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Abstract: The conventional sidelobe blanking system, known as the Maisel sidelobe blanker, uses two receiving channels with
different gains to detect the presence of a jammer. The Maisel system is an ad-hoc detector without any optimality properties.
Yet, it has been successfully utilised in numerous operational systems. Here, the authors study the optimum Neyman–Pearson
type sidelobe blanking (SLB) detectors for the Swerling target models to assist the design of Maisel blankers. The authors note
that the optimal sidelobe blankers are of theoretical interest, since they require the knowledge of target and jammer parameters,
which are typically not available at the radar site. The main goals of the present study are (i) to derive the optimal Neyman–
Pearson detectors for SLB, (ii) to examine the performance gap between the optimal and Maisel detectors, and (iii) to develop
objective criteria for the design of Maisel blankers that provides a guarantee on the gap to the optimality. Ready-to-use
computer programs to assist the design process are also provided.

1 Introduction
Signals intercepted from the antenna sidelobes can cause false
target declarations, reduced tracking accuracy, reduced direction
finding accuracy, and other undesired effects. To reduce the impact
of such effects, a sidelobe blanking (SLB) architecture, known as
the Maisel structure, has been proposed [1]. The Maisel structure
uses two receiving channels. The first one is the main channel
whose antenna has high gain in the main beam and low gain in the
sidelobes. The second channel is called the auxiliary channel and
has an omnidirectional pattern, i.e. a flat gain which is typically
slightly greater than the sidelobe gain of the main antenna as
illustrated in Fig. 1. 

The Maisel structure generates a blanking signal when the ratio
of the auxiliary channel output power (v) to main channel output
power (u), that is (v/u), is greater than blanking threshold F as
shown in Fig. 2. A blanking decision disables the main channel.
Stated differently, the main channel output is discarded without any
further processing upon blanking. It should be clear that an
erroneous blanking decision causes a degradation in the
performance detection. The main goal of sidelobe blanker design is
to reliably detect the presence of a sidelobe jammer with a minor
loss in the target detection capabilities. 

As shown in Fig. 1, the gain of the omnidirectional antenna
(ω2) should satisfy the condition ω2/δ2 = β2 ≥ 1 for a reliable
operation. Stated differently, the auxiliary antenna acts as a better
receiver in comparison to the main antenna for the targets in the
sidelobe region. An interfering signal in the sidelobe region with
the power α produces main and auxiliary channel output powers of
δ2α and ω2α, respectively. The ratio of auxiliary to main channel
output, the decision statistics for the Maisel detector, is β2 and this
ratio is to be compared with the threshold F. Therefore β2 ≥ F
condition is required to successfully blank the sidelobe interferer
[1]. Similarly, in order not to erroneously blank a target in the main
lobe region, which produces auxiliary to main channel output ratio
of ω2, the condition of ω2 ≤ F is also required, [1]. As a summary,
the following three conditions are typically required for the design
of Maisel sidelobe blankers:

i. β2 = (ω2/δ2) ≥ 1,
ii. β2 ≥ F,

Fig. 1  Gain patterns of main and auxiliary antennas for a conventional
SLB system

 

Fig. 2  Block diagram of Maisel sidelobe blanker [1]
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iii. ω2 ≤ F.

It should be noted that these conditions are rather naive, since their
derivation is based on noise free operation, that is the statistical
variations due to noise, target fluctuations and so on are not taken
into account. Typically, these conditions are interpreted as the
necessary conditions for the design of Maisel SLB systems; but
they do not guarantee a satisfactory performance in practical
scenarios. In practice, to realise a good performance in the
presence of noise and other statistical variations, the parameters β2,
ω2, and F are chosen such that the conditions are satisfied with
some margin. To the extent of our knowledge, there is no
quantitative study on the optimality of Maisel scheme and there is
no work on the selection of parameters with the guidance of the
optimal Neyman–Pearson test. This study aims to fill this gap in
the literature.

The classical SLB systems are well studied in the literature. In
[2], Farina examines the classical SLB system in detail and derives
the probability of blanking the jammer in sidelobe (Pb), the
probability of blanking the target in main beam (Ptb), and the
probability of false target due to jammer in sidelobe (Pft) for
Swerling-0 target model. In [3], Farina and Gini extends the
aforementioned probability calculation to the Swerling-1 targets.
The work is extended to gamma distribution with an arbitrary
shape parameter, and shadowed rice target models [4] and the
effects of correlated Gaussian clutter in addition to thermal noise is
also accounted in [5]. Shnidman and Toumodge [6] give the
analysis of an arbitrary number of non-coherently integrated pulses
for the case of non-fluctuating and gamma fluctuating target .
Shnidman and Shnidman [7] extend the analysis to non-central
gamma (NCG) and NCG-gamma fluctuations. In [8], Cui et al.
give the performance assessment for arbitrary correlated, possibly
non-identically distributed, fluctuating target and/or jamming
returns for a given number of integrated pulses.

To the best of our knowledge, in spite of several important
works on the Maisel structure, its performance gap from the
optimal detector is not studied in the literature. In [9], Finn et al.
note that the SLB systems derived from the Neyman–Pearson
likelihood ratio test (LRT) are hard to implement in real time and
the Maisel structure is suggested as a substitute detector with a
simple implementation. One of our goals is to justify the good
performance of properly designed Maisel SLB systems by
conducting a comparison with the optimal Neyman–Pearson
detector. It should be mentioned that the optimal Neyman–Pearson
test is not possible to implement in practice; since the optimal
Neyman–Pearson detector requires several jammer and target
parameters which are not typically available to the radar operator.
Therefore, our goal is not to suggest a practical alternative SLB
structure; but to examine the performance gap between the Maisel
and optimal system for different scenarios, to identify the
conditions that Maisel system operates in the close vicinity of the
optimal system and, finally, to present some objective criteria to
the designers of Maisel blankers to achieve almost optimal
performance.

2 Neyman–Pearson type optimal sidelobe
blankers

Let �~ and �~ denote the complex valued matched filtered outputs of
the main and auxiliary channels at a specific time. We have three
hypotheses, namely noise only (H0), target in main lobe and no
jammer in sidelobe (H1), and jammer in sidelobe and no target in
main lobe (H2)

�0: �~ = �~��~ = �~�, (1)

�1: �~ = �0exp ��� + �~��~ = ��0exp ��� + �~�, (2)

�2: �~ = �0exp ��� + �~��~ = ��0exp ��� + �~� . (3)

Here �~ = �0exp ���  and �~ = �0exp ���  indicate target and
jammer voltage signal and �~� ∼ ��(0,�2) and �~� ∼ ��(0,�2)
denote receiver noise in main and auxiliary channels, respectively.��(0,�2) represents zero mean complex circularly symmetric
Gaussian random variables with σ2 variance. Note that the phrase
‘jammer’ in this work also applies to an interfering target in the
sidelobe.

We assume that phases of target and jammer signals are
independent of each other. The receiving channels are perfectly
matched [This assumption brings the coherency between receiving
channels and only affects the design of optimal detectors which are
studied to provide a performance bound for the Maisel blankers.].
Namely, � �~�~∗;�1 = �� |�0|2  and � �~�~∗;�2 = �� |�0|2 . The
LRT to decide blanking the main channel can be formed as
follows:

Λ�(�~, �~) = ��(�~, �~;�2)��(�~, �~;�1)Blank≷Blank��, � = 0, 1, 3. (4)

Here, ��(�~, �~;�2) and ��(�~, �~;�1) are the joint probability
density functions (pdf) of �~ and �~, respectively, for Swerling-m (m 
= 0, 1, 3) target model and the Blank and Blank denote the
blanking and not-blanking decisions, respectively. It should be
noted that the sidelobe blanker logic given by (4) forms the first
stage of the detector shown in Fig. 3. 

The sidelobe blanker logic shown in Fig. 3 generates the
decision test which is compared with the threshold ζm. If the
threshold is exceeded, the main channel is no longer processed and
a jammer decision is declared. If the first stage declares the
absence of jammer, the main channel output is further processed
for the presence or absence of a target.

It can be shown that the sidelobe blanker logic, the first stage of
the detector in Fig. 3, has the optimality properties in the sense that
given a fixed probability of (erroneously) blanking the target
signal, Pr (Blank|�1), the probability of blanking the jammer
signal is maximised, Pr (Blank|�2), with the shown two-stage
test. The proof for this claim is given in Appendix 1. With the
adoption of this optimality result, the blanking process and target
detection process can be separated.

Fig. 3  Illustration of two-stage radar receiver with a sidelobe blanker logic
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In the rest of this section, the log LRTs (LLRTs) of hypotheses
H2 and H1 are calculated for different target fluctuations models.
We denote the decision statistics for this purpose as

�� = log Λ�(�~, �~)Blank≷Blank��, � = 0, 1, 3. (5)

Here dm is the decision statistics for the Swerling-m target model.
The probability for the undesired event of (erroneous) target
blanking probability �tb = Pr (Blank|�1) = ∫��∞ ��� |�1(�) d� can
be set to a predefined value by adjusting the threshold level. As
shown, the threshold value becomes a function of the parameters
{SNR, JNR, ω2, β2}. After setting the threshold, the probability of
the desired event, that is the probability of blanking an active
jammer, can be determined as�b = Pr (Blank|�2) = ∫��∞ ��� |�2(�) d�. In the following
subsections, we present the details of these calculations.

2.1 Swerling-1 target model

Swerling-1 target model assumes the amplitude of target return,�0 = |�~|, is Rayleigh and the phase ϕa is uniformly distributed
over (0, 2π). Also, there is no pulse-to-pulse fluctuation in one
antenna scan. This model is referred to as scan-to-scan fluctuation.
The magnitude of �~ is distributed as [10]

�(�0) = 2�0��2 exp − �02��2 , �0 ≥ 0. (6)

Note that average power of target return signal is ��2  and is
complex Gaussian distributed having a variance of ��2 , that is,�~ ∼ ��(0,�2). The signal-to-noise-ratio (SNR) and jammer-to-
noise-ratio (JNR) are defined as

SNR = �� = |�~|2� ��2 = ��2�2 , (7)

JNR = �� = |�~|2� ��2 = ��2�2 . (8)

The LLRT to decide blanking or not [11]

�1 = � |�~ |2 + � |�~ |2 + �2Re(��∗)Blank≷Blank�1, (9)

where

� = ���2+ 1��(1 + �2) + 1 − ���2+ 1��(1 + �2) + 1, (10)

� = ��+ 1��(1 + �2) + 1 − ��+ 1��(1 + �2) + 1, (11)

� = −�����(1 + �2) + 1 − �����(1 + �2) + 1 . (12)

The test given in (9) can also be expressed as �1 = �H(�1−1− �2−1)�
where �1 and �2 are the covariance matrices of the two
dimensional Gaussian random vector � = �~ �~  for different
hypotheses and defined as follows (see [11] for further details)

�� = � ��H;�� = � |�~ |2 ;�� � �~�~∗;��� �~∗�~;�� � |�~ |2 ;�� , � = {1, 2} . (13)

The pdf of the test statistic d1 can be analytically expressed as [11–
13]

��1(�1) = ���+ �exp(− ��1), �1 ≥ 0���+ �exp(��1), �1 < 0 . (14)

The parameters a and b appearing in (14) are defined through a
rather complicated functions of ��~�~ and r, [14]

� = �2+ 14(��~�~��~�~− |��~�~ |2)( |� |2 − ��) − �, (15)

� = �2+ 14(��~�~��~�~− |��~�~ |2)( |� |2 − ��) + � (16)

where ��~�~ = (1/2)� �~�~∗  and

� = ���~�~+ ���~�~+ �∗��~�~∗ + ���~�~4(��~�~��~�~− |��~�~ |2)( |� |2 − ��) .
Threshold calculation: The threshold η1 for the Neyman–Pearson
test can be calculated from (14). For a given target blanking
probability (Ptb), the threshold η1 is

�1 = − 1� ln �+ �� �tb , �tb ≥ ��+ �1� ln − �+ �� �tb− 1 , �tb ≤ ��+ � . (17)

Blanking probability calculation: Using the threshold η1, the
probability of blanking the jammer in sidelobe is

�b = ��+ �exp(− ��1), �1 ≥ 0��+ �(1− exp(��1)) + ��+ � , �1 ≤ 0 . (18)

Further details are given in Appendix 2.

2.2 Swerling-0 and Swerling-3 target models

Swerling-0 target model assumes that the phase of �~ (ϕa) is
uniformly distributed over (0, 2π) and the magnitude of �~ is
deterministic. After forming the LRT and ignoring non-data
dependent terms, we reach the following test:

�0 = �0 (2�0/�2) |�~+ ��~|�0 (2�0/�2) |�~+ ��~| Blank≷Blank�0 . (19)

where I0( · ) denotes the modified Bessel function of the first kind.
Swerling-3 target model is similar to the Swerling-1 model

(scan-to-scan fluctuation) case except that the magnitude of �~ is
distributed as [10]

�(�0) = 8�03��4 exp − �02��2 , �0 ≥ 0. (20)

After obtaining the joint pdf's of �~ and �~ (see Appendix 2 for
derivations), the LLRT can be found as

�3 = �H �1−1− �2−1 �+ log 1 + �H −�2−1+ � �1 + �H −�1−1+ � � Blank≷Blank�3 . (21)
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where �1 and �2 are the covariance matrices defined in (13).
Due to the non-linearities present in d0 and d3, the decision

statistics for these tests are analytically formidable to obtain. We
resort to the Monte Carlo methods for the assessment of these
models. Some further details on the derivations are given in
Appendix 2.

3 Performance comparison of Maisel structure
and optimal detectors
We present a quantitative critique of the Maisel detector by
conducting a comparison with the optimal detector for different
target models. The optimal tests for Swerling targets given in (9),
(19), and (21) depend on several parameters including operating
SNR and JNR. Hence, the optimality, in the sense of Neyman–
Pearson, is achieved through the knowledge target and jammer
specific parameters which are not utilised in the classical Maisel
SLB system. The performance superiority of the Neyman–Pearson
detectors can be attributed to this additional knowledge. In
practice, it may not be possible to reliably estimate SNR and JNR
values on-the-fly and resorting to classical Maisel structure is

unavoidable. Yet, the performance gap between the optimal and
Maisel structures, in spite of the unavailable information for the
conventional structure, is the main interest of this section.

In the following subsections, we present a numerical
comparison of Maisel structure and the optimal detector for three
different Swerling models. It is assumed that both systems are
equipped with an antenna having identical ω2 and β2 values. Both
detectors are adjusted to meet a given target blanking (false
blanking) probability.

3.1 Swerling-1 target model

Fig. 4a compares the performance of two systems at a fixed
probability of target blanking. The target blanking probability is set
to 0.01 and β2 is chosen as 5 dB. The threshold values for Maisel
detector at different SNR values are denoted in the figure legend.
(the statistics of Maisel SLB are given in [3].) We note that
threshold values for the optimum SLB detector depends on JNR;
hence the threshold varies for each point given in Fig. 4a for the
optimal test. 

It can be noted from Fig. 4a that the performance gap between
Maisel structure and optimum detector is large at SNR = 16 dB. For
this case, the threshold F for Maisel structure is comparable with
β2 value. The other cases have much smaller performance gap
between optimal test and Maisel structure. It can be noted that the
performance gap diminishes as the threshold F of the Maisel
structure gets smaller in comparison to β2.

Fig. 4b presents the result of an identical comparison for a
higher target blanking of Ptb = 0.1. For the given Ptb value, the case
of F ≃ β2 occurs at much smaller SNR values, i.e. SNR ≃ 5 dB. It
can be noted that the cases for which the condition F ≪ β2 is
satisfied, the performances of Maisel structure and the optimal
detector are very similar. This general conclusion is indeed
expected; but results given here quantitatively illustrate the
performance gap from the optimal detector for different F and β2

values. In the following section, we present a design guideline on
how to make use of the presented results for the design of almost
optimal Maisel sidelobe blankers.

3.2 Swerling-3 target model

The test given in (21) is the optimum Neyman–Pearson test for
Swerling-3 targets. As in Swerling-1 case, the threshold η3 in (21)
depends on several parameters, including SNR, JNR, ω2, and β2.
Swerling-3 target model corresponds to medium fluctuation
between Swerling-1 and Swerling-0 target models. Since the
fluctuation is less than Swerling-1 case, we can achieve the same
probability of false blanking (Ptb) at lower SNR values.

Fig. 5 compares the two systems when β2 is set to 5 dB. The
results are similar to the Swerling-1 case. Due to less fluctuation
compared with Swerling-1 target, the threshold values (F) and η3
are smaller in comparison with Swerling-1 case. This results in a
higher probability of blanking at the same JNR values than the one
of Swerling-1 targets. It can be noted that when the main
requirement of Maisel structure F ≪ β2 is satisfied, the
performance of Maisel structure converges to the optimum SLB
detector at even low JNR values. When this requirement is not
satisfied, the performance of Maisel structure has a large gap from
the optimal test, as in the Swerling-1 case. 

3.3 Swerling-0 target model

The test given in (19) is the optimal Neyman–Pearson test for
Swerling-0 targets. Fig. 6a compares the two systems for the false
blanking probability (Ptb) of 0.01. The corresponding threshold
values are shown in the figure legend. As in the Swerling-1 case,
the Maisel structure behaves poorly when F is not sufficiently
smaller than β2. It can be noted that, the performance gap gets
smaller when JNR increases. Fig. 6b shows the identical
comparison when the false blanking probability is increased to
0.05. 

Fig. 4  Comparison of Pb on JNR for Swerling-1 targets. Parameters: β2 
= 5 dB, ω2 =   − 30 dB
(a) Ptb = 0.01, (b) Ptb = 0.1
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It can be noted that optimum SLB structure achieves higher
blanking probability at a relatively smaller JNR values when
compared with Swerling-1 and Swerling-3 cases. This is, indeed,
expected due to the assumption of non-fluctuating target model.

4 Design of Maisel type SLB systems with an
optimality guarantee
In the design of the Maisel sidelobe blankers, there are mainly two
parameters, namely F and β2 to be determined to achieve the
desired blanking probability (Pb) at the expense of a fixed
(erroneous) target blanking probability (Ptb). In this section, we
aim to illustrate the process of designing Maisel type blankers with
an optimality guarantee.

We illustrate the design process through a numerical example.
In this example, a jammer with a JNR of 5 dB is assumed to be
located in the sidelobe region. (It should be noted that the
mentioned JNR values are the receiver JNR values, that is after the
suppression of the jammer by the main antenna.) Our design goal is
to blank the jammer with a probability of larger than 90% and the

tolerable erroneous target blanking probability should be at most to
5% for Swerling-1 targets.

Fig. 7 shows the performance comparison of Maisel type and
optimal sidelobe blanker systems for different values of antenna
gain margin (β2) under the conditions of Ptb = 0.05, JNR = 5 dB.
From this figure, we can see that when β2 = 10 dB, the Maisel SLB
provides a blanking probability (Pb) of 0.9, 0.95, and 0.97 when
the threshold F is adjusted for the erroneous blanking of targets
having SNR values 9, 12 and 15 dB, respectively. Hence, if the
weakest target (target of lowest SNR) to be detected has an SNR of
9 dB, then it is necessary to have β2 = 10 dB. If the weakest target
SNR is around 12 dB, β2 = 7 dB suffices to achieve the design
goals. 

It should be noted that a reduction in β2 is equivalent to a
relaxation in the main antenna sidelobe specifications. Hence, the
utilisation of a smaller β2 values is desirable from the viewpoint of
antenna design. If the weakest target has an SNR value of 9 dB and
β2 = 7 dB, there exists a large gap between the performance of
Maisel detector and optimal detector as illustrated by the vertical
double sided arrows in Fig. 7. It can be noted that even a single

Fig. 5  Comparison of Pb on JNR for Swerling-3 targets. Parameters: β2 
= 5 dB, ω2 =   − 30 dB, and number of Monte Carlo trials = 106

(a) Ptb = 0.01, (b) Ptb = 0.1

 

Fig. 6  Comparison of Pb on JNR for Swerling-0 targets. Parameters: β2 
= 5 dB, ω2 =   − 30 dB, and number of Monte Carlo trials = 106

(a) Ptb = 0.01, (b) Ptb = 0.05
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decibel in increase of β2 from 7 to 8 dB, results in a significant
reduction of this gap. Hence, an SLB designer, whose operational
scenario includes target SNR values of 9 dB, can rightfully request
an effort in the reduction of main antenna sidelobes. If the lowest
target SNR values are around 12 dB, the gap between Maisel and
optimal detector curves (shown with the triangle marker) is rather
small and having a reduction in the main antenna sidelobe levels
has a much smaller pay off in terms of the blanking probability.

To further assist the design process, we present the relation
between minimum JNR and β2 in Fig. 8. The JNR values shown in
this figure is the smallest JNR value for which the design criteria
are satisfied. Hence, this figure can be interpreted as the blanking
effectiveness of the system as a function of β2. The desired
probability of blanking (Pb) is set to 0.90, the erroneous target
blanking probability is limited to 0.05, Ptb ≤ 0.05 also in this figure.
The curves given in Fig. 8 show the required JNR value for a fixed
β2 so that the probability gap between Maisel detector and optimal
detector is smaller than 0.05. (The mentioned probability gap is
illustrated with the double sided arrows in Fig. 7.) Hence, these

points on the curves shown in Fig. 8 refer to the Maisel systems
whose performance has a fixed gap from the optimal detectors. 

The curve with the square marker shows the case of weakest
target SNR values of 9 dB. For this case, as noted earlier, β2 = 10 
dB is required to blank the jammers with receiver JNR of 5 dB
with the desired blanking probability of 90%. For the same case, if
β2 happens to be 7 dB, the jammers with 13 dB JNR or higher can
be blanked with the desired probability. As can be noted from
Fig. 8, an increase in β2 from 7 to 8 dB, results in the blanking of
the jammers with JNR >10 dB with the desired probability.
Another dB increment further reduces this JNR value to 7 dB. It
can be said that from this figure, the improvement in blanking
effectiveness resulting for a single dB increment in β2 can be read
for the Maisel detectors with a fixed case worst case gap from the
optimal detectors. Using these curves, a sidelobe blanker designer
can asses the return for the reduction of main antenna sidelobe
levels in terms of blanking effectiveness.

To further assist the designer, we provide a set of ready-to-use,
general purpose MATLAB programs to generate similar figures for
different values of parameters such as Ptb, Pb, ω2 and so on in [15].

5 Conclusion
The main goals of this study are to compare the performance of the
Maisel SLB structure with the optimal detectors and to provide
design guidance for the Maisel systems. To this aim, optimal
Neyman–Pearson detectors are studied for Swerling-0, Swerling-1,
and Swerling-3 target models. Unfortunately, the optimal detectors
are not feasible to implement, since they require SNR and JNR
values which are typically not available to the radar operator. Yet,
the performance of the optimal detectors can be interpreted as a
performance upper bound for the Maisel systems. One of the main
goals of this study is to derive the mentioned performance bounds
and examine the performance gap between the optimal detector and
Maisel structure. A second goal is to develop design criteria and
tools for the Maisel systems that guarantee a final design with a
fixed performance gap from the optimal detectors. To this aim, the
return in terms of jamming effectiveness as a function of β2 is
studied. More specifically, the return of a single dB increase in β2

in terms of an increase in the blanking probability or a reduction in
the minimum successfully blanked JNR level is examined. A
general purpose MATLAB code to assist the design process is
provided. Through the utilisation of the presented criteria and
provided software, a sidelobe blanker designer can easily asses the
value of an increase in β2 for different operational scenarios and
design Maisel systems with a provable optimality guarantee.
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7 Appendix
 
7.1 Appendix 1: Proof of optimality

Let ϕB and ϕB* denote the indicator functions of Neyman–Pearson
test and any other test for the blanking decision regions,
respectively

��(�) = 1 � ∈ Blank, i . e . �(�;�2)�(�,�1) > �
0 � ∈ Blank, i . e . �(�;�2)�(�,�1) < �, (22)

where � = �~ �~ .
The following inequality immediately follows from the

definitions of above expression:��− ��∗ �(�;�2)− ��(�;�1) ≥ 0. (23)

Integrating (23) over the entire sample space, we get the following
equations:∫� ∈ � �(�;�2)− ��(�;�1) d�,

−∫� ∈ �∗ �(�;�2)− ��(�;�1) d� ≥ 0,�(� |�2)− ��(� |�1)− �(�∗ |�2) + ��(�∗ |�1) ≥ 0,�(� |�2)− �(�∗ |�2) ≥ � �(� |�1)− �(�∗ |�1) .
(24)

where P(B* |H2) and P(B* |H1) are the probabilities of deciding
blanking and not blanking for the any other test except Neyman–
Pearson test.

From (24), we see that if P(B* |H1) ≤ P(B|H1), then P(B|H2) ≥ 
P(B* |H2) since ζ  ≥ 0. Thus, any other test whose target blanking
probability is desired to be upper bounded by some level will have
a smaller jammer blanking probability compared with the
Neyman–Pearson test.

7.2 Appendix 2: Derivation of optimum SLB detectors

7.2.1 Swerling-0 target model: We first give the conditional
pdf's of �~ and �~ given that �~ and �~ are completely known. The
conditional pdf will be Gaussian whose mean is reflected by target
and jammer signals and is given as follows:

Under H1, �(�~ |�~;�1) ∼ ��(�~,�2) and�(�~ |�~;�1) ∼ ��(��~,�2). Under H2, �(�~ |�~;�2) ∼ ��(�~,�2)
and �(�~ |�~;�2) ∼ ��(��~,�2). Since the conditional pdf's are in
the same form, we will continue with that under H1

�(�~ |�~;�1) = 1��2exp − |�~− �~|2�2 ,
�(�~ |�~;�1) = 1��2exp − |�~− ��~|2�2 . (25)

Since the receiver noise in both channels (�~� and �~�) are assumed
to be independent, �~ and �~ turns to be conditionally independent.
Hence

�(�~, �~ |�~;�1) = 1�2�4exp − 1�2 |�~− �~ |2 + |�~− ��~|2 . (26)

Averaging (26) over the phase of �~ which is uniformly distributed
over (0, 2π), we obtain

�(�~, �~ |�0;�1) = 1�2�4exp − 1�2 |�~ |2 + |�~ |2 + �02+ �2�02�0 2�0�2 |�~+ � |�~| . (27)

where �0 = |�~| and I0( · ) is the modified Bessel function of the
first kind. Similarly

�(�~, �~ |�0;�2) = 1�2�4exp − 1�2 |�~ |2 + |�~ |2 + �02+ �2�02�0 2�0�2 |�~+ � |�~| . (28)

Then, LRT can be formed by the ratio of (28) and (27) and is given
in (19).

7.2.2 Swerling-1 target model: Here, we give an alternative
derivation given in [11] to optimum SLB detector for Swerling-1
target. To find the joint pdf of �~ and �~, we integrate (27) over a0
whose pdf is given in (6) as follows:

�(�~, �~;�1) =∫0 ∞�(�~, �~ |�0;�1)�(�0) d�0 . (29)

Putting (27) and (6) into (29), we have the following equation:

�(�~, �~;�1) = 1�2�4exp − 1�2 |�~ |2 + |�~|2∫0 ∞exp − 1�2�02(1 + �2)
× �0 2|�~|�2 |�~+ ��~| 2�0��2 exp − �02��2 d�0 .

(30)

One can note that∫0 ∞2��exp(− ��2)�0(��) d� = exp �24�
[16]. Thus, the integral in (30) can be written as

� = exp ��2 |�~ |2 + �2 |�~ |2 + 2�Re(��∗)�2 ��2(1 + �2) + �2�2��2(1 + �2) + �2�1
. (31)

Putting (31) into (30), we obtain the joint pdf as

�(�~, �~;�1) = 1�2�4exp − 1�2 |�~ |2 + |�~|2�2 × � . (32)

Similarly, one can find joint pdf of �~ and �~ under H2. Note that K1
term does not involve data and K2 term is common for both
hypotheses. After some algebraic manipulations, the LLRT can be
found as given in (9).

7.2.3 Swerling-3 target model: Using the same method in
Swerling-1 case, the joint pdf of �~ and �~ under H1 can be found by
integrating (27) over a0 whose pdf is given in (20). Then
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�(�~, �~;�1) = 1�2�4exp − 1�2 |�~ |2 + |�~|2∫0 ∞exp − 1�2�02(1 + �2)
× �0 2|�~|�2 |�~+ ��~| 8�03��4 exp − �02��2 d�0 .

(33)

By making use of the relation∫0 ∞2�3exp(− ��2)�0(��) d� = 1�2 1 + �24� exp �24�

and after some straightforward algebra the joint pdf of �~ and �~
under H1 can be written as [16]�(�~, �~;�1) = �1�2exp −�H�1−1� 1 + �H(− �1−1+ �)� . (34)

where � is identity matrix, K1 and K2 are defined in (31) and (33),
respectively. Similarly, �(�~, �~;�2) can be found by replacing �1 in
(34) by �2. Then, the LLRT can be found as given in (21).
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