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a b s t r a c t

A method for the frequency estimation of complex exponential signals observed under
additive white Gaussian noise is presented. Unlike competing methods based on relatively
few Discrete Fourier Transform (DFT) samples, the presented technique can generate
a frequency estimate by fusing the information from all DFT samples. The estimator is
shown to follow the Cramer–Rao bound with a smaller signal-to-noise ratio (SNR) gap
than the competing estimators at high SNR.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Frequency estimation of complex exponential signals is
a fundamental problem of signal processing frequently
arising in diverse applications such as speech processing,
communications, radar systems, and analog-to-digital con-
verter specifications. Recently, some computationally effi-
cient methods having a minor gap from the theoretical
limits have been proposed [1–3]. In this letter, a novel
estimator with a further reduced gap is described.

The conventional method for the frequency estimation,
which is the maximum likelihood (ML) estimator for the data
collected under additive white Gaussian noise (AWGN), is
the periodogram. The frequency estimate via periodogram is
calculated by finding the peak location in the magnitude
Discrete-Time Fourier Transform (DTFT) spectrum, [4, p. 543].
Typically, the frequency estimate, i.e., the maxima location, is
calculated in two-stages. In the first stage, the DTFT spectrum
is calculated over a uniformly spaced grid with the Discrete
Fourier Transform (DFT) to get a coarse frequency estimate. In
the next stage, a local search is conducted in the vicinity of the
coarse estimate to refine the peak location.
r),
Frequency estimation methods can be categorized as
non-iterative and iterative methods. Non-iterative methods
apply a simple formula on a few DFT outputs obtained in the
first stage and generate the final frequency estimate with
an almost negligible additional computational cost [3,5–7].
In principle, these methods do not conduct a local search
around the peak detected in the first stage; but refine the
estimate by reprocessing the samples in the DFT spectrum.
The iterative methods, on the other hand, carry out itera-
tions treating the refined estimate of an earlier iteration as
the coarse estimate of the next until convergence [8,9]. It
should be noted that the iterative methods may require as
few as two iterations for an excellent performance.

In this work, a novel fine-frequency estimator, which
can be used iteratively, is presented. Different from some
other estimators in the literature, the suggested estimator
is not limited to a few samples in the DFT spectrum; but
can utilize all available samples. It has been shown that the
utilization of more samples in the spectrum leads to a
reduced gap between the estimator performance and the
Cramer–Rao lower bound.
2. Preliminaries

We consider a complex exponential signal of unknown
amplitude, phase and frequency which is corrupted by
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additive white Gaussian noise:

r½n� ¼ Aejð2πfnþϕÞ þw½n�; n¼ 0;…;N�1: ð1Þ

The frequency variable f in (1) is the normalized frequency
defined over the interval ½0;1Þ. As in [3] and earlier works,
the frequency in this paper is denoted in terms of the DFT
bins, that is f ¼ ðkpþδÞ=N where kp is an integer in ½0;N�1�
and δ is a real number in �1=2oδo1=2. The goal of fine-
frequency estimation is the estimation of δ. The white noise
w½�� is circularly symmetric complex-valued Gaussian dis-
tributed with zero mean and sw

2
variance, w½n� � CN ð0; s2wÞ.

The signal-to-noise ratio (SNR) definition adopted in this
work is the input SNR, SNR¼ A2=s2w.

The first stage of the proposed method estimates the
coarse part of the frequency (kp) from the N-point DFT of
r½�� as described in the introduction section. In the second
stage, the fractional part of the frequency (δ) is estimated.
The Cramer–Rao lower bound (CRB) for the estimation of δ
(or equivalently f) in terms of DFT bins can be written from
[10] as

CR � Bound¼ 6
ð2πÞ2NSNR

for Nb1: ð2Þ

The estimator given in [3] uses three DFT bins to
construct its estimate and is shown to have an SNR gap
between 2.2 dB (for δ¼0) and 4.5 dB (for jδj ¼ 0:5) from
the CRB. A major contribution of the present paper is
the reduction of the mentioned performance gap via the
utilization of additional DFT bins in the spectrum.
3. Proposed estimator

The DFT of the signal r½�� in (1) in the absence of noise
can be written as follows:

R kpþk
� �¼ Aejϕejπ

N� 1
N δ�kð Þ sin ðπðδ�kÞÞ

sin ðπðδ�kÞ=NÞ: ð3Þ

Expanding the sine functions appearing on the numerator
and denominator of the relation on the right hand side of
(3), the ratio of the bins R½kpþk� and R½kp� can be written as

γk9
R½kpþk�
R½kp�

¼ ejðπ=NÞk sin ðπδ=NÞ
sin ðπδ=NÞ cos ðπk=NÞ� sin ðπk=NÞ cos ðπδ=NÞ: ð4Þ

The expression (4) is the key relation upon which the
estimator of δ is based. We can obtain the following two
equations for: γk and γ�k from (4).
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Summing the two expressions in (5), dividing both sides
by cos ððπ=NÞδÞ cos ððπ=NÞkÞ and rearranging, we get
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where we used the definitions of γk, γ�k with the fact that
both sides of the first equation are real to obtain the
second equation.

Solving for δ then gives

bδk ¼N
π
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ð7Þ
It should be noted that the estimator (7) uses three DFT bins,
that is, R½kp� and two bins which are k bins away from kp, to
form the estimate bδk. In the next section, a way of fusing
several bδk estimates for different k values (0okoN=2) is
described in order to harvest the total energy in all DFT
samples and to reduce the estimation error.

3.1. Fusion of frequency estimates

Unlike other estimators such as [1,3], it is possible to
generate a multitude of frequency estimates by substitut-
ing k¼ f1;2;…;N=2�1g into (7). Since the estimates for
large values of k, say k44, are derived from the DFT
samples at a relatively large distance from the main lobe,
the mean square error (MSE) of these estimates can be
large in comparison to the estimates with small k values.
Therefore, intuitively, the estimates with large k values
should have less effect on the fused estimate than those
with small k values. In the present section, we describe a
method which has this property for fusing the estimates bδk
for k¼ f1;2;…;N=2�1g.

Fusion rule: Under high SNR and small jδj assumptions,
the estimates bδk, k¼ f1;…;N=2�1g are approximately
uncorrelated. (See the companion document [11] for a
derivation.) Hence a possible fusion approach to generate
an estimate for δ given bδk for k¼ f1;2;…;N=2�1g is the
weighted average of bδk which is called as the best linear
unbiased estimate (BLUE). The weights for the BLUE are
proportional to the reciprocal of MSE, i.e., 1=MSE, for eachbδk [4, p. 139]. Hence, the fusion of the estimates bδk is
achieved with the relation given below.

bδF ¼∑N=2�1
k ¼ 1

1
ðMSEÞk

bδk
∑N=2�1

k ¼ 1
1

ðMSEÞk
ð8Þ

where ðMSEÞk refers to the MSE of the estimator bδk.
Weights of the fusion rule: Under high SNR and small jδj

assumptions, MSE of the estimator bδk can be approximated
as (See the companion document [11] for a derivation.)

ðMSEÞk �
1

4NSNR
sin 2ðπk=NÞ

π2=N2

N2 sin 2ðπδ=NÞ
sin 2ðπδÞ

: ð9Þ



Table 1
Iterated application of the fine-frequency estimators.

0 Given r½n� for n¼ f0;1;…;N�1g
1 Set bbδ’0
2 Evaluate N-point DFT on r½�� and find kp
3 Generate bδ via (7), (10) or (13)
4 Set bbδ’bbδ þbδ
5 If bδ is sufficiently small,
6 Go to Step 11
7 Else,
8 Set r½n�’r½n� expð� j2πbδn=NÞ, n¼ f0;1;…;N�1g
9 Go to Step 2

10 End of If
11 The frequency estimate is kpþbbδ in bins or 2π=Nðkpþbbδ Þ radians/sample
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Using the approximation (9) in the BLUE fusion formula
(8) and making the required cancelations by noting that
1=ðMSEÞkp1= sin 2ðπk=NÞ, we obtain

bδF ¼∑N=2�1
k ¼ 1

1
sin 2ðπk=NÞ

bδk
∑N=2�1

k ¼ 1
1

sin 2ðπk=NÞ

ð10Þ

which is independent of the true δ-value. Hence, the BLUE
formula (10) provides us with a realizable way of fusing
the estimates bδk, k¼ f1;2;…;N=2�1g. An exact analytical
relation can be written for the normalization constant
appearing in the denominator of (10) as [12]

∑
N=2�1

k ¼ 1

1

sin 2ðπk=NÞ
¼ ∑

N=2�1

k ¼ 1
csc2 πk=N

� �¼ 1
6
Nþ2ð Þ N�2ð Þ:

ð11Þ
Considering the fact that the MSE of the BLUE in (8) can
be calculated as ðMSEÞF ¼ ð∑N=2�1

k ¼ 1 1=ðMSEÞkÞ�1 [4, p. 139],
the MSE of bδF in (10) is approximately given as

ðMSEÞF �
6N

ð2πÞ2SNRðN�2ÞðNþ2Þ
N2 sin 2ðπδ=NÞ

sin 2ðπδÞ
; ð12Þ

where we used (9) and (11), which converges to the CRB in
(2) for large N and sufficiently small jδj values.

Number of DFT bins: It is possible to use only the first
KoN=2�1 DFT bins to form an estimate at the expense of
MSE performance as below.

bδKF ¼
∑K

k ¼ 1
1

sin 2ðπk=NÞ
bδk

∑K
k ¼ 1

1
sin 2ðπk=NÞ

: ð13Þ

An approximate empirical formula for the number of DFT bins
to use for the estimator bδKF in (13) to work with at most 1=α
times (where αAð0;1Þ is a scalar) the MSE of bδF (i.e., ðMSEÞF )
in (12)) is given as (See [11] for a detailed analysis.)

K ¼min N=2�1; round
0:607927

1�α

� 	� 	
: ð14Þ

Iterated application: It can be noted from (12) that
the estimator performance increases as jδj gets smaller.
The estimators having such a property can be utilized in
an iterative fashion to improve the performance for all
δ-values. This is achieved by changing, in effect, the
operating point of the estimator from large jδj to small
jδj as shown in Table 1. Since the proposed estimator bδF
and the Aboutanios and Mulgrew estimator [9] can reach
relatively close MSE values to CRB for small jδj, their
iterations can boost the performance significantly. How-
ever, some other estimators, like Candan's estimator [3]
and the ones described in [1], do not equally benefit from
the iterative operation; since the SNR gaps of these
estimators from the CRB for small jδj values are relatively
large.
4. Numerical experiments

Three sets of numerical results are given to illustrate
the performance of the suggested method. We consider
the signal r½�� in (1) with N¼16 and f ¼ ð2þδÞ=16, i.e.,
kp¼2. The proposed estimators bδk and bδF along with the
estimators of Candan [3] and Aboutanios and Mulgrew [9]
are evaluated on 100,000 Monte Carlo (MC) runs for
different values of δ. In each MC-run different noise w½��
and phase (ϕ�Uniform½0;2π�) realizations are used. The
root-mean-square errors (RMSE) of the algorithms calcu-
lated over the MC-runs are illustrated with magnifications
in the figures when necessary.

Experiment #1: Fig. 1(a) and (b) shows the RMSE
performances of the estimators bδk and bδF (with only a
single iteration) for different values of k for the true
δ-values 0.1 and 0.4 respectively. Note that the RMSE
performance significantly degrades for high values of k. It
is also evident that the fused estimate bδF is always better
than all the individual estimators bδk and for δ¼0.1, its
performance is quite close to the CRB.

Experiment #2: The second set of results compares the
proposed estimators bδ1 and bδF with the estimators of
Candan [3] and Aboutanios and Mulgrew [9] under the
condition δ¼0.4. As aforementioned, the suggested esti-
mator(s) can be used iteratively (as described in Table 1) to
improve the performance. Fig. 2 shows the results of the
first two iterations for these estimators. From Fig. 2(a), it
can be observed that the estimator bδF and the Aboutanios
and Mulgrew estimator yield very similar performances in



Fig. 1. RMSE performances of the estimators bδk and bδF . (a) True δ¼0.1
and (b) true δ¼0.4.

Fig. 2. RMSE performances of Candan [3], Aboutanios and Mulgrew (AM)
[9] and the proposed estimators bδ1 and bδF . (a) First iterations of the
estimators and (b) second iterations of the estimators.
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the first iteration; but the Aboutanios and Mulgrew
estimator suffers from estimation bias at high SNR values.
All four estimators operate at a non-negligible SNR gap
from CRB in their first iteration. Fig. 2(b) shows the RMSE
performances for the second iteration. It can be noted that
the estimator bδF and the Aboutanios and Mulgrew esti-
mator close the SNR gap significantly in their second
iteration, while Candan's estimator and bδ1 still operate at
a distance from CRB.

Experiment #3: The last set studies the SNR gaps (to
the CRB) of the estimators examined in Experiment-#2.
Fig. 3(a) and (b) shows the SNR gaps of the first and second
iterations of the estimators, respectively, for various true δ-
values under the condition SNR¼30 dB. In the first itera-
tion, the performances of all methods are dependent on
the true δ-value. It can be seen that the estimator pairs bδ1 –
Candan and bδF – Aboutanios and Mulgrew have a similar
RMSE performance. In the second iteration, RMSE has
almost no dependence on the true δ-value for all methods
and it is seen that the proposed estimators bδ1 and bδF are
marginally better than their counterparts in the second
iteration. It is also evident that iterating bδF and Aboutanios
and Mulgrew estimators leads to a significant error reduc-
tion while iterating bδ1 and Candan's estimator is much less
effective.
5. Conclusions

This letter presents a new estimator which uses all the
bins in the DFT spectrum for the frequency estimation.
The resultant estimator has an improved performance
in comparison to existing estimators in the literature.
The fusion technique used in this work for fusing several
estimators corresponding to different DFT bins has a
potential to improve other estimators if their extensions
to additional DFT bins can be made.



Fig. 3. SNR gaps of Candan [3], Aboutanios and Mulgrew (AM) [9] and
the proposed estimators bδ1 and bδF from Cramer–Rao bound. (a) First
iterations of the estimators and (b) second iterations of the estimators.
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