EE 503, HW \#1

(Due: Oct. 13, 2009)

1. P is a point in $\mathrm{x}-\mathrm{y}$ plane. V is 1 -dimensional subspace of (x, y) plane (2 -dimensional space). $V=\{(x, y):(x, y)=\alpha(-\cos \Theta, \sin \Theta), \alpha \in R\}$
i. Find the point in V which is closest to P in the Euclidean sense.
a. By using orthogonality of the projection error to the sub-space
b. By optimization over α.

2. P is a point in $\mathrm{x}-\mathrm{y}$ plane. M is 1-dimensional linear variety of (x, y) plane (2-dimensional space).

$$
M=\left\{(x, y):(x, y)=\underline{x_{0}}+\alpha(-\cos \Theta, \sin \Theta), \alpha \in R\right\}
$$

i. Show that a linear variety is not a vector-space. (You may research on linear variety from internet)
ii. Find the point in M which is closest to P (in the Euclidean sense), by optimization over α.
iii. Comment on the result found ii. Is the orthogonality principle valid for linear variety?

3. P_{1} and P_{2} are two points in the $x-y$ plane. M is 1 dimensional linear variety of (x, y) plane (2-dimensional space).
$M=\left\{(x, y):(x, y)=\underline{x_{0}}+\alpha(-\cos \Theta, \sin \Theta), \alpha \in R\right\}$
i. Find the point in M which is closest to the summation of distances to P_{1} and P_{2}.
a. By optimization over α.
ii. Comment on the result.

