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A Method For Fine Resolution Frequency
Estimation From Three DFT Samples

Çag̃atay Candan

Abstract—The parameter estimation of a complex exponential
waveform observed under white noise is typically tackled in two
stages. In the first stage, a coarse frequency estimate is found by
the application of an N-point DFT to the input of length . In the
second stage, a fine search around the peak determined in the first
stage is conducted. The method proposed in this paper presents a
simpler alternative. The method suggests a nonlinear relation in-
volving three DFT samples already calculated in the first stage to
produce a real valued, fine resolution frequency estimate. The esti-
mator approaches Jacobsen’s estimator for large and presents a
bias correction which is especially important for small andmedium
values of .

Index Terms—Frequency estimation, fine doppler estimation,
radar signal processing, DFT.

I. INTRODUCTION

T HE parameter estimation of a complex exponential ob-
served under white noise is a fundamental signal pro-

cessing problem which is central to many applications including
spectrum estimation, array signal processing and radar signal
processing. The computational requirements of the estimator are
especially critical in radar signal processing applications where
millions of hypothesis tests involving complex exponentials can
be evaluated every second, [1].
It is well known that when the observation noise is white

and Gaussian, the maximum likelihood frequency estimate of
a single complex exponential waveform is the peak location of
the Discrete-Time Fourier Transform (DTFT) of the received
signal. Since DTFT computation over the continuum of
is a formidable operation, the samples of the DTFT are calcu-
lated using the Discrete Fourier Transform (DFT). Typically an
N-point DFT is calculated for the data length of samples
leading to a resolution of on the frequency estimate.
In many applications, it is desirable to increase the resolution

of the frequency estimate at the cost of some additional com-
putation. As described in [2], a two-stage search can be imple-
mented to improve the frequency estimate. First a coarse search
with an N-point DFT is executed and then a fine search is im-
plemented around the vicinity of the peak determined in the first
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Fig. 1. Magnitude spectrum of the complex exponential waveform with fre-
quency radians per sample.

stage. It should be noted that the resolution of a two-stage search
is limited to the spacing of the grid points used in fine search.
In [3]–[6] an alternative for the second stage is suggested. In-

stead of a grid search, the fine resolution estimate is produced
through a function on DFT samples already calculated in the
first stage. Themethods suggested in [3]–[5] use three DFT sam-
ples, while the method of Provencher uses only two DFT sam-
ples, [6]. These methods require very few operations in com-
parison to the grid search and produce a real valued estimate for
the frequency, instead of a discrete grid point.
In [7], Jacobsen has suggested a simple relation for DFT do-

main fine frequency estimation. The suggestion is based on em-
pirical observations and presented without a proof. In this paper,
we present a derivation for the Jacobsen formula and present a
bias correction. The correction term is effective for high SNR
values, but it comes at almost no additional computational cost
and therefore can be used at any SNR level.

II. PROBLEM DESCRIPTION

A single complex exponential waveform observed under
white Gaussian noise can be modeled as follows:

Here and are unknown parameters which are complex
valued amplitude and real valued frequency with the unit of
radians per sample, respectively.
Fig. 1 shows the magnitude spectrum of for the noiseless

case. The frequency of the complex exponential shown in Fig. 1
is . Our goal in this paper is to estimate ,
where , from three samples around the peak in the
DFT spectrum.
In the first stage, an N-point DFT of is calculated,

. Here denotes the complex valued
DFT output. The peak value in the DFTmagnitude spectrum (
in Fig. 1) is expected to be around the true frequency , if the
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input is sufficiently large. Our interest in this
paper is the estimation of the frequency in the high SNR region,
which is a typical setting for a radar signal processing problem.
We can express the DFT bin where the peak occurs and its

immediate left and right neighbors as follows:

(1)

Here is the DFT of which is also white and jointly
Gaussian distributed.
The function appearing on the right hand side of the

equations given in (1) is defined as follows:

(2)

Here is a generic variable for the function .
Our goal is to utilize three DFT samples around the peak to

produce an estimate of . Once is estimated, the final fre-
quency estimate becomes where is the
bin number of the peak found in the first stage and is the esti-
mate produced by and .

III. PROPOSED ESTIMATOR

To determine from the set of nonlinear relations given in (1),
we suggest to expand in terms of its Taylor series around

and solve for with the assumption of second and higher
powers of being negligible in comparison to .
We initiate the derivation with the Taylor series expansion of

:

(3)

The function denotes the summation of the th power
of integers between 0 and , that is

. The first few terms of sequence
are given as follows:

The higher order terms of can be written explicitly in
terms of Bernoulli numbers, [8].
The Taylor series expansion of given in (2) can be im-

mediately written by replacing with in :

(4)

With the following definition of

(5)

the Taylor series can be written in a tidier form as follows:

(6)

(7)

To estimate , we evaluate the first and second differences of
. Using the elementary algebra, (8) can be written for the

differences of and
Here the term h.o.t. denotes the higher order terms of :

(8)

Next, we evaluate the infinite summations involving odd and
even indexed terms appearing on the right hand side of (8).
The infinite summations can be summed through the fol-

lowing relations:

(9)

The two equations given in (9) can also be rewritten as shown
in (10):

(10)

From the definition of , it can be easily seen that
. Substituting and into the relations given
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TABLE I
METHODS FOR FINE RESOLUTION FREQUENCY ESTIMATION IN DFT DOMAIN

in (10), we can explicitly evaluate the infinite summations in (8)
as follows:

By ignoring the higher order terms, we get the following relation
for the ratio of first two differences:

(11)

Invoking the smallness of with respect to one more time,
we can simplify the last relation as follows:

(12)

In the high SNR regime, that is when , DFT samples
around the peak value, that is , and
in (1), can be taken as and

respectively. Then an estimate for can be produced via the
substitution of and

into (12):

(13)

This concludes the derivation of the proposed estimator. It
should be noted that the estimator proposed approaches the
estimator of Jacobsen, given in Table I, as .

IV. NUMERICAL COMPARISONS

This section presents a numerical comparison of the proposed
estimator with the other estimators given in Table I. We would

Fig. 2. Bias of different estimator in the absence of noise.

like to remind that in the presented figures, the bias and root
mean square error (RMSE) values describe the error on . This
error can be interpreted as the error normalized to the DFT bin
size. With this normalization, an error of 0.1 units on is equiv-
alent to the frequency error of radians per sample.
Fig. 2 compares the bias of the proposed and other estimators

in the absence of noise for . Frequency estimation is
a nonlinear estimation problem, therefore it is not surprising
that all estimators, including the proposed one, are biased. As
expected, the bias gets smaller as or as SNR increases.
Fig. 2 shows that the least biased estimator is the proposed one.
(This is in general true for any .) The poorest bias belongs to
the parabolic fit estimator which is a fact known in the literature,
[1]. The other estimators by Quinn, Jacobsen, andMacleod have
the exact same bias value in the absence of noise.
Fig. 3 examines the bias in the presence of noise. For this

figure, the parameter is fixed to a specific value, which is
, and SNR is varied. As can be observed from this figure, the

estimators approach the bias value of the noiseless case, which
is presented in Fig. 2, as SNR increases.
Fig. 4 shows the RMSE of the estimators and the Cramer–Rao

lower bound. We note that the Cramer–Rao bound is not typi-
cally applicable for the biased estimators, but it is still useful if
the bias value is much smaller than the error variance. As can
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Fig. 3. Variation of bias with respect to SNR for and .

Fig. 4. Variation of RMSE with respect to SNR for and .

be noted from this figure, the RMSE values of all estimators in-
cluding the proposed one are dominated by the estimator bias at
sufficiently high SNR values.
As a final comparison, we present a second RMSE compar-

ison figure for a larger number of observation samples. Fig. 5
shows the RMSE for . It can be noted from this figure
that the RMSE floor occurs at a higher SNR value for
than . Other than this change, case follows

case quite closely.
It should be noted that when is large, Jacobsen’s formula

and its bias corrected version has the same performance for a
large SNR range which can encompass the SNR range of many
practical applications. We believe that the correction is most
useful for the applications with small/medium values for at
high SNR such as the Doppler frequency estimation problem in
radar signal processing.

Fig. 5. Variation of RMSE with respect to SNR for and .

V. CONCLUSION

We present a justification for the good performance of
Jacobsen’s estimator and suggest a bias correction further
improving its performance. Jacobsen’s estimator has been
suggested through empirical observations in [7] and this work
presents a justification for its good performance.
The proposed estimator requires very few operations per

output sample and closely follows the Cramer–Rao bound in
high SNR region. These features make the estimator especially
valuable for radar signal processing applications where effi-
cient and accurate computation of unknown target Doppler
frequency is needed.
The present work utilizes the data processed by a rectangular

window. A potential future work is the derivation similar fine
resolution frequency estimation formulas for different windows
such as Hamming, Hanning windows.
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