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Şafak Bilgi Akdemir ∗, Çağatay Candan
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Multiple-snapshot maximum-likelihood (ML) direction of arrival (DOA) estimation problem is studied for 
the intermittent jamming scenario. The intermittent jamming modality is based on the assumption that 
only a subset of the collected snapshots are contaminated by the jammer while the others are jammer-
free; but the receiver does not know which is which. This type of jamming is frequently encountered in 
practice either inadvertently, say due to the sporadic activity of a non-hostile system; or intentionally, say 
due to the activity of an adversary sweeping the operational bandwidth of the receiver. Exact maximum 
likelihood solution for the problem is analytically intractable and an expectation maximization (EM) 
method based solution is developed for coherent and non-coherent signal models. Coherent signal model 
assumes that the phase difference between the coefficients of two consecutive snapshots are known 
a-priori which is an assumption compatible with the Swerling-1/3 target models in the radar signal 
processing literature. Non-coherent signal model does not have such an assumption and it is suitable 
for Swerling-2/4 targets. The suggested EM based solution is shown to yield an important estimation 
accuracy improvement over conventional maximum-likelihood solution which ignores the intermittency 
of jammer and also over the atomic norm based high resolution estimation techniques. Cramer-Rao type 
performance lower bounds for the problem is also provided to illustrate the efficacy of the suggested 
estimator.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Direction of arrival (DOA) estimation problem is a fundamental problem of statistical signal processing with close connections to fre-
quency estimation, spectral estimation and signal modeling [1]. The DOA estimation under intermittent jamming, in spite of its importance 
in theory and practice, has attracted limited attention in open literature. The intermittent jamming model assumes that each one of the 
collected snapshot vectors is jammer corrupted with some probability. Stated differently, a subset of collected snapshots are contaminated 
by jammer and the others are jammer-free; but the receiver does not know which is which. The main goal of this work is to study the 
DOA estimation problem under intermittent jamming, that is to derive the performance lower bounds for this setting; to develop a max-
imum likelihood DOA estimation algorithm and to evaluate its performance by comparisons with the conventional maximum likelihood 
estimator which ignores the intermittent behavior and also with the sparse signal representation based high resolution estimators.

Direction of arrival (DOA) literature can be organized into two categories [2]. The methods in the first category are called classical 
methods, namely amplitude comparison [3], time-difference of arrival, interferometer [4] and mono-pulse [5] methods. These methods 
generate a single DOA estimate. The methods in the second category, such as MUSIC [6], ESPRIT [7] and their extensions [8–14], generate 
multiple DOA estimates for multiple targets. In fact, methods of both categories are reduced complexity versions of the maximum like-
lihood estimators under Gaussian noise/interference model for single and multiple targets [1,15–18]. Expectation Maximization method 
(EM) is another approach for the complexity reduction of multiple DOA estimation problem [19,20]. EM introduces some latent random 
variables to the problem setting and aims to maximize the complete-data likelihood instead of the marginal distribution likelihood [21]. 
In DOA literature, EM is applied to generate DOA estimates for the multiple superposed signals by defining each signal term in super-
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position as a latent signal. A more recent application of EM is its utilization in the non-uniform array DOA estimation problem where a 
hypothetical uniform array output is chosen as the complete data [22].

In the last two decades, several high resolution techniques have been suggested for the DOA estimation in the context of sparse signal 
representation [23–27]. Different from the subspace-based high resolution techniques, such as MUSIC and ESPRIT; recently developed 
methods are based on convex optimization, such as �1-SVD [23], convex-regularized optimization [28] and sparse Bayesian estimation 
[29–33]. For instance, an approach exploiting the properties of covariance matrix under the sparsity constraint in the application of sparse 
Bayesian learning methods is given in [34]. This approach can be interpreted as establishing a connection between the subspace methods 
and sparse Bayesian learning methods. Solutions exploiting sparsity in Bayesian learning have also been developed for the coherent 
multipath DOA estimation problem in [35,36]. In [36], a deterministic method which uses alternating convex search for DOA estimation 
is formulated. The majority of these methods operate with a fixed grid for the unknown target angular location and several methods 
have been suggested to improve the performance due to the grid mismatch with the true target location, the off-grid target problem 
[29,32,37–40]. For example, [32] proposes two off-grid DOA estimation methods, one for narrowband signals and one for wideband 
signals, which are the extended versions of sparse Bayesian learning based relevance vector machine (SBLRVM) algorithm [41]. For the 
solution of off-grid target problem, the method of Candés and Fernandez-Granda [38] stands out with its gridless, i.e. discretization-free, 
framework that utilizes the total variation norm which is the continuous analog of �1 norm. This work has been extended by the atomic 
norm formulation induced by the complex exponentials in [42–44]. More recently, the atomic norm formulation for DOA estimation has 
been generalized to multiple snapshots and the problem is renamed as joint sparse frequency recovery problem [45,46].

Atomic norm based estimators is one of most important recent breakthroughs in frequency estimation [47]. These estimators use the 
classical relation between the auto-correlation sequence and power/energy spectral density in the problem definition and optimize over 
the auto-correlation sequence [42–44]. The change of domains from the continuum of frequency domain (energy spectrum) to the discrete-
time sequences (auto-correlation sequence) allows a feasible optimization problem with finitely many unknowns. Once the optimization 
over the auto-correlation sequence (also called the dual polynomial) is completed, the maxima locations in the Fourier spectrum of the 
optimized sequence yield the spatial/temporal frequency estimates [43,44]. The initial formulation of the atomic norm based estimators 
requires semi-definite programming (SDP) solvers with linear matrix inequalities (LMI) constraints which are not efficient to implement 
for large dimensional problems. In [44,46], a solution based on alternating direction method of multipliers (ADMM) method have been 
suggested for computational efficiency. For more information on atomic norm based estimators, readers are invited to consult [47].

In addition to the theoretical aspects of the problem, the array imperfections such as mutual coupling, gain/phase uncertainty, sensor 
location errors can cause performance degradations in practical systems. Due to their impact on DOA estimation accuracy, self calibration 
methods have also been studied [48–51]. [52] approaches this problem by sparse Bayesian perspective in a unified framework for both 
array calibration and DOA estimation.

Another classification can be given according to the signal of interest (SOI) bandwidth. The narrowband DOA estimation methods 
that have been mentioned so far can be extended to the wideband DOA estimation setting by different approaches. In the noncoherent 
processing approach, DOAs of each SOI frequency component is estimated by narrow-band processing methods and then the estimates 
are combined. The coherent processing approach uses a focusing matrix to transform the covariance matrices at different frequencies to 
a common frequency. Coherent Signal Subspace Method (CSSM) [53] and Weighted Average of Signal Subspaces (WAVES) [54] are well 
known examples for the coherent approach. Test of Orthogonality of Projected Subspaces (TOPS) [55] is another wideband DOA estimation 
method that is based on the orthogonality relation between the signal and the noise subspaces for multiple frequency components. 
Wideband Covariance Matrix Sparse Representation (W-CMSR) [56] exploits a priori information on the signal spectrum and it is shown 
to be capable of detecting higher number of sources than the number of sensors for some array geometries.

In many applications, intentional or unintentional interference sources occupy the spectrum together with the desired signal. 
Radar/communication jammers are examples of intentional interferers. Several methods have been developed to detect jamming and 
also to improve DOA estimation accuracy under jamming. Solutions for the detection and angle tracking under interference for monopulse 
radars have been studied in [57,58]. Similarly, main lobe and side lobe jammer cancelers for monopulse DOA estimation is studied in 
[59]. In [60], several techniques for jammer and clutter cancellation in adaptive airborne radar are proposed. More recent works related to 
detection and estimation under jamming are given in [61,62]. In [61], an adaptive beamformer orthogonal rejection test (ABORT)-like de-
tector that can blank coherent ECM signals is proposed. In [62], the invariant detectors have been developed in a multiple pulsed jamming 
environment. An unintentional jamming scenario, inter-radar interference between automotive FMCW radars, is examined in [63] and an 
adaptive interference suppression windowing width control is suggested for the detection of interference. Jamming is also of major concern 
for many modern civilian or military communication systems. For example, [64] deals with the estimation of fast fading and/or frequency-
selective fading channels problem under interference in orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output 
(MIMO) systems and it uses compressive sensing approach to circumvent the effects of unknown multiple asynchronous narrow-band in-
terference (NBI). In [65], the detection of jammers in direct sequence spread spectrum (DSSS) wireless communication systems is studied 
and the statistics of jamming-free symbols is utilized to discriminate jammed packets. Similarly, the interference due to the Narrowband 
Internet-of-Things (NB-IoT) on existing broadband systems is also examined in [66].

We would like to note that the running assumption in virtually all DOA estimation methods is the coexistence of multiple targets 
or target- jammer/interference signals in all snapshots. Different from these studies, we assume that jamming is intermittent; hence, 
not all but some snapshots are contaminated. The main purpose of this study is to examine the amount of performance gain when the 
intermittency is taken into account in the problem formulation.

We would like to mention that the intermittent jamming problem is a highly practical problem of electronic warfare (EW) and elec-
tronic support measure (ESM) receivers [3]. As an example, one may consider a wideband ESM system receiver that collects signal samples 
from a frequency-hopping target whose instantaneous bandwidth overlaps with jammer’s relatively narrow operational bandwidth at ran-
dom times, as illustrated in Fig. 1. Another example can be a narrow band jammer sweeping a wide range of frequencies whose bandwidth 
overlaps with the operational bandwidth of the target from time to time. As an example of unintentional interference, one may consider 
a communication system that is interfered by a friendly short packet communication system turning on and off at random time instants 
[67].
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Fig. 1. An illustration for a frequency-hopping receiver whose operational bandwidth is partially jammed.

A related jamming scenario is studied by Besson et al. where the performance of ESPRIT algorithm under intermittent jamming is 
compared with the Cramer-Rao bound [68]. Different from this study, we do not only examine the performance of well known methods 
under intermittent jamming; but develop the maximum likelihood estimator for the problem.

The main contributions of this study can be listed as the development of EM-based maximum-likelihood estimator under intermittent 
jamming for two different target fluctuation models (coherent and non-coherent target signal models [69]), development of modified 
Cramer-Rao performance bound (MCRB) and a performance comparison with alternative techniques to illustrate the value of the suggested 
method. To retain the practicality of the suggested method and fairness in comparisons, we treat the jamming power and jamming 
probability as unknown nuisance parameters of the problem.

Notation: Lowercase, bold lowercase and bold uppercase symbols are used to represent scalars, vectors and matrices respectively. The 
superscripts (·)T and (·)H are used to respectively denote transpose and conjugate transpose of a vector or a matrix. We use A−1 to show 
inverse of a matrix. The notation CN (x; μ, σ 2) denotes circularly symmetric Gaussian density of scalar random variable x, with mean 
μ and variance σ 2. CN (x; μ, �) denotes circularly symmetric Gaussian density of vector random variable x, with mean vector μ and 
covariance matrix �. The identity matrix is represented by the symbol I . The symbol Ii is used to represent a binary valued random 
variable taking values 0 and 1.

2. Signal model and background

Consider the following set of L vectors,

xi = γt,ia(θt)︸ ︷︷ ︸
target

+ Iiγ j,ia(θ j)︸ ︷︷ ︸
jammer

+ ni︸︷︷︸
noise

, i = {1, . . . , L}, (1)

where xi is an N × 1 vector denoting the i’th snapshot vector, i = {1, . . . , L}. The vector xi is composed of three components which are 
signal of interest (target signal), jamming signal and noise.

The noise component ni in (1) is a complex-valued vector whose entries are independent and identically distributed (iid) with zero 
mean, unit variance circularly symmetric complex Gaussian distribution, ni ∼ CN (0, I). The entries of the noise vector are assumed to 
model the electronic noise or other unmodeled phenomena affecting the output of sensors. With this definition, the noise is assumed to 
be independent from sensor to sensor (elements of the vector xi ) and also from snapshot to snapshot.

The jamming component in (1) is expressed as Iiγ j,ia(θ j) which is a product of three terms: The first term, Ii = {0, 1}, is a binary 
valued random variable taking values 0 and 1. This variable indicates the presence or absence of jamming signal. The probability of 
jamming on the i’th snapshot is given as P (Ii = 1) = α1. The complementary event (no jammer activity in the i’th snapshot) has the 
probability P (Ii = 0) = α0 = 1 − α1. The second term, γ j,i , is a zero mean complex Gaussian random variable with variance σ 2 and 
represents the jammer complex amplitude for the i’th snapshot, γ j,i ∼ CN (γ j,i; 0, σ 2). The third term is the vector a(θ j) which is the 
array manifold vector for the jammer located at the angular position of θ j . For a uniform linear array, the array manifold vector becomes 
a(θ) = [1, e− jkd sin(θ), · · · , e− jkd sin(θ)(N−1)]T where d is the inter-sensor spacing and k = 2π/λ is the wavenumber. The jammer-to-noise 
ratio is defined as the ratio of the jamming signal power to the noise power at a receive element. Since the amplitude of the jammer signal 
is Gaussian distributed with a variance of σ 2 and the noise power is assumed to be unity at each receive element, the jammer-to-noise 
ratio (JNR) coincides with σ 2, i.e. JNR = σ 2. Jammer power σ 2 and jamming probability α1 are among the unknowns of the problem.

The target component in (1) is expressed as γt,ia(θt) where γt,i is the non-random complex-valued target signal amplitude of the i’th 
snapshot and θt is the angular position of the target. Both γt,i and θt are unknowns of the problem. Target signal is assumed to be present 
in all snapshots. If the target amplitudes γt,i are independent variables, that is if we have a set of L non-random unknown variables for 
L snapshots, we denote the target model as non-coherent target model. If the target amplitudes γt,i are deterministically related, then we 
denote the target model as coherent target model. In the coherent model, one may assume that the phase difference between the phases 
of complex numbers γt,i and γt,i+1 is deterministically known, i.e. pre-determined, which is the case for the snapshots collected with the 
pulse-Doppler radars for Swerling-1/3 targets [69]. Without any loss of generality, we assume that the deterministic phase progression at 
complex target amplitudes are undone, by multiplying both sides of equation (1) with the conjugate of the known phase sequence to get 
γt = γt,1 = γt,2 = . . . = γt,L . Hence for the coherent target model, γt is the sole unknown that models the complex target amplitude.

In this problem, the values of the indicator variables for jammer activity Ii , i = {1, . . . , L} are not known to the receiver. In addition, 
the probability of jamming (α1) is also an unknown of the problem. The jammer angular location θ j is assumed to be known. This is an 
3
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acceptable assumption for reconnaissance systems, since once the jammer is detected, the jammer angular location is flagged and subse-
quent signal processing operations such as target detection, direction finding etc. is done with the knowledge of jammer angular location. 
Furthermore, in the special case of unintentional jammer, say a friendly radar system jamming DOA estimation receiver intermittently, the 
angular localization of jammer can be known precisely.

On conventional estimator: Conventional DOA estimators ignore the intermittency of the intercepted signals. Hence, we may assume that 
Ii = 1 for i = {1, . . . , L} in (1), i.e. jammer is present in all snapshots, for the development of conventional estimators. For this problem, 
the maximum likelihood estimators for both target models are [70]:

θ̂t = arg max
θ

∑L
i=1

∣∣∣a(θ)H R−1
ñ xi

∣∣∣2

a(θ)H R−1
ñ a(θ)

(non-coherent target model) (2)

θ̂t = arg max
θ

∣∣∣a(θ)H R−1
ñ

∑L
i=1 xi

∣∣∣2

a(θ)H R−1
ñ a(θ)

(coherent target model) (3)

where Rñ = I + σ 2a(θ j)aH (θ j) is the jammer plus noise covariance matrix. For the intermittent jamming set-up, Rñ matrix becomes 
Rñ = I + α1σ

2a(θ j)aH (θ j); since the jammer is present with probability α1. In practice, Rñ is not available to the receiver and has to be 
estimated from target-free auxiliary data. Estimation of the covariance matrix is also an important and difficult problem on its own; but, 
we assume that Rñ is exactly known by the conventional estimator in this study. Availability of exact Rñ extends an advantage to the 
conventional estimators, which is obviously not present in practice, in the performance comparisons.

3. Proposed method

The unknown parameters θ = {γt,1, · · · , γt,L, θt , σ 2, α0, α1} appearing in the observation model xi = γt,ia(θt) + Iiγ j,ia(θ j) + ni, i =
{1, . . . , L}, are non-random variables to be determined by the likelihood maximization. The probability density function of the observation 
vector xi is p(xi | θ) = α0CN (xi; γt,ia(θt), I) + α1CN (xi; γt,ia(θt), I + σ 2a(θ j)aH (θ j)).

Remembering the fact that the snapshot xi is independent from xm , i �= m; the log likelihood of L snapshots becomes

L (x1, · · · , xL; θ) =
L∑

i=1

[
ln

(
α0

1

π N
exp

(
− (

xi − γt,ia(θt)
)H (

xi − γt,ia(θt)
)) +

α1
1

π N
∣∣I + σ 2a(θ j)a(θ j)

H
∣∣ exp

(
− (

xi − γt,ia(θt)
)H

(
I + σ 2a(θ j)a(θ j)

H
)−1 (

xi − γt,ia(θt)
)))]

.

(4)

Since the argument of the logarithm function in (4) involves summation of two terms, it is not possible to have an exact analytical 
solution, say in the form of (3), to the likelihood maximization problem. We use Expectation Maximization (EM) algorithm to iteratively 
maximize the likelihood via the latent variables [21].

We denote the set of observations and latent variables as X = {x1, · · · , xL} and Y = {I1, γ j,1, I2, γ j,2, · · · , I L, γ j,L}, respectively. EM 
methodology assumes an initial estimate for the unknown variables denoted as θ old. In the expectation phase, the posterior density 
p(Y |X, θold), which is the density of latent variables Y given the observations X and θold, is computed and then the complete-data 
{X, Y } log-likelihood function is ensemble averaged with respect to the posterior density to get Q (θ, θold) = EY |X {ln p(X, Y )|X, θold}. In 
the maximization phase, Q (θ , θold) is maximized with respect to θ to obtain the updated non-random parameter estimates, say θnew, to 
be utilized in the next iteration. In this study, the random variables associated with the jamming activity, which are {Ii}L

i=1 and {γ j,i}L
i=1, 

are chosen as the latent variables, that is Y = {I1, γ j,1, I2, γ j,2, · · · , I L, γ j,L}. For the sake of notational simplicity, we also denote the 
latent variable pair for the i’th snapshot as yi = {Ii, γ j,i}. Hence, we have Y = {y1, y2, . . . , yL} and {X, Y } = {x1, · · · , xL, y1, · · · , yL} for 
the latent variables and complete-data set, respectively.

Complete-data log-likelihood: The joint pdf for the i’th snapshot variables {xi, yi} = {xi, Ii, γ j,i} can be written as

p(xi, yi | θ) = p(xi, Ii, γ j,i | θ) = p(xi | Ii, γ j,i, θ)p(Ii | θ)p(γ j,i | θ)

= CN (xi;γt,ia(θt) + Iiγ j,ia(θ j), I)α Ii
1 α

1−Ii
0 CN (γ j,i;0,σ 2).

(5)

Hence, the joint pdf of {X, Y } becomes

p(X, Y | θ) =
L∏

i=1

[
1

π N
exp

(
−∥∥xi − γt,ia(θt) − Iiγ j,ia(θ j)

∥∥2
)
α

Ii
1 α

1−Ii
0

1

πσ 2
exp

(
−|γ j,i|2

σ 2

)]
. (6)

The logarithm of (6), so-called complete-data log-likelihood, is then

ln p(X, Y | θ) = − (N + 1)L ln(π) −
L∑

i=1

∥∥xi − γt,ia(θt) − Iiγ j,ia(θ j)
∥∥2

− L ln(σ 2) −
L∑ |γ j,i|2

σ 2
+ ln(α1)

L∑
Ii + ln(α0)

L∑
(1 − Ii).

(7)
i=1 i=1 i=1

4
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Posterior density calculation: For the derivation of the Q (θ , θold), we need to calculate the posterior density of the latent variables 
given observations and the current values of unknowns, i.e., p(Y | X, θold). With the application of Bayes’ theorem, the posterior density 
p(yi | xi, θold) can be written as

p(Ii, γ j,i | xi, θ
old) = p(Ii, γ j,i, xi|θold)/p(xi | θold)

=
(
αold

1

)Ii
(
αold

0

)1−Ii
CN (xi;γ old

t,i a(θold
t ) + Iiγ j,ia(θ j), I)CN (γ j,i;0,σ 2,old)

αold
1 CN

(
xi;γ old

t,i a
(
θold

t

)
, I + σ 2,olda(θ j)aH (θ j)

)
+ αold

0 CN
(

xi;γ old
t,i a

(
θold

t

)
, I

) .
(8)

Setting Ii = 0 in (8), yields the following simplified expression for p(Ii = 0, γ j,i | xi, θold)

p(Ii = 0, γ j,i | xi, θ
old) = M0,iCN (γ j,i;0,σ 2,old) (9)

where M0,i is given as

M0,i = αold
0 CN (xi;γ old

t,i a(θold
t ), I)

αold
1 CN

(
xi;γ old

t,i a
(
θold

t

)
, I + σ 2,olda(θ j)aH (θ j)

)
+ αold

0 CN
(

xi;γ old
t,i a

(
θold

t

)
, I

) . (10)

When Ii = 1 is inserted in (8), the numerator of the ratio in (8) becomes p(Ii = 1, xi, γ j,i | θold) = p(Ii = 1 | θold)p(xi, γ j,i | Ii = 1, θold). 
Note that p(Ii = 1 | θold) is simply αold

1 . The other term p(xi, γ j,i | Ii = 1, θold) can be written, by considering the marginal distributions 
and the correlation of the random variables xi and γ j,i under the assumption of active jammer, as follows:

p
(

xi, γ j,i, | Ii = 1, θold
)

= CN
([

xi
γ j,i

]
;
[

γ old
t,i a(θold

t )

0

]
,

[
I + σ 2,olda(θ j)aH (θ j) σ 2,olda(θ j)

σ 2,oldaH (θ j) σ 2,old

])
. (11)

To further simplify p(xi, γ j,i, | Ii = 1, θold) in (11), we express p(xi, γ j,i, | Ii = 1, θold) as the product of p(xi, | Ii = 1, θold) and p(γ j,i, |
xi, Ii = 1, θold). The term p(xi, | Ii = 1, θold) can be explicitly written as

p(xi, | Ii = 1, θold) = CN
(

xi;γ old
t,i a

(
θold

t

)
, I + σ 2,olda(θ j)a

H (θ j)
)

. (12)

The term p(γ j,i, | xi, Ii = 1, θold) can be written as

p(γ j,i, | xi, Ii = 1, θold) = CN
(
γ j,i; σ 2,old

1 + Nσ 2,old
aH (θ j)

(
xi − γ old

t,i a
(
θold

t

))
,

σ 2,old

1 + Nσ 2,old

)
(13)

considering the relation for the posterior density calculation for jointly Gaussian distributed random variables [71].
Finally, the density p(Ii = 1, γ j,i | xi, θold), which is nothing but the product of p(Ii = 1 | θold) = αold

1 , p(xi, | Ii = 1, θold) and p(γ j,i, |
xi, Ii = 1, θold) divided by p(xi | θold), can be calculated from (12) and (13) as

p(Ii = 1, γ j,i | xi, θ
old) = M1,iCN

(
γ j,i; σ 2,old

1 + Nσ 2,old
aH (θ j)

(
xi − γ old

t,i a
(
θold

t

))
,

σ 2,old

1 + Nσ 2,old

)
(14)

where M1,i is defined as

M1,i =
αold

1 CN
(

xi;γ old
t,i a

(
θold

t

)
, I + σ 2,olda(θ j)aH (θ j)

)
αold

1 CN
(

xi;γ old
t,i a

(
θold

t

)
, I + σ 2,olda(θ j)aH (θ j)

)
+ αold

0 CN
(

xi;γ old
t,i a

(
θold

t

)
, I

) . (15)

As a final note, we can easily verify from (9) and (14), by marginalization operation, that p(Ii = 0 | xi, θold) = M0,i and p(Ii = 1 |
xi, θold) = M1,i . As expected, we have M0,i + M1,i = 1.

Expectation phase: Using the fact that random variables {xi, yi} are independent and identically distributed, the expected value of 
complete-data log-likelihood function can be written as

Q (θ , θold) = EY |X,θold{ln p(X, Y | θ) | X, θold}

=
L∑

i=1

E yi |xi ,θ
old{ln p(xi, yi |θ) | xi, θ

old}.
(16)

The expectation operation is over the posterior density of the latent variables y i = {Ii, γ j,i}, given in (9) and (14):

E yi |xi ,θ
old{ln p(xi, yi |θ)} =

1∑
Ii=0

∫
γ

ln p(xi, yi |θ)p
(

Ii, γ j,i | xi, θ
old

)
dγ j,i . (17)
j,i

5
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The expression for the argument of the expectation operation, ln p(xi, yi |θ), that is the complete log-likelihood function for the i’th 
snapshot can be written from (7) as

ln p(xi, yi|θ)
c= −∥∥xi − γt,ia(θt) − Iiγ j,ia(θ j)

∥∥2 + ln(α1)Ii + ln(α0)(1 − Ii) − ln(σ 2) − |γ j,i|2
σ 2

where c= refers the equality of both sides apart from constant terms not affecting subsequent calculations.
The evaluation of E yi |xi ,θ

old {ln p(xi, yi |θ)} requires the calculation of three expectations operations, E1 = E yi |xi ,θ
old {Ii}, E2 =

E yi |xi ,θ
old {|γ j,i |2} and E3 = E yi |xi ,θ

old {∥∥xi − γt,ia(θt) − Iiγ j,ia(θ j)
∥∥2}. The first expectation is straightforward to calculate

E1 = E yi |xi ,θ
old{Ii} = p(Ii = 1 | xi, θ

old) = M1,i (18)

where M1,i is given in (15).
The second expectation E2 can be evaluated from (9) and (14) as

E2 = E yi |xi ,θ
old{|γ j,i|2} =

1∑
Ii=0

∫
γ j,i

|γ j,i|2 p
(

Ii, γ j,i | xi, θ
old

)
dγ j,i

= M0,iσ
2,old + M1,i(P old + |γ̄ old

i |2) (19)

where γ̄ old
i and P old are the mean and variance of the Gaussian density given in (14), whose explicit expressions are

γ̄ old
i =

(
σ 2,old

1 + Nσ 2,old

)
aH (θ j)

(
xi − γ old

t,i a(θold
t )

)
, P old = σ 2,old

1 + Nσ 2,old
. (20)

The third expectation, E3 = E yi |xi ,θ
old {∥∥xi − γt,ia(θt) − Iiγ j,ia(θ j)

∥∥2}, can be compactly written as E yi |xi ,θ
old {∥∥c i − Iiγ j,ia(θ j)

∥∥2} by intro-
ducing c i = xi − γt,ia(θt). The vector ci can be treated as a non-random vector for the sake of this calculation and E3 can be written 
as:

E3 = E yi |xi ,θ
old{∥∥c i − Iiγ j,ia(θ j)

∥∥2} =
1∑

Ii=0

∫
γ j,i

∥∥c i − Iiγ j,ia(θ j)
∥∥2

p
(

Ii, γ j,i | xi, θ
old

)
dγ j,i

= M0,i ‖c i‖2 + M1,i Eγ j,i |xi ,Ii=1,θold{∥∥c i − γ j,ia(θ j)
∥∥2}. (21)

Hence, the evaluation of E3 in (21) reduces to the calculation of Eγ j,i |xi ,Ii=1,θold {∥∥c i − γ j,ia(θ j)
∥∥2}, which is an expectation over the 

complex Gaussian random variable γ j,i given the observation vector xi under the assumption that jamming is active, i.e. Ii = 1. Using 
expression (14), we can express this density as CN (γ j,i; γ̄ old

i , P old) where γ̄ old
i and P old are as stated in (20) and evaluate the expectation 

result as follows:

Eγ j,i |xi ,Ii=1,θold{∥∥c i − γ j,ia(θ j)
∥∥2} = Eγ j,i |xi ,Ii=1,θold{

∥∥∥c i − γ̄ old
i a(θ j) − (γ j,i − γ̄ old

i )a(θ j)

∥∥∥2}

=
∥∥∥c i − γ̄ old

i a(θ j)

∥∥∥2 + Eγ j,i |xi ,Ii=1,θold{|γ j,i − γ̄ old
i |2}∥∥a(θ j)

∥∥2

−2real
[
(c i − γ̄ old

i a(θ j))
H Eγ j,i |xi ,Ii=1,θold{γ j,i − γ̄ old

i }a(θ j)
]

=
∥∥∥c i − γ̄ old

i a(θ j)

∥∥∥2 + P oldN. (22)

Note that, we use Eγ j,i |xi ,Ii=1,θold {γ j,i − γ̄ old
i } = 0 in the second line of (22). By inserting (22) into (21), we finalize the calculation of the 

third expectation:

E3 = E yi |xi ,θ
old{∥∥c i − Iiγ j,ia(θ j)

∥∥2} = M0,i ‖c i‖2 + M1,i(

∥∥∥c i − γ̄ old
i a(θ j)

∥∥∥2 + P oldN). (23)

Once the expressions for three expectations, given by equations (18), (19) and (23), are inserted in (16), the E-phase of EM algorithm is 
completed:

Q (θ , θold)
c= ln(α0)

L∑
i=1

Mold
0,i + ln(α1)

L∑
i=1

Mold
1,i − L ln

(
σ 2

)
− 1

σ 2

L∑
i=1

[
Mold

0,i σ
2,old + Mold

1,i

(
P old +

∣∣∣γ̄ old
i

∣∣∣2
)]

−
L∑

i=1

Mold
0,i

∥∥xi − γt,ia(θt)
∥∥2 −

L∑
i=1

Mold
1,i

(∥∥∥xi − γt,ia(θt) − γ̄ old
i a(θ j)

∥∥∥2 + P oldN

)
.

(24)

Maximization phase: In the maximization phase, we optimize the expected complete log-likelihood with respect to the unknown param-
eters θ = {γt,1, · · · , γt,L, θt , σ 2, α0, α1}. We start with the optimization of σ 2 (jamming power). By taking the derivative of Q (θ , θold) with 
respect to σ 2 and equating the result to 0, the updated σ̂ 2 estimate becomes:
6
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σ̂ 2 = 1

L

L∑
i=1

[
Mold

0,i σ
2,old + Mold

1,i

(
P old +

∣∣∣γ̄ old
i

∣∣∣2
)]

. (25)

Next, we optimize over the jamming probability α1. The optimization with respect to αm, m = {0, 1} is a constrained optimization problem, 
since α0 +α1 = 1. Forming the Lagrangian 	 = Q

(
θ, θold

)
+ λ (α0 + α1 − 1) and taking its derivative with respect to αm, m = {0, 1} leads 

to

α̂0 = 1

L

L∑
i=1

Mold
0,i and α̂1 = 1

L

L∑
i=1

Mold
1,i . (26)

Next, we optimize over the target amplitude variables γt,i i = {1, 2, . . . , L}. We present two different target signal models, namely non-
coherent and coherent target models.

Target amplitude and angle estimation for noncoherent target signal model: This model assumes that γt,i for i = {1, 2, . . . , L} are L
independent non-random variables. This model is valid for Swerling-2/Swerling-4 target fluctuation models in radar signal processing 
literature [69].

By taking derivative of Q (θ, θold) in (24) with respect to γ ∗
t,i ,

∂ Q (θ , θold)

∂γ ∗
t,i

= −Nγt,i + aH (θt)xi − Mold
1,i aH (θt)γ̄

old
i a(θ j) (27)

and equating the result to zero, the updated estimate γ̂t,i can be given as

γ̂t,i = 1

N
aH (θt)

(
xi − Mold

1,i γ̄
old
i a(θ j)

)
, i = {1,2, . . . , L}. (28)

The only remaining unknown to determine is the target angular position θt . When the updated target amplitudes are inserted in (24), we 
get the compressed objective function Q c(·, ·) as

Q c(θ , θold)
c= 1

N

L∑
i=1

aH (θt)
(

xi − Mold
1,i γ̄

old
i a(θ j)

)(
xi − Mold

1,i γ̄
old
i a(θ j)

)H
a(θt). (29)

The angular position θt maximizing the compressed objective function is the updated DOA estimate for the target signal, which is

θ̂t = arg max
θ

L∑
i=1

∣∣∣aH (θ)
(

xi − Mold
1,i γ̄

old
i a(θ j)

)∣∣∣2
. (Non-coherent target model) (30)

Target amplitude and angle estimation for coherent target signal model: This model assumes that the target amplitudes γt,i for 
i = {1, 2, . . . , L} are identically the same, after a deterministic phase correction, as mentioned before. This model is valid for Swerling-
1/Swerling-3 target fluctuation models in radar signal processing literature [69].

To simplify the notation, we denote the common target amplitude with γt , and substitute γt = γt,1 = γt,2 = . . . = γt,L in (24). After the 
substitution, we get,

Q (θ , θold)
c= −

L∑
i=1

Mold
0,i

∥∥xi − γta(θt)
∥∥2 −

L∑
i=1

Mold
1,i

∥∥∥xi − γta(θt) − γ̄ old
i a(θ j)

∥∥∥2
. (31)

By taking the derivative of Q (θ , θold) with respect to γ ∗
t

∂ Q (θ , θold)

∂γ ∗
t

= −N Lγt + aH (θt)

L∑
i=1

(
xi − Mold

1,i γ̄
old
i a(θ j)

)
(32)

and equating the result to zero, the updated target amplitude γ̂t can be given as

γ̂t = 1

N L
aH (θt)

L∑
i=1

(
xi − Mold

1,i γ̄
old
i a(θ j)

)
. (33)

Inserting the optimized γ̂t value in (31), we get the compressed objective function in the coherent case as

Q c(θ , θold)
c= γ̂t

L∑
i=1

Mold
0,i xH

i a(θt) + γ̂t

L∑
i=1

Mold
1,i

(
xi − γ̄ old

i a(θ j)
)H

a(θt). (34)

Maximizing the compressed objective function over the unknown target angle yields the updated DOA estimate for the coherent target 
signal model as:

θ̂t = arg max
θ

∣∣∣∣∣aH (θ)

L∑
i=1

(
xi − Mold

1,i γ̄
old
i a(θ j)

)∣∣∣∣∣
2

. (Coherent target model) (35)

This completes the derivation of M-step of EM algorithm. The steps of the proposed estimator for both target models are given in Algo-
rithm 1 listing.
7



Algorithm 1 ML DOA estimation under intermittent jamming.
Initialization: Initialize θ = {γt,1, · · · , γt,L , θt , σ 2, α0, α1}
Expectation phase:

compute M0,i from (10)
compute M1,i from (15)
compute P old and γ̄ old

i from (20)
Maximization phase:

compute σ̂ 2 from (25)
compute α̂0 and α̂1 from (26)
if Signal model = non-coherent then

compute γ̂t,i , i = {1, 2, . . . , L} from (28)
compute θ̂t from (30)

end if
if Signal model = coherent then

compute γ̂t from (33)
compute θ̂t from (35)

end if
Termination check:

if the convergence criteria is satisfied then
return σ̂ 2, α̂0, α̂1, γ̂t,i(γ̂t ) and θ̂t

else
Go to Expectation Phase

end if

4. Numerical comparisons

We present three sets of Monte Carlo simulation results for performance comparisons. In all comparisons, a uniform linear array of 
N = 10 elements with an interelement spacing of λ/2 is utilized. Noise variance is taken as unity. The target signal complex amplitude 
is denoted with γt,i where γt,i = ∣∣γt,i

∣∣eφt,i . For coherent target model, 
∣∣γt,i

∣∣ and φt,i are identically the same for i = {1, . . . , L}. For 
noncoherent target model, 

∣∣γt,i
∣∣ is held constant for all snapshots whereas phase is independently sampled from uniform distribution at 

each snapshot. For both target models SNR is defined as SNR = ∣∣γt,i
∣∣2

. The jammer existence probability (α1) is fixed to 0.5 in the first 
and the third numerical experiments and it is varied in the second experiment. The jammer-to-noise-ratio (JNR) is identical to the jammer 
power σ 2, since the noise variance is taken as unity.

Under the intermittent interference model, the interference plus noise covariance matrix becomes Rñ = I + α1σ
2a(θ j)aH (θ j). It is 

assumed that the conventional method utilizes the exact Rñ matrix. Hence, the conventional method has the exact knowledge of jammer 
power and its angular position, but is not aware that jamming is intermittent. The suggested method assumes that jamming is intermittent, 
but is not aware of jamming probability and jamming power. The target and jammer angular locations are taken as at 0◦ and 10◦ , 
respectively. It should be noted that the 3 dB beamwidth of the uniform linear array with 10 elements is approximately 11 degrees. 
Hence, the jammer lies at the edge of the beamwidth which makes it difficult to suppress without a significant SNR loss via conventional 
methods.

In all figures, we present the Cramer-Rao bound (CRB) for the cases of jammer always absent/present and Modified Cramer-Rao Bound 

(MCRB). The performance metric used for angle estimation is root mean square error, RMSE =
√

1
Nruns

∑Nruns
i=1

(
θ̂i − θt

)2
where Nruns is the 

number of Monte Carlo runs, which is 100,000 for the first two experiments and 10,000 for the third one.

Experiment 1. Fig. 2 shows the RMS error on the target angular position estimate as JNR increases. This experiment is conducted with 
L = 20 snapshots, jamming probability of α1 = 0.5 and SNR = 0 dB.

The sub-figures of Fig. 2 present the results for coherent and non-coherent signal models. The red and green colored curves indicates 
the CRB when the jammer is always present (α1 = 1) and absent (α1 = 0), respectively. The MCRB for α1 = 0.5 is shown with the purple 
line.

It can be noted from Fig. 2 that the proposed and conventional method perform almost identically for sufficiently small JNR values 
(weak jamming signal). As expected, this operational regime is dominated by the noise, not by the jammer activity; hence the performance 
of the proposed method, which models the intermittent nature of the jammer, is identical to the conventional one. As JNR increases, the 
performance of the conventional estimator, i.e. the maximum likelihood estimator with the assumption of α1 = 0.5, degrades rapidly after 
a threshold value. The threshold is around JNR = −5 dB in Fig. 2. The proposed method yields a better performance over the conventional 
estimator above this JNR threshold.

Atomic norm based technique shown in Fig. 2 estimates both jammer and target locations via convex optimization by processing 
L snapshots [46]. Atomic norm method, like other high resolution methods such as MUSIC or ESPRIT, does not utilize the statistical 
information of the observations and have no dependence on number of targets in this formulation. We observe from Fig. 2 that atomic 
norm based technique yields a good performance for the estimation of multiple DOA’s, but its performance is far more worse than 
conventional and suggested estimator which utilize the specifics of the problem. The lack of sensitivity to the problem specifics of atomic 
norm estimator is also reflected by almost identical performance for both target models, while other estimators utilize the target signal 
model to further improve the performance.

Fig. 3 shows the accuracy of other parameters estimated in Experiment 1. Sub-figures (a)-(b) of Fig. 3 show the estimate for the jammer 
existence probability. As expected, as JNR increases, the jammer existence probability converges to the true value of 0.5. The mean and 
standard deviation for α1 estimates is almost identical for both target models. Sub-figures (c)-(d) of Fig. 3 shows the estimate for the 
jammer power. The true jammer power is also indicated by the dashed red-line in Figs. 3(c) and 3(d). The standard deviation of the 
jammer power estimate is also indicated by the error bars.
Ş. Bilgi Akdemir and Ç. Candan Digital Signal Processing 113 (2021) 103028
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Fig. 2. Experiment 1 - angle estimation accuracy (θt = 0, θ j = 10◦ , L = 20, α1 = 0.5, N = 10, SNR = 0 dB). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 3. Experiment 1 - sub-figures (a)-(b): Mean and standard deviation of jammer existence probability estimate, sub-figures (c)-(d): Mean value of jammer power estimates 
(error bars indicate one standard deviation of estimates from the mean value).
9
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Fig. 4. Experiment 2 - angle estimation accuracy (θt = 0, θ j = 10◦ , L = 20, N = 10, SNR = 0 dB).

Experiment 2. JNR value is fixed in this experiment, but the jammer existence probability α1 is varied. The other experiment parameters 
are identical to the ones in Experiment 1. JNR is fixed to two values, 10 and 20 dB, to illustrate the performance under medium and heavy 
jamming. It can be observed from Fig. 4 that conventional and atomic norm estimator suffer from a significant performance loss even at 
α1 = 0.1. This is essentially due to the ignorance of signal intermittency in the problem formulation. The performance of the suggested 
method is identical to the conventional method for the extreme cases of jammer always absent (α1 = 0) and always present (α1 = 1) 
and tracks the MCRB lower bound for all α1 values. It is interesting to note that the case of coherent signal model tracks the MCRB very 
closely in the heavy jamming case. We would like to underline that the suggested method is unaware of true α1 value and estimates 
this parameter in the processing chain. In spite of this, the performance of the suggested method is in close vicinity of the performance 
bounds for all α1 values. The estimation accuracy of other parameter estimates (σ̂ 2 and α̂1) is similar to the results in Fig. 3 and is not 
provided.

The success of the suggested method can be attributed to the successful “soft classification” of snapshots in terms of jammer con-
tamination level. Another observed feature of the suggested method is the graceful degradation of estimation accuracy with increasing 
jamming probability. As can be most easily seen from Fig. 4(d), the suggested method works as if jammer is absent for small jammer ex-
istence probability values, while the conventional estimator suffers from significant performance losses and works as if jammer is always 
present.

Experiment 3. This experiment shows the accuracy of the angle estimate for a fixed JNR as SNR changes. The experiment conditions are 
identical to the earlier experiments except JNR is fixed to 10 dB and jammer existence probability is set to α1 = 0.5. Results in Fig. 5
are consistent with earlier experiments. In this experiment, atomic norm method can not estimate the target angular location at low SNR 
10



Ş. Bilgi Akdemir and Ç. Candan Digital Signal Processing 113 (2021) 103028
Fig. 5. Experiment 3 - angle estimation accuracy (θt = 0, θ j = 10◦ , L = 20, α1 = 0.5, N = 10, JNR = 10 dB).

and presents a single estimate (instead of two) which is the estimate for the jammer location whose true value is 10 degrees. Suggested 
method performs close to MCRB in the asymptotic region (high SNR region of Fig. 5) and outperforms other alternatives.

5. Summary and conclusions

The main goal of this study is to examine the direction of arrival estimation problem under intermittent jamming. Intermittent jam-
ming is a frequently encountered problem especially in electronic support systems [67]. In spite of its importance and practicality, DOA 
estimation under this jamming modality has received little attention in open literature.

In this study, we present the maximum likelihood angle estimator specific to the intermittent jamming modality for two different 
target fluctuation models. Non-coherent signal model is suitable for sensing or radar signal processing applications; while the coherent 
model is applicable to both communications and radar signal processing applications. In the performance comparisons, the suggested 
scheme is compared with the conventional estimator, atomic norm based estimator and performance bounds. The conventional estimator 
is assumed to have perfect knowledge of jammer parameters (jammer angular position and power), while the suggested scheme is unaware 
of these parameters and estimates them through the maximum likelihood framework. In spite of the additional information provided to 
the conventional estimator, the suggested scheme is shown to perform better in all scenarios. We note that the performance of the 
conventional estimator suddenly degrades with increasing α1 (jammer existence probability) for strong jammers. This is not the case 
for the suggested estimator. (This is most clearly observed from Fig. 4(d) where the conventional estimator performance rapidly degrades 
towards the jammer-always-present CRB with increasing α1; while the suggested estimator presents a graceful degradation closely tracking 
the MCRB performance bound. At the operating point of α1 = 0.1 in Fig. 4(d), the conventional estimator operates as if jammer is always 
present, while the suggested estimator operates as if jammer is always absent or with a minor degradation.) The atomic norm estimator 
and other high resolution estimators operate independent of the number of target signals and do not explicitly take into account the 
statistical description of the observation model such as signal intermittency. This leads to poorer performance for these generic estimators 
in comparison to the maximum likelihood estimators developed specifically for the problem. As a final note on the study, we can state 
that the suggested DOA estimation method for the intermittent jamming scenario significantly benefits from the inclusion of problem 
specifics into estimator design via the EM-formulation and this leads to significant estimation accuracy improvements over conventional 
or off-the-shelf estimators.
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Appendix A. Cramer-Rao lower bound

The derivations for the Cramer-Rao Lower Bound (CRLB) and modified CRLB are presented. We remind that the Fisher information 
matrix (FIM) for L independent snapshot is the sum of individual FIM for each snapshot. For a Gaussian vector, the entries of FIM matrix 
can be written as [71],
11
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[I (θ)]k,l = tr

[
C−1

x (θ)
∂C x (θ)

∂θk
C−1

x (θ)
∂C x (θ)

∂θl

]
+ 2 Re

[
∂μH (θ)

∂θk
C−1

x (θ)
∂μ (θ)

∂θl

]
where θk and θl are k’th and l’th unknown parameters to be estimated. The set of unknown parameters change with the target signal 
model.

Non-coherent target signal model: This model includes 2L + 1 parameters to be estimated:

θ = [
θt Re

{
γt,1

} · · · Re
{
γt,L

}
Im

{
γt,1

} · · · Im
{
γt,L

} ]
.

For this model, the non-zero entries of FIM matrix can be given as:

[
I Ii (θ)

]
1,1 =

L∑
i=1

2 Re
[∣∣γt,i

∣∣2
(2π/λ)2 cos2 (θ)aH (θt)DC−1

Ii
Da(θt)

]
,

[
I Ii (θ)

]
1,l =

[
I∗

Ii
(θ)

]
l,1

= 2 Re
[
− jγ ∗

t,i (2π/λ) cos (θ)aH (θt)DC−1
Ii

a(θt)
]
, l = {2, . . . , L + 1},[

I Ii (θ)
]

1,l =
[

I∗
Ii

(θ)
]

l,1
= 2 Re

[
γ ∗

t,i (2π/λ) cos (θ)aH (θt)DC−1
Ii

a(θt)
]
, l = {L + 2, . . . ,2L + 1},[

I Ii (θ)
]

l,l = 2 Re
[

aH (θt)C−1
Ii

a(θt)
]
, l = {2, . . . ,2L + 1}

where D is the diagonal matrix with the diagonal entries [0 d · · · (N − 1)d].
Coherent target signal model: This model includes 3 parameters to be estimated:

θ = [
θt Re

{
γt

}
Im

{
γt

} ]
.

The elements of FIM can be written as:[
I Ii (θ)

]
1,1 = 2L Re

[∣∣γt
∣∣2

(2π/λ)2 cos2 (θ)aH (θt)DC−1
Ii

Da(θt)
]
,[

I Ii (θ)
]

1,2 = 2 Re
[
− jγ ∗

t (2π/λ) cos (θ)aH (θt)DC−1
Ii

a(θt)
]
,[

I Ii (θ)
]

1,3 = 2L Re
[
γ ∗

t (2π/λ) cos (θ)aH (θt)DC−1
Ii

a(θt)
]
,[

I Ii (θ)
]

2,1 = 2L Re
[

jγt (2π/λ) cos (θ)aH (θt)C−1
Ii

Da(θt)
]
,[

I Ii (θ)
]

2,2 = 2 Re
[

aH (θt)C−1
Ii

a(θt)
]
,[

I Ii (θ)
]

2,3 = 0,[
I Ii (θ)

]
3,1 = 2 Re

[
γt (2π/λ) cos (θ)aH (θt)C−1

Ii
Da(θt)

]
,[

I Ii (θ)
]

3,2 = 0,[
I Ii (θ)

]
3,3 = 2L Re

[
aH (θt)C−1

Ii
Da(θt)

]
.

For both target models, CRLB on the DOA estimation error is (1,1) element of the inverse of the FIM.

Appendix B. Modified Cramer Rao bound

As defined in [72] and [73], the (i, j)th entry of the modified FIM I MC R B (θ) is given by

[I MC R B (θ)]i, j = −Ex,β

{
∂2 ln p(x | β; θ)

∂θi∂θ j

}
where the expectation is over both the observation vector x and the nuisance parameters β .

In the examined problem, the indicator variable for the jammer presence Ii , i = {1, · · · , L} are the random nuisance parameters. With 
this definition, modified FIM can be written as

[I MC R B (θ)]i, j =
L∑

i=1

Exi ,Ii

{
−∂2 ln p(xi | Ii; θ)

∂θi∂θ j

}
=

L∑
i=1

E Ii

{
Exi |Ii

{
−∂2 ln p(xi | Ii; θ)

∂θi∂θ j

}}

leading to

I MC R B(θ) = α0 I Ii=0 (θ) + α1 I Ii=1 (θ) (B.1)

where I Ii=0 (θ) and I Ii=1 (θ) are previously given FIM for the cases of jammer absent and present, respectively.
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