore
evaluation of the linear combiner costs Nk + 2(k(k + 1)/
2) ¼ k(k + N + 1).

Therefore the total cost of matrix construction is

(L+ 1)(N/2)log2 N +(k(k + 1)/2)L+ k(k +N + 1)
= (L+ 1)(N/2)log2 N + k2((L/2)+ 1)+ k((L/2)+N + 1)

4.2 Update cost

4.2.1 Conventional method: The linear combiner w in
the k + 1-dimensional subspace spanned by the columns of
Uk+1, where Uk+1 ¼ [Uk uk+1] can be expressed as
w ≃ Uk+1ck+1 and the optimal c that minimises the cost
v2

∥∥ ∥∥2

R̂cn
= sH

v2
R̂cnsv2︸				︷︷				︸+ |b1

1|2 sH
v1

R̂cnsv1︸				︷︷				︸
computed at step 1

+ 2Re {b1
1sH

v2
R̂cnsv1

}︸							︷︷							︸
computed at step 2

× 1

L

∑L

i=1

|T i[v2]|2︸							︷︷							︸
L multiplications

(19)

ŵk = V kV H
k sv = v1 v2 . . . vk

[ ] vH
1

vH
2

..

.

vH
k

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦sv

= sv1
sv2

. . . svk

[ ]︸												︷︷												︸
N×k

a1
1 a1

2 . . . a1
k

0 a2
2 . . . a2

k

0 0 . . . a3
k

..

. ..
. . .

. ..
.

0 0 . . . ak
k

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(a1

1)∗ 0 0 . . . 0

(a1
2)∗ (a2

2)∗ 0 . . . 0

..

. ..
. ..

. . .
.

0

(a1
k )∗ (a2

k)∗ (a3
k)∗ . . . (ak

k)∗

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

sH
v1

sH
v2

. . .

sH
vk

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦sv

︸				︷︷				︸
sv[v1,...,vk ]
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function satisfies

UH
k+1R̂cnU k+1ck+1 = UH

k+1sv (20)

UH
k

uH
k+1

[ ]
R̂cn U k uk+1

[ ]
ck+1 = UH

k

uH
k+1

[ ]
sv

UH
k R̂cnU k UH

k R̂cnuk+1

uH
k+1R̂cnU k uH

k+1R̂cnuk+1

[ ]
︸																		︷︷																		︸

w

ck+1 = UH
k sv

uH
k+1sv

[ ]
(21)

The evaluation of UH
k R̂cnuk+1, uH

k+1R̂cnuk+1 and uH
k+1sv

requires kL, L and zero (precomputed at FFT stage)
multiplications, respectively. Hence, forming the k + 1-
dimensional linear system on top of the previous
k-dimensional linear system requires additional (k + 1) L
multiplications. Direct inversion of the matrix w requires
(k + 1)3 multiplications. (It is important to note that, one can
apply the matrix inversion lemma to the matrix w in order to
have a recursive formula for ck+1 in terms of ck. The cost of
this update via matrix inversion lemma will still require 3k2

more multiplications and to achieve this computational level,
some bookkeeping is necessary.) To find the new linear
combiner ŵk+1 = U k+1ck+1 one needs extra N(k + 1)
multiplications. Therefore update via the conventional
method requires N(k + 1) + (k + 1)L + 3k2 multiplications.

4.2.2 Conjugate directions method: The linear
combiner in the k + 1-dimensional subspace spanned by
R̂cn-orthonormal vectors {vi}

k+1
i=1 can be expressed as

ŵk+1 = V k+1V H
k+1sv, where Vk+1 ¼ [Vk vk+1]. Note that k-

dimensional approximation is expressed as ŵk = V kV H
k sv.

Hence, one can express the update as (see (22))
The rightmost matrix–vector multiplication has been

precomputed at the FFT stage, so it comes at no cost. The
cost of this update is N(k + 1) + 2(k + 1) ¼ (N + 2)(k + 1)
multiplications for evaluating vk+1vH

k+1sv and (k + 1) L for

evaluating the (k + 1)th R̂cn-orthonormal vector, using the
already available set {vi}

k
i=1. Thus, total update cost for the

conjugate directions based solution is (k + 1)(N + L + 2).

4.3 Comparison

Table 2 summarises the computational complexity for
conventional method and the suggested method. When the
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computational cost of the conventional approach is
compared with the proposed one, the proposed one has the
savings of O(K 3) operations which can be significant for
large subspace dimensions. It should be remembered that
for the target detection application the number of pulses
emitted can be a large number (N . 50) and K, the
dimension of solution subspace, is assumed to be much
smaller than N. Typically, the snapshot number L is around
3–5 K for an acceptable performance [26]. Owing to this,
we do not consider the savings of O(K 3) multiplications as
the main advantage of proposed implementation, instead we
would like to underline the possibility of order recursion. In
the following section, an application example is given to
examine the interplay of the parameters N, K and L in a
practical scenario.

5 Numerical results

In this section, we describe a scenario for the application of
the order recursive, subspace-based adaptive target detector.
We consider a pulse Doppler radar with a rotary antenna.
The radar operates at a pulse repetition frequency (PRF) of
2500 Hz and transmitting 16 pulses in a dwell. The antenna
rotates at the rate of 40 revolutions per minute. For
simplicity, it is assumed that the radar is a land-based
system and the clutter decorrelation is assumed to be
dominated by the antenna rotation, that is the antenna
scanning modulation. The azimuth beam pattern of the
antenna is assumed to be in the form of Gaussian shape
with the 3 dB beamwidth of 28. Other system parameters
are given in Table 3.

Table 3 System parameters

Antenna parameters

beamwidth, BW 28
antenna revolution rate 40 rpm

Signal and clutter parameters

PRF 2500 Hz

number of pulses (Npulse) 16

number of aux. vectors, L 5 and 10

SNR 10 dB

CNR 50 dB

Jammer parameters

JNR 15 dB

jammed Doppler freq. 1250 Hz (after folding)
Table 2 Computation cost comparison of conventional method and suggested method

Number of multiplications

Conventional method Suggested method

construction step (L + 1)(N/2)log2 N + k3 + k2L + kN (L + 1)(N/2)log2 N + k2((L/2) + 1) + k((L/2) + N + 1)

update step N(k + 1) + (k + 1)L + 3k2 (k + 1)(N + L + 2)

ŵk+1 = ŵk + vk+1vH
k+1sv

= ŵk + sv1
. . . svk+1

[ ]︸										︷︷										︸
N×(k+1)

a1
k+1

..

.

ak+1
k+1

⎡⎢⎢⎣
⎤⎥⎥⎦ (a1

k+1)∗ . . . (ak+1
k+1)∗

[ ] sH
v1

..

.

sH
vk+1

⎡⎢⎢⎣
⎤⎥⎥⎦sv

︸					︷︷					︸
sv[v1,...,vk+1]

(22)
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From the given numerical values, the clutter auto-
correlation sequence can be written as rc(k) = s2

cr
k2

, where
r ¼ 0.9936. Here s2

c denotes the clutter power. In addition
to the clutter, one of the DFT bins is also assumed to be
jammed with the jamming-to-noise ratio (JNR) of 30 dB as
shown in Table 3.

For the comparison of different detectors, the improvement
factor (IF) is presented as the figure of merit. The
improvement factor is defined as the ratio of the signal-to-
clutter-noise ratio (SCNR) before and after processing. To
simplify the description and notation, we consider the
combination of jamming and clutter signals as the
interference and denote the combination as clutter with
some abuse of terminology. In other words, the word clutter
refers to the combination of the actual clutter signal
(centred around DC frequency) and the jamming signal
(centred around 1250 Hz).

Fig. 1 presents the improvement factor for different
detectors. The detectors presented are the optimal filter and
the subspace filters of dimensions 1, 3, 5 and 11. The
single-dimensional subspace detector is a 16 × 1 vector
which is in the subspace of span {sv}. Here v corresponds
to the hypothesised Doppler frequency of the target as in
(1). It should be noted that the one-dimensional subspace
filter is equivalent to the matched filter for the hypothesised
Doppler frequency.

The three-dimensional subspace is formed by the span of
{sv2(2p/N ), sv, sv+(2p/N )}. It should be noted that this
subspace is formed by the target steering vector and two
closest DFT bins neighbouring the steering vector. Similarly,
the five-dimensional subspace includes the steering vector
and four nearest DFT bins, that is {sv2(4p/N ), sv2(2p/N ),
sv, sv+(2p/N ), sv+(4p/N )}. The 11-dimensional filter is
defined similarly. The 16-dimensional subspace filter
spans the whole space and is the SCNR maximising optimal
filter.

Fig. 1 shows the variation of the improvement factor when
the clutter covariance matrix is perfectly known. The left
panel of Fig. 1 shows the complete range for the target
Doppler frequency and the right panel shows the spectrum
around the jammed frequency. In this figure, the subspace

Fig. 1 Improvement factor for known covariance matrix

a Complete spectrum
b Spectrum around jammed frequency
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filters are constructed error-free and the performance gap
between the optimal filter and the subspace filters is solely
owing to the subspace limitations.

In Fig. 1, an upper bound for the improvement factor is also
provided in addition to the performance curves. This bound
shows the achievable improvement factor for the case of
total clutter suppression and coherent integration of the
target signal. It should be noted that the upper bound is
almost achieved with the optimal filter for the Doppler
frequencies at a sufficient distance from the clutter and
jamming centres, that is DC frequency and the frequency of
1250 Hz.

Fig. 1 shows that the one-dimensional filter is incapable of
providing any clutter suppression, whereas other sub-space
filters successfully handle the clutter suppression. Fig. 1b
shows that the performance of three- and five-dimensional
subspaces differs by a maximum of 2.5 dB around the
jammed frequency. The 11-dimensional filter and the higher
dimensional ones are virtually indistinguishable from the
optimal filter.

Fig. 2 presents the improvement factor curves when the
clutter covariance matrix is estimated using L ¼ 5 auxiliary
vectors. The performance of 16-dimensional subspace filter
with the estimated covariance matrix is very poor, even
poorer than the matched filter, that is one-dimensional
subspace filter. The performance drop of the 16-
dimensional filter is due to the limited amount of auxiliary
data for the estimation of clutter covariance matrix. It
should be remembered that 16-dimensional filter is the
optimal for the perfectly known covariance matrix and the
performance of this filter severely degrades in the presence
of estimation errors. It can be noted from Fig. 2 that the
three-dimensional subspace filter presents a better
improvement factor than other filters when the auxiliary
data are limited to L ¼ 5 vectors. The performance drop of
the other filters is solely because of the insufficient amount
of auxiliary vectors for clutter covariance estimation.

The next figure shows a similar comparison when the
clutter covariance matrix is estimated using L ¼ 15
auxiliary vectors. As can be noted from Fig. 3, the
performances of the optimal filter for the known covariance
583
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Fig. 3 Improvement factor for the estimated covariance matrix with L ¼ 15 snapshots

a Complete spectrum
b Spectrum around jammed frequency

Fig. 2 Improvement factor for the estimated covariance matrix with L ¼ 5 snapshots

a Complete spectrum
b Spectrum around jammed frequency
case (16-dimensional subspace filter) and the 11-dimensional
filter are much better in comparison to the case of
covariance matrix estimation with L ¼ 5 vectors. (It should
be noted that the performance curves for higher
dimensional filters lie in between the 11-dimensional and
16-dimensional filter.) In spite of the mentioned
improvement, both filters cannot meet the performance of
the three-dimensional and the five-dimensional filters for
L ¼ 15. Hence, the usage of the high-dimensional filters
should not be preferable unless the number of auxiliary
vectors is exceptionally high.

It should be noted that five-dimensional subspace filter
has a better improvement factor than three-dimensional
subspace filter especially around the jammed frequency.
Hence the utilisation of more auxiliary vectors enhances the
584
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performance of the five-dimensional filter most. A further
increase in the number of auxiliary vectors can potentially
capture 2.5 dB of gain as can be noted from Fig. 1.

A similar comparison is given to examine the effect of
clutter spread owing to the antenna rotation. The figure on
the left side of Fig. 4 shows the improvement factor curves
in the presence of secondary jammer at the frequency of
PRF/4, that is 625 Hz. All other parameters, including the
antenna rotation of 40 rpm, are as in Table 3. The figure on
the right side of Fig. 4 shows the performance curves when
the antenna rotation rate is increased to 60 rpm. With
L ¼ 15 training vectors, the five-dimensional filter performs
better than the other filters as in Fig. 3. It can also be noted
that the increased clutter spread for the rate 60 rpm causes
up to 6 dB of performance loss.
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 7, pp. 577–586
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Fig. 4 Improvement factor for the estimated covariance matrix with L ¼ 15 snapshots at two different antenna rotation rates

a Spectrum around jammed frequencies (rpm ¼ 40)
b Spectrum around jammed frequencies (rpm ¼ 60)
The presented example shows that depending on the
amount of auxiliary data, the subspace dimension should be
changed to increase the effectiveness of clutter suppression.
As noted by Rapideau and Steinhardt [23], for an effective
clutter suppression a suitable subset of auxiliary vectors
should be utilised in the covariance matrix estimation. The
auxiliary vectors containing powerful clutter discretes
should be discarded, whereas the auxiliary vectors sharing
the common statistical characteristics with the cell of
interest should be utilised for the covariance matrix
estimation. The elimination of auxiliary vectors can lead to
a varying number of auxiliary vectors for every cell and
this may necessitate an adjustment for the subspace
dimension of the post-Doppler filter as noted in this section.
Such a change can also be necessitated by the variation of
CNR and JNR values in space and time. Therefore it is
highly unlikely that a single subspace filter would be
effective for the clutter suppression at all operational
scenarios. The suggested conjugate directions based
implementation allows an almost effortless change of the
subspace dimension without any loss of computational
efficiency and hence for the applications requiring frequent
subspace updates, the required calculations can be done at a
low cost using the order recursive scheme proposed.

6 Conclusions

In this paper, we present a novel implementation for the post-
Doppler adaptive target detectors. Post-Doppler target
detectors are frequently utilised to detect slow moving
targets embedded in non-stationary clutter which is an
especially difficult task for the airborne radar systems.

The implementation is based on an alternative
interpretation of the subspace filters through R̂cn-orthogonal
vectors where R̂cn is the estimated clutter covariance matrix.
The suggested implementation does not require any
additional resources when compared with the conventional
implementation, but enables an easy and efficient
mechanism for the filter order update. As shown in the
numerical results section, the order update can be especially
valuable when the number of auxiliary vectors varies from
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 7, pp. 577–586
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cell to cell, which is the case for the detection in non-
stationary clutter with clutter discretes [27]. The suggested
implementation can be relatively easily extended to the
space–time adaptive processing systems having multiple
transmitting and receiving antennas [28].

7 References

1 Brennan, L.E., Reed, L.S.: ‘Theory of adaptive radar’, IEEE Trans.
Aerosp. Electron. Syst., 1973, AES-9, (2), pp. 237–252

2 Kelly, E.J.: ‘An adaptive detection algorithm’, IEEE Trans. Aerosp.
Electron. Syst., 1986, AES-22, (2), pp. 115–127

3 Robey, F.C., Fuhrmann, D.R., Kelly, E.J., Nitzberg, R.: ‘A CFAR
adaptive matched filter detector’, IEEE Trans. Aerosp. Electron. Syst.,
1992, 28, (1), pp. 208–216

4 Conte, E., Lops, M., Ricci, G.: ‘Asymptotically optimum radar detection
in compound-Gaussian clutter’, IEEE Trans. Aerosp. Electron. Syst.,
1995, 31, (2), pp. 617–625

5 De Maio, A., De Nicola, S., Huang, Y., Zhang, S., Farina, A.: ‘Adaptive
detection and estimation in the presence of useful signal and interference
mismatches’, IEEE Trans. Signal Process., 2009, 57, (2), pp. 436–450

6 De Maio, A., De Nicola, S., Farina, A., Iommelli, S.: ‘Adaptive
detection of a signal with angle uncertainty’, IET Radar Sonar Navig.,
2010, 4, (4), pp. 537–547

7 Guerci, J.R., Baranoski, E.J.: ‘Knowledge-aided adaptive radar at
DARPA: an overview’, IEEE Signal Process. Mag., 2006, 23, (1),
pp. 41–50

8 Wicks, M.C., Rangaswamy, M., Adve, R., Hale, T.B.: ‘Space-time
adaptive processing: a knowledge-based perspective for airborne
radar’, IEEE Signal Process. Mag., 2006, 23, (1), pp. 51–65

9 Klemm, R.: ‘Principles of space–time adaptive processing’ (IET Radar,
Sonar, Navigation and Avionics, London, 2006)

10 De Maio, A.: ‘Rao test for adaptive detection in Gaussian interference
with unknown covariance matrix’, IEEE Trans. Signal Process., 2007,
55, (7), pp. 3577–3584

11 De Maio, A., Conte, E.: ‘Adaptive detection in Gaussian interference
with unknown covariance after reduction by invariance’, IEEE Trans.
Signal Process., 2010, 58, (6), pp. 2925–2934

12 Luenberger, D.G.: ‘Introduction to linear and nonlinear programming’
(Addison-Wesley Pub. Co., Reading, MA, 1973)

13 Goldstein, J.S., Reed, I.S., Scharf, L.L.: ‘A multistage representation of
the Wiener filter based on orthogonal projections’, IEEE Trans. Inf.
Theory, 1998, 44, (7), pp. 2943–2959

14 Honig, M.L., Goldstein, J.S.: ‘Adaptive reduced-rank interference
suppression based on the multistage Wiener filter’, IEEE Trans.
Commun., 2002, 50, (6), pp. 986–994

15 Guerci, J.R., Goldstein, J.S., Reed, I.S.: ‘Optimal and adaptive reduced-rank
STAP’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (2), pp. 647–663
585

& The Institution of Engineering and Technology 2012



www.ietdl.org
16 Cheng, H., Vu, K., Hua, K.A.: ‘SubSpace projection: a unified
framework for a class of partition-based dimension reduction
techniques’, Inf. Sci., 2009, 179, (9), pp. 1234–1248

17 Jiang, C., Li, H., Rangaswamy, M.: ‘On the conjugate gradient
matched filter’, IEEE Trans. Signal Process., 2012, 60, (5),
pp. 2660–2666

18 Fa, R., de Lamare, R.C., Wang, L.: ‘Reduced-rank STAP schemes for
airborne radar based on switched joint interpolation, decimation and
filtering algorithm’, IEEE Trans. Signal Process., 2010, 58, (8),
pp. 4182–4194

19 Scharf, L.L., Chong, E.K.P., Zoltowski, M.D., Goldstein, J.S., Reed,
I.S.: ‘Subspace expansion and the equivalence of conjugate direction
and multistage wiener filters’, IEEE Trans. Signal Process., 2008, 56,
(10), pp. 5013–5019

20 Aboutanios, E., Mulgrew, B.: ‘Heterogeneity detection for hybrid STAP
algorithm’. IEEE Radar Conf., May 2008

21 Tang, B., Tang, J., Peng, Y.: ‘Convergence rate of LSMI in amplitude
heterogeneous clutter environment’, IEEE Signal Process. Lett., 2010,
17, (5), pp. 481–484
586

& The Institution of Engineering and Technology 2012
22 De Maio, A., De Nicola, S., Foglia, G., Landi, L., Farina, A.:
‘Knowledge-aided covariance matrix estimation in non-Gaussian
clutter’. Proc. Int. Radar Symp., September 2009

23 Rabideau, D.J., Steinhardt, A.O.: ‘Improved adaptive clutter
cancellation through data-adaptive training’, IEEE Trans. Aerosp.
Electron. Syst., 1999, 35, (3), pp. 879–891

24 Kay, S.M.: ‘Fundamentals of statistical signal processing, vol. 2:
detection theory’ (Prentice Hall, 1998)

25 Richards, M.A.: ‘Fundamentals of radar signal processing’ (McGraw-
Hill, New York, 2005)

26 Reed, I.S., Mallett, J.D., Brennan, L.E.: ‘Rapid convergence rate in
adaptive arrays’, IEEE Trans. Aerosp. Electron. Syst., 1974, AES-10,
(6), pp. 853–863

27 De Maio, A., De Nicola, S., Landi, L., Farina, A.: ‘Knowledge-aided
covariance matrix estimation: a MAXDET approach’, IET Radar
Sonar Navig., 2009, 3, (4), pp. 341–356

28 Wang, J., Jiang, S., He, J., Liu, Z., Baker, C.J.: ‘Adaptive subspace
detector for multi-input multi-output radar in the presence of steering
vector mismatch’, IET Radar Sonar Navig., 2011, 5, (1), pp. 23–31
IET Radar Sonar Navig., 2012, Vol. 6, Iss. 7, pp. 577–586
doi: 10.1049/iet-rsn.2011.0396


