EE 503 - HW \#1

(Due: Oct. 21, 2015)

4. P_{1} and P_{2} are two points in the $x-y$ plane. M is 1 dimensional linear variety of (x, y) plane (2 -dimensional space).

$$
M=\left\{(x, y):(x, y)=\underline{x_{0}}+\alpha(\cos \Theta, \sin \Theta), \alpha \in R\right\}
$$

Let $\mathrm{P}_{1}=(1,0), \mathrm{P}_{2}=(-1,0)$ and let M be the points on the line $y=-x+4$. Find the point \hat{P} in the variety M such that the sum of distances to P_{1} and P_{2}, i.e. $\left\|\hat{P}-P_{1}\right\|+\left\|\hat{P}-P_{2}\right\|$, is minimum. (Note: This problem is different from the previous one. Here the cost is the distance itself, not the sum of distance squares).
Hint: Consider drawing ellipses with the foci points P_{1} and P_{2}. (You may check http://torus.math.uiuc.edu/eggmath/Shape/ellipse-eq.html for more information.)

